Статті в журналах з теми "Interpretable deep learning"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Interpretable deep learning".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Gangopadhyay, Tryambak, Sin Yong Tan, Anthony LoCurto, James B. Michael, and Soumik Sarkar. "Interpretable Deep Learning for Monitoring Combustion Instability." IFAC-PapersOnLine 53, no. 2 (2020): 832–37. http://dx.doi.org/10.1016/j.ifacol.2020.12.839.
Повний текст джерелаZheng, Hong, Yinglong Dai, Fumin Yu, and Yuezhen Hu. "Interpretable Saliency Map for Deep Reinforcement Learning." Journal of Physics: Conference Series 1757, no. 1 (2021): 012075. http://dx.doi.org/10.1088/1742-6596/1757/1/012075.
Повний текст джерелаRuffolo, Jeffrey A., Jeremias Sulam, and Jeffrey J. Gray. "Antibody structure prediction using interpretable deep learning." Patterns 3, no. 2 (2022): 100406. http://dx.doi.org/10.1016/j.patter.2021.100406.
Повний текст джерелаBhambhoria, Rohan, Hui Liu, Samuel Dahan, and Xiaodan Zhu. "Interpretable Low-Resource Legal Decision Making." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 11819–27. http://dx.doi.org/10.1609/aaai.v36i11.21438.
Повний текст джерелаArik, Sercan Ö., and Tomas Pfister. "TabNet: Attentive Interpretable Tabular Learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 8 (2021): 6679–87. http://dx.doi.org/10.1609/aaai.v35i8.16826.
Повний текст джерелаLin, Chih-Hsu, and Olivier Lichtarge. "Using interpretable deep learning to model cancer dependencies." Bioinformatics 37, no. 17 (2021): 2675–81. http://dx.doi.org/10.1093/bioinformatics/btab137.
Повний текст джерелаLiao, WangMin, BeiJi Zou, RongChang Zhao, YuanQiong Chen, ZhiYou He, and MengJie Zhou. "Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis." IEEE Journal of Biomedical and Health Informatics 24, no. 5 (2020): 1405–12. http://dx.doi.org/10.1109/jbhi.2019.2949075.
Повний текст джерелаMatsubara, Takashi. "Bayesian deep learning: A model-based interpretable approach." Nonlinear Theory and Its Applications, IEICE 11, no. 1 (2020): 16–35. http://dx.doi.org/10.1587/nolta.11.16.
Повний текст джерелаLiu, Yi, Kenneth Barr, and John Reinitz. "Fully interpretable deep learning model of transcriptional control." Bioinformatics 36, Supplement_1 (2020): i499—i507. http://dx.doi.org/10.1093/bioinformatics/btaa506.
Повний текст джерелаYamuna, Vadada. "Interpretable Deep Learning Models for Improved Diabetes Diagnosis." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 06 (2025): 1–9. https://doi.org/10.55041/ijsrem50834.
Повний текст джерелаBang, Seojin, Pengtao Xie, Heewook Lee, Wei Wu, and Eric Xing. "Explaining A Black-box By Using A Deep Variational Information Bottleneck Approach." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 13 (2021): 11396–404. http://dx.doi.org/10.1609/aaai.v35i13.17358.
Повний текст джерелаNisha, Mrs M. P. "Interpretable Deep Neural Networks using SHAP and LIME for Decision Making in Smart Home Automation." International Scientific Journal of Engineering and Management 04, no. 05 (2025): 1–7. https://doi.org/10.55041/isjem03409.
Повний текст джерелаBrinkrolf, Johannes, and Barbara Hammer. "Interpretable machine learning with reject option." at - Automatisierungstechnik 66, no. 4 (2018): 283–90. http://dx.doi.org/10.1515/auto-2017-0123.
Повний текст джерелаAn, Junkang, Yiwan Zhang, and Inwhee Joe. "Specific-Input LIME Explanations for Tabular Data Based on Deep Learning Models." Applied Sciences 13, no. 15 (2023): 8782. http://dx.doi.org/10.3390/app13158782.
Повний текст джерелаZinemanas, Pablo, Martín Rocamora, Marius Miron, Frederic Font, and Xavier Serra. "An Interpretable Deep Learning Model for Automatic Sound Classification." Electronics 10, no. 7 (2021): 850. http://dx.doi.org/10.3390/electronics10070850.
Повний текст джерелаMu, Xuechen, Zhenyu Huang, Qiufen Chen, et al. "DeepEnhancerPPO: An Interpretable Deep Learning Approach for Enhancer Classification." International Journal of Molecular Sciences 25, no. 23 (2024): 12942. https://doi.org/10.3390/ijms252312942.
Повний текст джерелаMa, Shuang, Haifeng Wang, Wei Zhao, et al. "An interpretable deep learning model for hallux valgus prediction." Computers in Biology and Medicine 185 (February 2025): 109468. https://doi.org/10.1016/j.compbiomed.2024.109468.
Повний текст джерелаGagne II, David John, Sue Ellen Haupt, Douglas W. Nychka, and Gregory Thompson. "Interpretable Deep Learning for Spatial Analysis of Severe Hailstorms." Monthly Weather Review 147, no. 8 (2019): 2827–45. http://dx.doi.org/10.1175/mwr-d-18-0316.1.
Повний текст джерелаAbdel-Basset, Mohamed, Hossam Hawash, Khalid Abdulaziz Alnowibet, Ali Wagdy Mohamed, and Karam M. Sallam. "Interpretable Deep Learning for Discriminating Pneumonia from Lung Ultrasounds." Mathematics 10, no. 21 (2022): 4153. http://dx.doi.org/10.3390/math10214153.
Повний текст джерелаChen, Xingguo, Yang Li, Xiaoyan Xu, and Min Shao. "A Novel Interpretable Deep Learning Model for Ozone Prediction." Applied Sciences 13, no. 21 (2023): 11799. http://dx.doi.org/10.3390/app132111799.
Повний текст джерелаZhang, Rongquan, Siqi Bu, Min Zhou, Gangqiang Li, Baishao Zhan, and Zhe Zhang. "Deep reinforcement learning based interpretable photovoltaic power prediction framework." Sustainable Energy Technologies and Assessments 67 (July 2024): 103830. http://dx.doi.org/10.1016/j.seta.2024.103830.
Повний текст джерелаXu, Lingfeng, Julie Liss, and Visar Berisha. "Dysarthria detection based on a deep learning model with a clinically-interpretable layer." JASA Express Letters 3, no. 1 (2023): 015201. http://dx.doi.org/10.1121/10.0016833.
Повний текст джерелаT. Vengatesh. "Transparent Decision-Making with Explainable Ai (Xai): Advances in Interpretable Deep Learning." Journal of Information Systems Engineering and Management 10, no. 4 (2025): 1295–303. https://doi.org/10.52783/jisem.v10i4.10584.
Повний текст джерелаKoriakina, Nadezhda, Nataša Sladoje, Vladimir Bašić, and Joakim Lindblad. "Deep multiple instance learning versus conventional deep single instance learning for interpretable oral cancer detection." PLOS ONE 19, no. 4 (2024): e0302169. http://dx.doi.org/10.1371/journal.pone.0302169.
Повний текст джерелаReddy, Kudumula Tejeswar, B. Dilip Chakravarthy, M. Subbarao, and Asadi Srinivasulu. "Enhancing Plant Disease Detection through Deep Learning." International Journal of Scientific Methods in Engineering and Management 01, no. 10 (2023): 01–13. http://dx.doi.org/10.58599/ijsmem.2023.11001.
Повний текст джерелаCheng, Xueyi, and Chang Che. "Interpretable Machine Learning: Explainability in Algorithm Design." Journal of Industrial Engineering and Applied Science 2, no. 6 (2024): 65–70. https://doi.org/10.70393/6a69656173.323337.
Повний текст джерелаSchmid, Ute, and Bettina Finzel. "Mutual Explanations for Cooperative Decision Making in Medicine." KI - Künstliche Intelligenz 34, no. 2 (2020): 227–33. http://dx.doi.org/10.1007/s13218-020-00633-2.
Повний текст джерелаWei, Kaihua, Bojian Chen, Jingcheng Zhang, et al. "Explainable Deep Learning Study for Leaf Disease Classification." Agronomy 12, no. 5 (2022): 1035. http://dx.doi.org/10.3390/agronomy12051035.
Повний текст джерелаWei, Kaihua, Bojian Chen, Jingcheng Zhang, et al. "Explainable Deep Learning Study for Leaf Disease Classification." Agronomy 12, no. 5 (2022): 1035. http://dx.doi.org/10.3390/agronomy12051035.
Повний текст джерелаWei, Kaihua, Bojian Chen, Jingcheng Zhang, et al. "Explainable Deep Learning Study for Leaf Disease Classification." Agronomy 12, no. 5 (2022): 1035. http://dx.doi.org/10.3390/agronomy12051035.
Повний текст джерелаWeng, Tsui-Wei (Lily). "Towards Trustworthy Deep Learning." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 20 (2024): 22682. http://dx.doi.org/10.1609/aaai.v38i20.30298.
Повний текст джерелаMonje, Leticia, Ramón A. Carrasco, Carlos Rosado, and Manuel Sánchez-Montañés. "Deep Learning XAI for Bus Passenger Forecasting: A Use Case in Spain." Mathematics 10, no. 9 (2022): 1428. http://dx.doi.org/10.3390/math10091428.
Повний текст джерелаSieusahai, Alexander, and Matthew Guzdial. "Explaining Deep Reinforcement Learning Agents in the Atari Domain through a Surrogate Model." Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 17, no. 1 (2021): 82–90. http://dx.doi.org/10.1609/aiide.v17i1.18894.
Повний текст джерелаAjioka, Takehiro, Nobuhiro Nakai, Okito Yamashita, and Toru Takumi. "End-to-end deep learning approach to mouse behavior classification from cortex-wide calcium imaging." PLOS Computational Biology 20, no. 3 (2024): e1011074. http://dx.doi.org/10.1371/journal.pcbi.1011074.
Повний текст джерелаZhu, Xiyue, Yu Cheng, Jiafeng He, and Juan Guo. "Adaptive Mask-Based Interpretable Convolutional Neural Network (AMI-CNN) for Modulation Format Identification." Applied Sciences 14, no. 14 (2024): 6302. http://dx.doi.org/10.3390/app14146302.
Повний текст джерелаXu, Mouyi, and Lijun Chang. "Graph Edit Distance Estimation: A New Heuristic and A Holistic Evaluation of Learning-based Methods." Proceedings of the ACM on Management of Data 3, no. 3 (2025): 1–24. https://doi.org/10.1145/3725304.
Повний текст джерелаJoseph, Aaron Tsapa. "Interpretable Deep Learning for Fintech: Enabling Ethical and Explainable AI-Driven Financial Solutions." Journal of Scientific and Engineering Research 11, no. 3 (2024): 271–77. https://doi.org/10.5281/zenodo.11220841.
Повний текст джерелаR. S. Deshpande, P. V. Ambatkar. "Interpretable Deep Learning Models: Enhancing Transparency and Trustworthiness in Explainable AI." Proceeding International Conference on Science and Engineering 11, no. 1 (2023): 1352–63. http://dx.doi.org/10.52783/cienceng.v11i1.286.
Повний текст джерелаShamsuzzaman, Md. "Explainable and Interpretable Deep Learning Models." Global Journal of Engineering Sciences 5, no. 5 (2020). http://dx.doi.org/10.33552/gjes.2020.05.000621.
Повний текст джерелаAhsan, Md Manjurul, Md Shahin Ali, Md Mehedi Hassan, et al. "Monkeypox Diagnosis with Interpretable Deep Learning." IEEE Access, 2023, 1. http://dx.doi.org/10.1109/access.2023.3300793.
Повний текст джерелаDelaunay, Antoine, and Hannah M. Christensen. "Interpretable Deep Learning for Probabilistic MJO Prediction." Geophysical Research Letters, August 24, 2022. http://dx.doi.org/10.1029/2022gl098566.
Повний текст джерелаAhn, Daehwan, Dokyun Lee, and Kartik Hosanagar. "Interpretable Deep Learning Approach to Churn Management." SSRN Electronic Journal, 2020. http://dx.doi.org/10.2139/ssrn.3981160.
Повний текст джерелаRichman, Ronald, and Mario V. Wuthrich. "LocalGLMnet: interpretable deep learning for tabular data." SSRN Electronic Journal, 2021. http://dx.doi.org/10.2139/ssrn.3892015.
Повний текст джерелаKim, Dohyun, Jungtae Lee, Jangsup Moon, and Taesup Moon. "Interpretable Deep Learning‐based Hippocampal Sclerosis Classification." Epilepsia Open, September 29, 2022. http://dx.doi.org/10.1002/epi4.12655.
Повний текст джерелаZografopoulos, Lazaros, Maria Chiara Iannino, Ioannis Psaradellis, and Georgios Sermpinis. "Industry return prediction via interpretable deep learning." European Journal of Operational Research, August 2024. http://dx.doi.org/10.1016/j.ejor.2024.08.032.
Повний текст джерелаWagle, Manoj M., Siqu Long, Carissa Chen, Chunlei Liu, and Pengyi Yang. "Interpretable deep learning in single-cell omics." Bioinformatics, June 18, 2024. http://dx.doi.org/10.1093/bioinformatics/btae374.
Повний текст джерелаOyedeji, Mojeed Opeyemi, Emmanuel Okafor, Hussein Samma, and Motaz Alfarraj. "Interpretable Deep Learning for Classifying Skin Lesions." International Journal of Intelligent Systems 2025, no. 1 (2025). https://doi.org/10.1155/int/2751767.
Повний текст джерелаLi, Xuhong, Haoyi Xiong, Xingjian Li, et al. "Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond." Knowledge and Information Systems, September 14, 2022. http://dx.doi.org/10.1007/s10115-022-01756-8.
Повний текст джерелаHuang, Liyao, Weimin Zheng, and Zuohua Deng. "TOURISM DEMAND FORECASTING: AN INTERPRETABLE DEEP LEARNING MODEL." Tourism Analysis, 2024. http://dx.doi.org/10.3727/108354224x17180286995735.
Повний текст джерелаJiang, Kai, Zheli Xiong, Qichong Yang, Jianpeng Chen, and Gang Chen. "An interpretable ensemble method for deep representation learning." Engineering Reports, July 4, 2023. http://dx.doi.org/10.1002/eng2.12725.
Повний текст джерела