Статті в журналах з теми "Interpretable methods"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Interpretable methods".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Topin, Nicholay, Stephanie Milani, Fei Fang, and Manuela Veloso. "Iterative Bounding MDPs: Learning Interpretable Policies via Non-Interpretable Methods." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 11 (2021): 9923–31. http://dx.doi.org/10.1609/aaai.v35i11.17192.
Повний текст джерелаKATAOKA, Makoto. "COMPUTER-INTERPRETABLE DESCRIPTION OF CONSTRUCTION METHODS." AIJ Journal of Technology and Design 13, no. 25 (2007): 277–80. http://dx.doi.org/10.3130/aijt.13.277.
Повний текст джерелаMurdoch, W. James, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. "Definitions, methods, and applications in interpretable machine learning." Proceedings of the National Academy of Sciences 116, no. 44 (2019): 22071–80. http://dx.doi.org/10.1073/pnas.1900654116.
Повний текст джерелаAlangari, Nourah, Mohamed El Bachir Menai, Hassan Mathkour, and Ibrahim Almosallam. "Exploring Evaluation Methods for Interpretable Machine Learning: A Survey." Information 14, no. 8 (2023): 469. http://dx.doi.org/10.3390/info14080469.
Повний текст джерелаKenesei, Tamás, and János Abonyi. "Interpretable support vector regression." Artificial Intelligence Research 1, no. 2 (2012): 11. http://dx.doi.org/10.5430/air.v1n2p11.
Повний текст джерелаYe, Zhuyifan, Wenmian Yang, Yilong Yang, and Defang Ouyang. "Interpretable machine learning methods for in vitro pharmaceutical formulation development." Food Frontiers 2, no. 2 (2021): 195–207. http://dx.doi.org/10.1002/fft2.78.
Повний текст джерелаMi, Jian-Xun, An-Di Li, and Li-Fang Zhou. "Review Study of Interpretation Methods for Future Interpretable Machine Learning." IEEE Access 8 (2020): 191969–85. http://dx.doi.org/10.1109/access.2020.3032756.
Повний текст джерелаObermann, Lennart, and Stephan Waack. "Demonstrating non-inferiority of easy interpretable methods for insolvency prediction." Expert Systems with Applications 42, no. 23 (2015): 9117–28. http://dx.doi.org/10.1016/j.eswa.2015.08.009.
Повний текст джерелаAssegie, Tsehay Admassu. "Evaluation of the Shapley Additive Explanation Technique for Ensemble Learning Methods." Proceedings of Engineering and Technology Innovation 21 (April 22, 2022): 20–26. http://dx.doi.org/10.46604/peti.2022.9025.
Повний текст джерелаBang, Seojin, Pengtao Xie, Heewook Lee, Wei Wu, and Eric Xing. "Explaining A Black-box By Using A Deep Variational Information Bottleneck Approach." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 13 (2021): 11396–404. http://dx.doi.org/10.1609/aaai.v35i13.17358.
Повний текст джерелаLi, Qiaomei, Rachel Cummings, and Yonatan Mintz. "Optimal Local Explainer Aggregation for Interpretable Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12000–12007. http://dx.doi.org/10.1609/aaai.v36i11.21458.
Повний текст джерелаMahya, Parisa, and Johannes Fürnkranz. "An Empirical Comparison of Interpretable Models to Post-Hoc Explanations." AI 4, no. 2 (2023): 426–36. http://dx.doi.org/10.3390/ai4020023.
Повний текст джерелаLee, Franklin Langlang, Jaehong Park, Sushmit Goyal, et al. "Comparison of Machine Learning Methods towards Developing Interpretable Polyamide Property Prediction." Polymers 13, no. 21 (2021): 3653. http://dx.doi.org/10.3390/polym13213653.
Повний текст джерелаLi, Xiao, Zachary Serlin, Guang Yang, and Calin Belta. "A formal methods approach to interpretable reinforcement learning for robotic planning." Science Robotics 4, no. 37 (2019): eaay6276. http://dx.doi.org/10.1126/scirobotics.aay6276.
Повний текст джерелаSkirzyński, Julian, Frederic Becker, and Falk Lieder. "Automatic discovery of interpretable planning strategies." Machine Learning 110, no. 9 (2021): 2641–83. http://dx.doi.org/10.1007/s10994-021-05963-2.
Повний текст джерелаXu, Yixiao, Xiaolei Liu, Kangyi Ding, and Bangzhou Xin. "IBD: An Interpretable Backdoor-Detection Method via Multivariate Interactions." Sensors 22, no. 22 (2022): 8697. http://dx.doi.org/10.3390/s22228697.
Повний текст джерелаGu, Jindong. "Interpretable Graph Capsule Networks for Object Recognition." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 2 (2021): 1469–77. http://dx.doi.org/10.1609/aaai.v35i2.16237.
Повний текст джерелаHagerty, C. G., and F. A. Sonnenberg. "Computer-Interpretable Clinical Practice Guidelines." Yearbook of Medical Informatics 15, no. 01 (2006): 145–58. http://dx.doi.org/10.1055/s-0038-1638486.
Повний текст джерелаGe, Xiaoyi, Mingshu Zhang, Xu An Wang, Jia Liu, and Bin Wei. "Emotion-Drive Interpretable Fake News Detection." International Journal of Data Warehousing and Mining 18, no. 1 (2022): 1–17. http://dx.doi.org/10.4018/ijdwm.314585.
Повний текст джерелаH. Merritt, Sean, and Alexander P. Christensen. "An Experimental Study of Dimension Reduction Methods on Machine Learning Algorithms with Applications to Psychometrics." Advances in Artificial Intelligence and Machine Learning 03, no. 01 (2023): 760–77. http://dx.doi.org/10.54364/aaiml.2023.1149.
Повний текст джерелаLuan, Tao, Guoqing Liang, and Pengfei Peng. "Interpretable DeepFake Detection Based on Frequency Spatial Transformer." International Journal of Emerging Technologies and Advanced Applications 1, no. 2 (2024): 19–25. http://dx.doi.org/10.62677/ijetaa.2402108.
Повний текст джерелаVerma, Abhinav. "Verifiable and Interpretable Reinforcement Learning through Program Synthesis." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 9902–3. http://dx.doi.org/10.1609/aaai.v33i01.33019902.
Повний текст джерелаTulsani, Vijya, Prashant Sahatiya, Jignasha Parmar, and Jayshree Parmar. "XAI Applications in Medical Imaging: A Survey of Methods and Challenges." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 9 (2023): 181–86. http://dx.doi.org/10.17762/ijritcc.v11i9.8332.
Повний текст джерелаHayes, Sean M. S., Jeffrey R. Sachs, and Carolyn R. Cho. "From complex data to biological insight: ‘DEKER’ feature selection and network inference." Journal of Pharmacokinetics and Pharmacodynamics 49, no. 1 (2021): 81–99. http://dx.doi.org/10.1007/s10928-021-09792-7.
Повний текст джерелаKhakabimamaghani, Sahand, Yogeshwar D. Kelkar, Bruno M. Grande, Ryan D. Morin, Martin Ester, and Daniel Ziemek. "SUBSTRA: Supervised Bayesian Patient Stratification." Bioinformatics 35, no. 18 (2019): 3263–72. http://dx.doi.org/10.1093/bioinformatics/btz112.
Повний текст джерелаSun, Lili, Xueyan Liu, Min Zhao, and Bo Yang. "Interpretable Variational Graph Autoencoder with Noninformative Prior." Future Internet 13, no. 2 (2021): 51. http://dx.doi.org/10.3390/fi13020051.
Повний текст джерелаCansel, Neslihan, Fatma Hilal Yagin, Mustafa Akan, and Bedriye Ilkay Aygul. "INTERPRETABLE ESTIMATION OF SUICIDE RISK AND SEVERITY FROM COMPLETE BLOOD COUNT PARAMETERS WITH EXPLAINABLE ARTIFICIAL INTELLIGENCE METHODS." PSYCHIATRIA DANUBINA 35, no. 1 (2023): 62–72. http://dx.doi.org/10.24869/psyd.2023.62.
Повний текст джерелаShi, Liushuai, Le Wang, Chengjiang Long, et al. "Social Interpretable Tree for Pedestrian Trajectory Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 2 (2022): 2235–43. http://dx.doi.org/10.1609/aaai.v36i2.20121.
Повний текст джерелаKrumb, Henry, Dhritimaan Das, Romol Chadda, and Anirban Mukhopadhyay. "CycleGAN for interpretable online EMT compensation." International Journal of Computer Assisted Radiology and Surgery 16, no. 5 (2021): 757–65. http://dx.doi.org/10.1007/s11548-021-02324-1.
Повний текст джерелаBhambhoria, Rohan, Hui Liu, Samuel Dahan, and Xiaodan Zhu. "Interpretable Low-Resource Legal Decision Making." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 11819–27. http://dx.doi.org/10.1609/aaai.v36i11.21438.
Повний текст джерелаWhiteway, Matthew R., Dan Biderman, Yoni Friedman, et al. "Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders." PLOS Computational Biology 17, no. 9 (2021): e1009439. http://dx.doi.org/10.1371/journal.pcbi.1009439.
Повний текст джерелаWalter, Nils Philipp, Jonas Fischer, and Jilles Vreeken. "Finding Interpretable Class-Specific Patterns through Efficient Neural Search." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (2024): 9062–70. http://dx.doi.org/10.1609/aaai.v38i8.28756.
Повний текст джерелаMeng, Fan. "Creating Interpretable Data-Driven Approaches for Tropical Cyclones Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12892–93. http://dx.doi.org/10.1609/aaai.v36i11.21583.
Повний текст джерелаWang, Min, Steven M. Kornblau, and Kevin R. Coombes. "Decomposing the Apoptosis Pathway Into Biologically Interpretable Principal Components." Cancer Informatics 17 (January 1, 2018): 117693511877108. http://dx.doi.org/10.1177/1176935118771082.
Повний текст джерелаWeiss, S. M., and N. Indurkhya. "Rule-based Machine Learning Methods for Functional Prediction." Journal of Artificial Intelligence Research 3 (December 1, 1995): 383–403. http://dx.doi.org/10.1613/jair.199.
Повний текст джерелаFeng, Aosong, Chenyu You, Shiqiang Wang, and Leandros Tassiulas. "KerGNNs: Interpretable Graph Neural Networks with Graph Kernels." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (2022): 6614–22. http://dx.doi.org/10.1609/aaai.v36i6.20615.
Повний текст джерелаWang, Yulong, Xiaolu Zhang, Xiaolin Hu, Bo Zhang, and Hang Su. "Dynamic Network Pruning with Interpretable Layerwise Channel Selection." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 6299–306. http://dx.doi.org/10.1609/aaai.v34i04.6098.
Повний текст джерелаHase, Peter, Chaofan Chen, Oscar Li, and Cynthia Rudin. "Interpretable Image Recognition with Hierarchical Prototypes." Proceedings of the AAAI Conference on Human Computation and Crowdsourcing 7 (October 28, 2019): 32–40. http://dx.doi.org/10.1609/hcomp.v7i1.5265.
Повний текст джерелаGhanem, Souhila, Raphaël Couturier, and Pablo Gregori. "An Accurate and Easy to Interpret Binary Classifier Based on Association Rules Using Implication Intensity and Majority Vote." Mathematics 9, no. 12 (2021): 1315. http://dx.doi.org/10.3390/math9121315.
Повний текст джерелаEiras-Franco, Carlos, Bertha Guijarro-Berdiñas, Amparo Alonso-Betanzos, and Antonio Bahamonde. "Interpretable Market Segmentation on High Dimension Data." Proceedings 2, no. 18 (2018): 1171. http://dx.doi.org/10.3390/proceedings2181171.
Повний текст джерелаPulkkinen, Pietari, and Hannu Koivisto. "Identification of interpretable and accurate fuzzy classifiers and function estimators with hybrid methods." Applied Soft Computing 7, no. 2 (2007): 520–33. http://dx.doi.org/10.1016/j.asoc.2006.11.001.
Повний текст джерелаLiu, Yuekai, Tianyang Wang, and Fulei Chu. "Hybrid machine condition monitoring based on interpretable dual tree methods using Wasserstein metrics." Expert Systems with Applications 235 (January 2024): 121104. http://dx.doi.org/10.1016/j.eswa.2023.121104.
Повний текст джерелаMunir, Nimra, Ross McMorrow, Konrad Mulrennan, et al. "Interpretable Machine Learning Methods for Monitoring Polymer Degradation in Extrusion of Polylactic Acid." Polymers 15, no. 17 (2023): 3566. http://dx.doi.org/10.3390/polym15173566.
Повний текст джерелаQiao, Zuqiang, Shengzhi Dong, Qing Li, et al. "Performance prediction models for sintered NdFeB using machine learning methods and interpretable studies." Journal of Alloys and Compounds 963 (November 2023): 171250. http://dx.doi.org/10.1016/j.jallcom.2023.171250.
Повний текст джерелаRagazzo, Michele, Stefano Melchiorri, Laura Manzo, et al. "Comparative Analysis of ANDE 6C Rapid DNA Analysis System and Traditional Methods." Genes 11, no. 5 (2020): 582. http://dx.doi.org/10.3390/genes11050582.
Повний текст джерелаWu, Bozhi, Sen Chen, Cuiyun Gao, et al. "Why an Android App Is Classified as Malware." ACM Transactions on Software Engineering and Methodology 30, no. 2 (2021): 1–29. http://dx.doi.org/10.1145/3423096.
Повний текст джерелаXiang, Ziyu, Mingzhou Fan, Guillermo Vázquez Tovar, et al. "Physics-constrained Automatic Feature Engineering for Predictive Modeling in Materials Science." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (2021): 10414–21. http://dx.doi.org/10.1609/aaai.v35i12.17247.
Повний текст джерелаAbafogi, Abdo Ababor. "Survey on Interpretable Semantic Textual Similarity, and its Applications." International Journal of Innovative Technology and Exploring Engineering 10, no. 3 (2021): 14–18. http://dx.doi.org/10.35940/ijitee.b8294.0110321.
Повний текст джерелаNan, Tianlong, Yuan Gao, and Christian Kroer. "Fast and Interpretable Dynamics for Fisher Markets via Block-Coordinate Updates." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 5 (2023): 5832–40. http://dx.doi.org/10.1609/aaai.v37i5.25723.
Повний текст джерелаZhao, Mingyang, Junchang Xin, Zhongyang Wang, Xinlei Wang, and Zhiqiong Wang. "Interpretable Model Based on Pyramid Scene Parsing Features for Brain Tumor MRI Image Segmentation." Computational and Mathematical Methods in Medicine 2022 (January 31, 2022): 1–10. http://dx.doi.org/10.1155/2022/8000781.
Повний текст джерела