Добірка наукової літератури з теми "Intrinsic geometry"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Intrinsic geometry".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Intrinsic geometry"

1

Cattani, Carlo, and Ettore Laserra. "Intrinsic geometry of Lax equation." Journal of Interdisciplinary Mathematics 6, no. 3 (2003): 291–99. http://dx.doi.org/10.1080/09720502.2003.10700347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Abou Zeid, M., and C. M. Hull. "Intrinsic geometry of D-branes." Physics Letters B 404, no. 3-4 (1997): 264–70. http://dx.doi.org/10.1016/s0370-2693(97)00570-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Madore, J., S. Schraml, P. Schupp, and J. Wess. "External fields as intrinsic geometry." European Physical Journal C 18, no. 4 (2001): 785–94. http://dx.doi.org/10.1007/s100520100566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bellucci, Stefano, and Bhupendra Nath Tiwari. "State-Space Geometry, Statistical Fluctuations, and Black Holes in String Theory." Advances in High Energy Physics 2014 (2014): 1–17. http://dx.doi.org/10.1155/2014/589031.

Повний текст джерела
Анотація:
We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a state-space perspective to the black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic geometric meaning of the statistical fluctuations, local and global stability conditions, and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, namely, the meaning of the chemical geometry and physics of correlation. We illustrate the state
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cushman, Richard, and Jędrzej Śniatycki. "Intrinsic Geometric Structure of Subcartesian Spaces." Axioms 13, no. 1 (2023): 9. http://dx.doi.org/10.3390/axioms13010009.

Повний текст джерела
Анотація:
Every subset S of a Cartesian space Rd, endowed with differential structure C∞(S) generated by restrictions to S of functions in C∞(Rd), has a canonical partition M(S) by manifolds, which are orbits of the family X(S) of all derivations of C∞(S) that generate local one-parameter groups of local diffeomorphisms of S. This partition satisfies the frontier condition, Whitney’s conditions A and B. If M(S) is locally finite, then it satisfies all definitions of stratification of S. This result extends to Hausdorff locally Euclidean differential spaces. The partition M(S) of a subcartesian space S b
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gillespie, Mark, Nicholas Sharp, and Keenan Crane. "Integer coordinates for intrinsic geometry processing." ACM Transactions on Graphics 40, no. 6 (2021): 1–13. http://dx.doi.org/10.1145/3478513.3480522.

Повний текст джерела
Анотація:
This paper describes a numerically robust data structure for encoding intrinsic triangulations of polyhedral surfaces. Many applications demand a correspondence between the intrinsic triangulation and the input surface, but existing data structures either rely on floating point values to encode correspondence, or do not support remeshing operations beyond basic edge flips. We instead provide an integer-based data structure that guarantees valid correspondence, even for meshes with near-degenerate elements. Our starting point is the framework of normal coordinates from geometric topology, which
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nurowski, Pawel, and David C. Robinson. "Intrinsic geometry of a null hypersurface." Classical and Quantum Gravity 17, no. 19 (2000): 4065–84. http://dx.doi.org/10.1088/0264-9381/17/19/308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bachini, Elena, and Mario Putti. "Geometrically intrinsic modeling of shallow water flows." ESAIM: Mathematical Modelling and Numerical Analysis 54, no. 6 (2020): 2125–57. http://dx.doi.org/10.1051/m2an/2020031.

Повний текст джерела
Анотація:
Shallow water models of geophysical flows must be adapted to geometric characteristics in the presence of a general bottom topography with non-negligible slopes and curvatures, such as a mountain landscape. In this paper we derive an intrinsic shallow water model from the Navier–Stokes equations defined on a local reference frame anchored on the bottom surface. The equations resulting are characterized by non-autonomous flux functions and source terms embodying only the geometric information. We show that the proposed model is rotational invariant, admits a conserved energy, is well-balanced,
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Hsueh-Ti Derek, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec Jacobson, and Keenan Crane. "Surface Simplification using Intrinsic Error Metrics." ACM Transactions on Graphics 42, no. 4 (2023): 1–17. http://dx.doi.org/10.1145/3592403.

Повний текст джерела
Анотація:
This paper describes a method for fast simplification of surface meshes. Whereas past methods focus on visual appearance, our goal is to solve equations on the surface. Hence, rather than approximate the extrinsic geometry, we construct a coarse intrinsic triangulation of the input domain. In the spirit of the quadric error metric (QEM) , we perform greedy decimation while agglomerating global information about approximation error. In lieu of extrinsic quadrics, however, we store intrinsic tangent vectors that track how far curvature "drifts" during simplification. This process also yields a b
Стилі APA, Harvard, Vancouver, ISO та ін.
10

MATSUSHITA, YASUYUKI, STEPHEN LIN, HEUNG-YEUNG SHUM, XIN TONG, and SING BING KANG. "LIGHTING AND SHADOW INTERPOLATION USING INTRINSIC LUMIGRAPHS." International Journal of Image and Graphics 04, no. 04 (2004): 585–604. http://dx.doi.org/10.1142/s0219467804001555.

Повний текст джерела
Анотація:
Densely-sampled image representations such as the light field or Lumigraph have been effective in enabling photorealistic image synthesis. Unfortunately, lighting interpolation with such representations has not been shown to be possible without the use of accurate 3D geometry and surface reflectance properties. In this paper, we propose an approach to image-based lighting interpolation that is based on estimates of geometry and shading from relatively few images. We decompose light fields captured at different lighting conditions into intrinsic images (reflectance and illumination images), and
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Intrinsic geometry"

1

Tavakkoli, Shahriar. "Shape design using intrinsic geometry." Diss., Virginia Tech, 1991. http://hdl.handle.net/10919/39421.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Taft, Jefferson. "Intrinsic Geometric Flows on Manifolds of Revolution." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/194925.

Повний текст джерела
Анотація:
An intrinsic geometric flow is an evolution of a Riemannian metric by a two-tensor. An extrinsic geometric flow is an evolution of an immersion of a manifold into Euclidean space. An extrinsic flow induces an evolution of a metric because any immersed manifold inherits a Riemannian metric from Euclidean space. In this paper we discuss the inverse problem of specifying an evolution of a metric and then seeking an extrinsic geometric flow which induces the given metric evolution. We limit our discussion to the case of manifolds that are rotationally symmetric and embeddable with codimension
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Radvar-Esfahlan, Hassan. "Geometrical inspection of flexible parts using intrinsic geometry." Mémoire, École de technologie supérieure, 2010. http://espace.etsmtl.ca/657/1/RADVAR%2DESFAHLAN_Hassan.pdf.

Повний текст джерела
Анотація:
Le probleme du tolerancement des pieces mecaniques est decisif pour I'industrie de pointe. Ses incidences economiques sont importantes pour le secteur manufacturier qui subit des transformations profondes imposees par la globalisation des marches et revolution constante des technologies (CAO, CMM, 3D Scanner, etc.). U est admit aujourd'hui que I'optimisation des performances des produits requiert la prise en compte des variations inherentes aux processus de fabrication, d'ou le controle de la qualite a travers le processus de developpement et de fabrication. Dans le cas des composantes d
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kynigos, Polychronis. "From intrinsic to non-intrinsic geometry : a study of children's understandings in Logo-based microworlds." Thesis, University College London (University of London), 1988. http://discovery.ucl.ac.uk/10020179/.

Повний текст джерела
Анотація:
The aim of the present study was to investigate the potential for children to use the turtle methaphor to develop understandings of intrinsic, euclidean and cartesian geometrical ideas. Four aspects of the problem were investigated. a) the nature of the schema children form when they identify with the turtle in order to change its state on the screen; b) whether it is possible for them to use the schema to gain insights into certain basic geometrical principles of the cartesian geometrical system; c) how they might use the schema to form understandings of euclidean geometry developed inductive
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Moghtasad-Azar, Khosro. "Surface deformation analysis of dense GPS networks based on intrinsic geometry : deterministic and stochastic aspects." kostenfrei, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-33534.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sun, Jie. "Intrinsic geometry in screw algebra and derivative Jacobian and their uses in the metamorphic hand." Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/intrinsic-geometry-in-screw-algebra-and-derivative-jacobian-and-their-uses-in-the-metamorphic-hand(8ccd2b47-de45-488f-af5d-634343746b57).html.

Повний текст джерела
Анотація:
Line geometry is a foundation of screw algebra in line coordinates that were created by Plücker as ray coordinates taking a line as a ray between two points and axis coordinates taking a line as the intersection of two planes. This Thesis reveals the geometrical meaning and intrinsic relationship between these ray coordinates and axis coordinates, leading to an in-depth understanding of conformability and duality of these two sets of screw coordinates, and their related vector space and dual vector space. Based on the study of screw algebra, the resultant twist of a serial manipulator is prese
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Richard, Laurence. "Towards a Definition of Intrinsic Axes: The Effect of Orthogonality and Symmetry on the Preferred Direction of Spatial Memory." Miami University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=miami1310492651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ahmad, Ola. "Stochastic representation and analysis of rough surface topography by random fields and integral geometry - Application to the UHMWPE cup involved in total hip arthroplasty." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2013. http://tel.archives-ouvertes.fr/tel-00905519.

Повний текст джерела
Анотація:
Surface topography is, generally, composed of many length scales starting from its physical geometry, to its microscopic or atomic scales known by roughness. The spatial and geometrical evolution of the roughness topography of engineering surfaces avail comprehensive understanding, and interpretation of many physical and engineering problems such as friction, and wear mechanisms during the mechanical contact between adjoined surfaces. Obviously, the topography of rough surfaces is of random nature. It is composed of irregular hills/valleys being spatially correlated. The relation between their
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Spencer, Benjamin. "On-line C-arm intrinsic calibration by means of an accurate method of line detection using the radon transform." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAS044/document.

Повний текст джерела
Анотація:
Les ``C-arm'' sont des systémes de radiologie interventionnelle fréquemment utilisés en salle d'opération ou au lit du patient. Des images 3D des structures anatomiques internes peuvent être calculées à partir de multiples radiographies acquises sur un ``C-arm mobile'' et isocentrique décrivant une trajectoire généralement circulaire autour du patient. Pour cela, la géométrie conique d'acquisition de chaque radiographie doit être précisément connue. Malheureusement, les C-arm se déforment en général au cours de la trajectoire. De plus leur motorisation engendre des oscillations non reproductib
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cotsakis, Ryan. "Sur la géométrie des ensembles d'excursion : garanties théoriques et computationnelles." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5007.

Повний текст джерела
Анотація:
L'ensemble d'excursion EX(u) d'un champ aléatoire réel X sur R^d à un niveau de seuil u ∈ R est le sous-ensemble du domaine R^d où X dépasse u. Ainsi, l'ensemble d'excursion est aléatoire, et sa distribution à un niveau fixe u est déterminée par la distribution de X. Étant des sous-ensembles de R^d, les ensembles d'excursions peuvent être étudiés en termes de leurs propriétés géométriques comme moyen d'obtenir des informations partielles sur les propriétés de distribution des champs aléatoires sous-jacents.Cette thèse examine :(a) comment les mesures géométriques d'un ensemble d'excursion peuv
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Intrinsic geometry"

1

Todd, Philip H. Intrinsic geometry ofbiological surface growth. Springer-Verlag, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Todd, Philip H. Intrinsic Geometry of Biological Surface Growth. Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-93320-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chandra, Saurabh, ed. SOCRATES (Vol 3, No 2 (2015): Issue- June). 3rd ed. SOCRATES : SCHOLARLY RESEARCH JOURNAL, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Intrinsic geometry of convex surfaces. Chapman & Hall/CRC Press, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Todd, Philip H. Intrinsic Geometry of Biological Surface Growth. Springer London, Limited, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Intrinsic Geometry Of Biological Surface Growth. Springer, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Todd, Philip H. Intrinsic Geometry of Biological Surface Growth. Island Press, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Intrinsic geometry of biological surface growth. Springer-Verlag, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Theory of Complex Finsler Geometry and Geometry of Intrinsic Metrics. World Scientific Publishing Co Pte Ltd, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Theory of Complex Finsler Geometry and Geometry of Intrinsic Metrics. World Scientific Publishing Co Pte Ltd, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Intrinsic geometry"

1

Callahan, James J. "Intrinsic Geometry." In Undergraduate Texts in Mathematics. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-6736-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Hongbo, Lina Cao, Nanbin Cao, and Weikun Sun. "Intrinsic Differential Geometry with Geometric Calculus." In Computer Algebra and Geometric Algebra with Applications. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11499251_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Araújo, Paulo Ventura. "The Intrinsic Geometry of Surfaces." In Differential Geometry. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62384-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Callahan, James J. "Erratum to: Intrinsic Geometry." In Undergraduate Texts in Mathematics. Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-6736-0_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Montiel, Sebastián, and Antonio Ros. "Intrinsic geometry of surfaces." In Graduate Studies in Mathematics. American Mathematical Society, 2009. http://dx.doi.org/10.1090/gsm/069/07.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stroock, Daniel. "Some intrinsic Riemannian geometry." In Mathematical Surveys and Monographs. American Mathematical Society, 2005. http://dx.doi.org/10.1090/surv/074/07.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Casey, James. "Intrinsic Geometry of a Surface." In Exploring Curvature. Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-80274-3_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wells, Raymond O. "Gauss and Intrinsic Differential Geometry." In Differential and Complex Geometry: Origins, Abstractions and Embeddings. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58184-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kühnel, Wolfgang. "The intrinsic geometry of surfaces." In The Student Mathematical Library. American Mathematical Society, 2005. http://dx.doi.org/10.1090/stml/016/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Malkowsky, Eberhard, Ćemal Dolićanin, and Vesna Veličković. "The Intrinsic Geometry of Surfaces." In Differential Geometry and Its Visualization. Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003370567-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Intrinsic geometry"

1

Nilifard, Reza, Alex Zanotti, Giuseppe Gibertini, Alberto Guardone, and Giuseppe Quaranta. "Numerical Investigation of Three-Dimensional Effects on Deep Dynamic Stall Experiments." In Vertical Flight Society 71st Annual Forum & Technology Display. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10098.

Повний текст джерела
Анотація:
Computational Fluid Dynamics simulations were carried out in two and three spatial dimensions to assess the suitability of numerical models for the simulation of deep dynamic stall experiments. The numerical results were compared to pressure measurements and Particle Image Velocimetry flow surveys carried out on a pitching NACA 23012 airfoil. The pitching cycles considered as test cases reproduce the deep dynamic stall condition for a helicopter rotor retreating blade section. The comparison of the airloads curves and of the pressure distribution over the airfoil surface shows that a three-dim
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yan, Shengchao, Baohe Zhang, Yuan Zhang, Joschka Boedecker, and Wolfram Burgard. "Learning Continuous Control with Geometric Regularity from Robot Intrinsic Symmetry." In 2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610949.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sharp, Nicholas, Mark Gillespie, and Keenan Crane. "Geometry processing with intrinsic triangulations." In SIGGRAPH '21: Special Interest Group on Computer Graphics and Interactive Techniques Conference. ACM, 2021. http://dx.doi.org/10.1145/3450508.3464592.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ewert-Krzemieniewski, Stanisław, Fernando Etayo, Mario Fioravanti, and Rafael Santamaría. "On Intrinsic and Induced Linear Connections on Semi-Riemannian Manifolds." In GEOMETRY AND PHYSICS: XVII International Fall Workshop on Geometry and Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3146229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Simon, Udo, Luc Vrancken, Changping Wang, and Martin Wiehe. "Intrinsic and Extrinsic Geometry of Ovaloids and Rigidity." In Differential Geometry in Honor of Professor S S Chern. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792051_0024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tavakkoli, Shahriar, and Sanjay G. Dhande. "Shape Synthesis and Optimization Using Intrinsic Geometry." In ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0074.

Повний текст джерела
Анотація:
Abstract The present paper outlines a method of shape synthesis using intrinsic geometry to be used for two-dimensional shape optimization problems. It is observed that the shape of a curve can be defined in terms of intrinsic parameters such as the curvature as a function of the arc length. The method of shape synthesis, proposed here, consists of selecting a shape model, defining a set of shape design variables and then evaluating Cartesian coordinates of a curve. A shape model is conceived as a set of continuous piecewise linear segments of the curvature; each segment defined as a function
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ryan, Patrick J. "INTRINSIC PROPERTIES OF REAL HYPERSURFACES IN COMPLEX SPACE FORMS." In Differential Geometry in Honor of Professor S S Chern. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792051_0022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

BOI, L. "LOOKING THE WORLD FROM INSIDE: INTRINSIC GEOMETRY OF COMPLEX SYSTEMS." In Proceedings of the 7th International Workshop on Data Analysis in Astronomy “Livio Scarsi and Vito DiGesù”. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814383295_0010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Widmann, James M., and Sheri D. Sheppard. "Intrinsic Geometry for Shape Optimal Design With Analysis Model Compatibility." In ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0137.

Повний текст джерела
Анотація:
Abstract This paper presents a comparison of geometric modeling techniques and their applicability to structural shape optimization. A method of shape definition based on intrinsic geometric quantities is then outlined. Explicit knowledge of curvature and arc length allow for a quantitative assessment of the compatibility of analysis model with the design model when using finite elements to determine structural response quantities. The compatibility condition is formalized by controlling finite element idealization error and is incorporated into the shape optimization model as simple bounds on
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Y., and Y. s. Hung. "Recovery of Circular Motion Geometry in Spite of Varying Intrinsic Parameters." In 2006 IEEE International Conference on Video and Signal Based Surveillance. IEEE, 2006. http://dx.doi.org/10.1109/avss.2006.97.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!