Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Isosceles orthogonality.

Статті в журналах з теми "Isosceles orthogonality"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-16 статей у журналах для дослідження на тему "Isosceles orthogonality".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

He, Chan, and Dan Wang. "A Remark on the Homogeneity of Isosceles Orthogonality." Journal of Function Spaces 2014 (2014): 1–3. http://dx.doi.org/10.1155/2014/876015.

Повний текст джерела
Анотація:
Inspired by the definition of homogeneous direction of isosceles orthogonality, we introduce the notion of almost homogeneous direction of isosceles orthogonality and show that, surprisingly, these two notions coincide. Several known characterizations of inner products are improved.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mizuguchi, Hiroyasu. "The constants to measure the differences between Birkhoff and isosceles orthogonalities." Filomat 30, no. 10 (2016): 2761–70. http://dx.doi.org/10.2298/fil1610761m.

Повний текст джерела
Анотація:
The notion of orthogonality for vectors in inner product spaces is simple, interesting and fruitful. When moving to normed spaces, we have many possibilities to extend this notion. We consider Birkhoff orthogonality and isosceles orthogonality, which are the most used notions of orthogonality. In 2006, Ji and Wu introduced a geometric constant D(X) to give a quantitative characterization of the difference between these two orthogonality types. However, this constant was considered only in the unit sphere SX of the normed space X. In this paper, we introduce a new geometric constant IB(X) to measure the difference between Birkhoff and isosceles orthogonalities in the entire normed space X. To consider the difference between these orthogonalities, we also treat constant BI(X).
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Freese, Raymond, and Edward Andalafte. "Strong additivity of metric isosceles orthogonality." Journal of Geometry 62, no. 1-2 (July 1998): 121–28. http://dx.doi.org/10.1007/bf01237604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Alonso, Javier, Horst Martini, and Senlin Wu. "On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces." Aequationes mathematicae 83, no. 1-2 (September 18, 2011): 153–89. http://dx.doi.org/10.1007/s00010-011-0092-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ji, Donghai, and Senlin Wu. "Quantitative characterization of the difference between Birkhoff orthogonality and isosceles orthogonality." Journal of Mathematical Analysis and Applications 323, no. 1 (November 2006): 1–7. http://dx.doi.org/10.1016/j.jmaa.2005.10.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chmieliński, Jacek, and Paweł Wójcik. "Isosceles-orthogonality preserving property and its stability." Nonlinear Analysis: Theory, Methods & Applications 72, no. 3-4 (February 2010): 1445–53. http://dx.doi.org/10.1016/j.na.2009.08.028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ojha, Bhuwan Prasad, and Prakash Muni Bajrayacharya. "Relation of Pythagorean and Isosceles Orthogonality with Best approximations in Normed Linear Space." Mathematics Education Forum Chitwan 4, no. 4 (November 15, 2019): 72–78. http://dx.doi.org/10.3126/mefc.v4i4.26360.

Повний текст джерела
Анотація:
In an arbitrary normed space, though the norm not necessarily coming from the inner product space, the notion of orthogonality may be introduced in various ways as suggested by the mathematicians like R.C. James, B.D. Roberts, G. Birkhoff and S.O. Carlsson. We aim to explore the application of orthogonality in normed linear spaces in the best approximation. Hence it has already been proved that Birkhoff orthogonality implies best approximation and best approximation implies Birkhoff orthogonality. Additionally, it has been proved that in the case of ε -orthogonality, ε -best approximation implies ε -orthogonality and vice-versa. In this article we established relation between Pythagorean orthogonality and best approximation as well as isosceles orthogonality and ε -best approximation in normed space.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ojha, Bhuwan Prasad, Prakash Muni Bajracharya, and Vishnu Narayan Mishra. "On Uniqueness of New Orthogonality via 2-HH Norm in Normed Linear Space." Journal of Function Spaces 2020 (November 20, 2020): 1–6. http://dx.doi.org/10.1155/2020/8835492.

Повний текст джерела
Анотація:
This paper generalizes the special case of the Carlsson orthogonality in terms of the 2-HH norm in real normed linear space. Dragomir and Kikianty (2010) proved in their paper that the Pythagorean orthogonality is unique in any normed linear space, and isosceles orthogonality is unique if and only if the space is strictly convex. This paper deals with the complete proof of the uniqueness of the new orthogonality through the medium of the 2-HH norm. We also proved that the Birkhoff and Robert orthogonality via the 2-HH norm are equivalent, whenever the underlying space is a real inner-product space.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kikianty, Eder, and Sever Dragomir. "On Carlsson type orthogonality and characterization of inner product spaces." Filomat 26, no. 4 (2012): 859–70. http://dx.doi.org/10.2298/fil1204859k.

Повний текст джерела
Анотація:
In an inner product space, two vectors are orthogonal if their inner product is zero. In a normed space, numerous notions of orthogonality have been introduced via equivalent propositions to the usual orthogonality, e.g. orthogonal vectors satisfy the Pythagorean law. In 2010, Kikianty and Dragomir [9] introduced the p-HH-norms (1 ? p < ?) on the Cartesian square of a normed space. Some notions of orthogonality have been introduced by utilizing the 2-HH-norm [10]. These notions of orthogonality are closely related to the classical Pythagorean orthogonality and Isosceles orthogonality. In this paper, a Carlsson type orthogonality in terms of the 2-HH-norm is considered, which generalizes the previous definitions. The main properties of this orthogonality are studied and some useful consequences are obtained. These consequences include characterizations of inner product space.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zamani, Ali, та Mohammad Sal Moslehian. "Approximate Roberts orthogonality sets and $${(\delta, \varepsilon)}$$ ( δ , ε ) -(a, b)-isosceles-orthogonality preserving mappings". Aequationes mathematicae 90, № 3 (6 листопада 2015): 647–59. http://dx.doi.org/10.1007/s00010-015-0383-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Dadipour, F., F. Sadeghi, and A. Salemi. "Characterizations of inner product spaces involving homogeneity of isosceles orthogonality." Archiv der Mathematik 104, no. 5 (April 18, 2015): 431–39. http://dx.doi.org/10.1007/s00013-015-0762-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Ji, Donghai, Jingying Li, and Senlin Wu. "On the Uniqueness of Isosceles Orthogonality in Normed Linear Spaces." Results in Mathematics 59, no. 1-2 (December 14, 2010): 157–62. http://dx.doi.org/10.1007/s00025-010-0069-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Baronti, Marco, and Carlo Franchetti. "The isosceles orthogonality and a new 2-dimensional parameter in real normed spaces." Aequationes mathematicae 89, no. 3 (March 14, 2014): 673–83. http://dx.doi.org/10.1007/s00010-014-0255-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Wu, Senlin, Yixia He, and Chan He. "Homogeneity of isosceles orthogonality, transitivity of the norm, and characterizations of inner product spaces." Aequationes mathematicae 95, no. 5 (August 9, 2021): 953–66. http://dx.doi.org/10.1007/s00010-021-00841-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Hao, Cuixia, and Senlin Wu. "Homogeneity of isosceles orthogonality and related inequalities." Journal of Inequalities and Applications 2011, no. 1 (October 11, 2011). http://dx.doi.org/10.1186/1029-242x-2011-84.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

van Diejen, J. F., and E. Emsiz. "Cubature rules from Hall–Littlewood polynomials." IMA Journal of Numerical Analysis, May 21, 2020. http://dx.doi.org/10.1093/imanum/draa011.

Повний текст джерела
Анотація:
Abstract Discrete orthogonality relations for Hall–Littlewood polynomials are employed so as to derive cubature rules for the integration of homogeneous symmetric functions with respect to the density of the circular unitary ensemble (which originates from the Haar measure on the special unitary group $SU(n;\mathbb{C})$). By passing to Macdonald’s hyperoctahedral Hall–Littlewood polynomials, we moreover find analogous cubature rules for the integration with respect to the density of the circular quaternion ensemble (which originates in turn from the Haar measure on the compact symplectic group $Sp (n;\mathbb{H})$). The cubature formulas under consideration are exact for a class of rational symmetric functions with simple poles supported on a prescribed complex hyperplane arrangement. In the planar situations (corresponding to $SU(3;\mathbb{C})$ and $Sp (2;\mathbb{H})$), a determinantal expression for the Christoffel weights enables us to write down compact cubature rules for the integration over the equilateral triangle and the isosceles right triangle, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії