Добірка наукової літератури з теми "Janus fiber"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Janus fiber".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Janus fiber":

1

Yu, Xiaotian, Xian Zhang, Yajie Xing, Hongjing Zhang, Wuwei Jiang, Ke Zhou, and Yongqiang Li. "Development of Janus Cellulose Acetate Fiber (CA) Membranes for Highly Efficient Oil–Water Separation." Materials 14, no. 20 (October 9, 2021): 5916. http://dx.doi.org/10.3390/ma14205916.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new type of Janus cellulose acetate (CA) fiber membrane was used to separate oil–water emulsions, which was prepared with plasma gas phase grafting by polymerizing octamethylcyclotetrasiloxane (D4) onto a CA fiber membrane prepared by centrifugal spinning. The Janus–CA fiber membrane was described in terms of chemical structure using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) analysis, energy dispersive X-ray spectroscopy (EDX) analysis and morphology by field emission scanning electron microscopy (FESEM). In this contribution, we examine the influence of spinning solution concentration, spinning speed and nozzle aperture on the centrifugal spinning process and the fiber morphology. Superhydrophobic/hydrophilic Janus–CA fiber membrane was used to separate water and 1,2-dibromoethane mixture and Toluene-in-water emulsion. Unidirectional water transfer Janus–CA fiber membrane was used to separate n-hexane and water mixture. The separation for the first-time interception rate was about 98.81%, 98.76% and 98.73%, respectively. Experimental results revealed that the Janus cellulose acetate (CA) fiber membrane gave a permeate flux of about 43.32, 331.72 and 275.27 L/(m2·h), respectively. The novel Janus–CA fiber membrane can potentially be used for sustainable W/O emulsion separation. We believe that this is a facile strategy for construction of filtration materials for practical oil–water separation.
2

Geng, Yuting, Pan Zhang, Qiutong Wang, Yangxiu Liu, and Kai Pan. "Novel PAN/PVP Janus ultrafine fiber membrane and its application for biphasic drug release." Journal of Materials Chemistry B 5, no. 27 (2017): 5390–96. http://dx.doi.org/10.1039/c7tb00929a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Budi, M. A. K., E. B. Glass, N. G. Rudawski, and J. S. Andrew. "Exchange bias in bismuth ferrite/cobalt ferrite Janus nanofibers." Journal of Materials Chemistry C 5, no. 33 (2017): 8586–92. http://dx.doi.org/10.1039/c7tc00975e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bismuth ferrite:cobalt ferrite (BiFeO3:CoFe2O4) nanofibers with tailorable exchange bias effects were synthesized utilizing a Janus type morphology, wherein both phases are coupled longitudinally along the length of each fiber.
4

Kim, In Ho, Tae Hong Im, Han Eol Lee, Ji‐Soo Jang, Hee Seung Wang, Gil Yong Lee, Il‐Doo Kim, Keon Jae Lee, and Sang Ouk Kim. "Janus Graphene Liquid Crystalline Fiber with Tunable Properties Enabled by Ultrafast Flash Reduction." Small 15, no. 48 (July 2019): 1901529. http://dx.doi.org/10.1002/smll.201901529.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhou, Qingxin, Hao Li, Dingding Li, Beibei Wang, Hui Wang, Jinbo Bai, Shenghua Ma, and Gang Wang. "A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation." Journal of Colloid and Interface Science 592 (June 2021): 77–86. http://dx.doi.org/10.1016/j.jcis.2021.02.045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yan, Weian, Dongyang Miao, Aijaz Ahmed Babar, Jing Zhao, Yongtang Jia, Bin Ding, and Xianfeng Wang. "Multi-scaled interconnected inter- and intra-fiber porous janus membranes for enhanced directional moisture transport." Journal of Colloid and Interface Science 565 (April 2020): 426–35. http://dx.doi.org/10.1016/j.jcis.2020.01.063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Hao-Nan, Jing Yang, and Zhi-Kang Xu. "Hollow fiber membranes with Janus surfaces for continuous deemulsification and separation of oil-in-water emulsions." Journal of Membrane Science 602 (May 2020): 117964. http://dx.doi.org/10.1016/j.memsci.2020.117964.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gumennik, Alexander, Etgar C. Levy, Benjamin Grena, Chong Hou, Michael Rein, Ayman F. Abouraddy, John D. Joannopoulos, and Yoel Fink. "Confined in-fiber solidification and structural control of silicon and silicon−germanium microparticles." Proceedings of the National Academy of Sciences 114, no. 28 (June 22, 2017): 7240–45. http://dx.doi.org/10.1073/pnas.1707778114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Crystallization of microdroplets of molten alloys could, in principle, present a number of possible morphological outcomes, depending on the symmetry of the propagating solidification front and its velocity, such as axial or spherically symmetric species segregation. However, because of thermal or constitutional supercooling, resulting droplets often only display dendritic morphologies. Here we report on the crystallization of alloyed droplets of controlled micrometer dimensions comprising silicon and germanium, leading to a number of surprising outcomes. We first produce an array of silicon−germanium particles embedded in silica, through capillary breakup of an alloy-core silica-cladding fiber. Heating and subsequent controlled cooling of individual particles with a two-wavelength laser setup allows us to realize two different morphologies, the first being a silicon−germanium compositionally segregated Janus particle oriented with respect to the illumination axis and the second being a sphere made of dendrites of germanium in silicon. Gigapascal-level compressive stresses are measured within pure silicon solidified in silica as a direct consequence of volume-constrained solidification of a material undergoing anomalous expansion. The ability to generate microspheres with controlled morphology and unusual stresses could pave the way toward advanced integrated in-fiber electronic or optoelectronic devices.
9

Zou, Lusi, Pri Gusnawan, Guoyin Zhang, and Jianjia Yu. "Novel Janus composite hollow fiber membrane-based direct contact membrane distillation (DCMD) process for produced water desalination." Journal of Membrane Science 597 (March 2020): 117756. http://dx.doi.org/10.1016/j.memsci.2019.117756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hu, Ye-Qi, Hao-Nan Li, and Zhi-Kang Xu. "Janus hollow fiber membranes with functionalized outer surfaces for continuous demulsification and separation of oil-in-water emulsions." Journal of Membrane Science 648 (April 2022): 120388. http://dx.doi.org/10.1016/j.memsci.2022.120388.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Janus fiber":

1

Yan, Xiang. "Design of biphasic polymeric fiber from melt-spinning charged with nanoparticles : effects of the formulation and the fillers localization, to obtain a functionalized fiber at surface level." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le but de ce travail est de développer des filaments fonctionnels de polypropylène (PP) poreuses mais aussi des microfibres de PP par filage voie fondu de mélange de polymères immiscibles PP/Poly(vinyl-alcool) (PVA) après extraction sélective de la phase de PVA. Le premier objectif est de déterminer le ratio optimal entre le PP et le PVA afin d’obtenir la filabilité du mélange et de localiser les charges à l’interface du mélange biphasique. Les charges utilisées sont à la fois des nanoparticules de silices modifiées ainsi que des particules Janus à base de kaolinite, favorisant la localisation à l’interface. Les morphologies et les localisations des charges ont été analysées à la fois sur des joncs extrudés ainsi que sur des fibres. Le travail s’est concentré principalement sur des ratios de polymères permettant d’obtenir des fibres de PP poreuses, mais un travail exploratoire a permis de déterminer les conditions d’obtention de microfibres de PP. Le ratio PP/PVA avec 70 % de PP et 30 % de PVA en masse est la formulation idéale pour fabriquer ces fibres poreuses. La localisation des nanocharges de silice dans le mélange biphasique est principalement contrôlée par la thermodynamique du mélange, et en fonction des tensions de surface des nanosilices, la localisation à l’interface a pu être obtenue. De plus, les particules Janus permettent une voie alternative afin d’obtenir une localisation à l’interface, qui apportent un renforcement mécanique de la formulation. La faisabilité de la production de microfibres via l’inversion de phase PVA/PP avec l’ajout de nanocharges a été démontrée
The work aims to make the functional porous polypropylene (PP) fibers as well as PP microfibers, by the melt spinning of PP-poly(vinyl alcohol) (PVA) blends followed with the selective phase extraction of PVA. The objective is to first find out the optimal ratio of PP and PVA for fabrication of multifilament yarns by melt spinning, and to localize the filler at the biphasic interface. The fillers include not only the homogenously modified silica nanoparticles, but also the kaolinite Janus particles. The concomitant morphology evolution of the extrudates and fibers were observed. The work mainly discusses about the fabrication of porous fibers, but also makes an exploratory experiment to reverse the ratio to fabricate the microfibers. It was found that the ratio of two polymers as 70 wt.%/30 wt.% is an ideal formula for fabricating the porous fibers. Both of the two fillers are successfully tailored at the biphasic interface. The localization of silica nanoparticles within the biphasic can be fixed by the thermodynamic control, and one of the sorts has been dominantly localized at the biphasic interface. In addition, the Janus particles provide an alternative way to have the interface localization, which even helps the mechanical enhancement. The feasibility of microfiber production with the embedment of the fillers was also demonstrated
2

Razzaq, Wasif. "Microfluidic spinning of polymer microfibers : effect of operating parameters on morphology and properties towards the development of novel and smart materials." Thesis, Strasbourg, 2022. http://www.theses.fr/2022STRAE004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le filage microfluidique est une technologie émergente pour la production de micro/nanofibres qui ont un fort potentiel pour des applications telles que l’ingénierie tissulaire, l’électronique portable, les systèmes de délivrance de principes actifs et la collecte des eaux. En filage microfluidique, des fibres de diamètres et morphologies contrôlée peuvent être obtenues en manipulant précisément le débit des fluides et la géométrie du dispositif microfluidique. Le but de ce projet doctoral est de développer une expertise et des compétences dans le domaine du filage microfluidique pour produire des fibres polymères par photopolymérisation sous irradiations UV à partir de monomères en utilisant un dispositif microfluidique à base de capillaires avec les objectifs suivants : (1) la mise en place d’une relation empirique pour prédire le diamètre des fibres en prenant en compte les différents paramètres opératoires et de matériaux, (2) la production de fibres Janus/Hecate à partir de monomères ayant différentes propriétés chimiques et physiques avec un contrôle des propriétés morphologiques et mécaniques qui ont été exploitées pour adsorber simultanément des colorants chargés positivement ou négativement, mais aussi pour préparer des actuateurs à partir de fibres Janus thermorépondantes, et (3) le développement d’une approche de modification de surface des fibres pendant leur production
Microfluidic spinning is an emerging technology to produce micro/nanofibers which have a significant potential in advanced applications such as tissue engineering, wearable electronics, drug delivery, and water harvesting. In microfluidic spinning, fibers with controlled diameters and morphologies could be easily produced by precisely manipulating the fluids flow and the geometry of the microfluidic device. The purpose of this doctoral project was to develop expertise and skills in the field of microfluidic spinning to produce polymer fibers using UV photopolymerization of the monomers using a capillary-based microfluidic device with the following objectives : (1) the development of an empirical relationship to predict the fiber diameter considering the different operating and materials parameters, (2) the production of Janus/Hecate fibers from monomers with different chemical and physical properties with controllability of morphological and mechanical properties that were explored to remove simultaneously cationic and anionic dyes and to prepare thermoresponsive Janus fiber actuators, and (3) the development of an in-process rapid surface modification approach to modify the surface of fibers
3

Ho, Chi-Chih, and 何啟誌. "A Novel Fabrication of Janus Particles from the Surfaces of Electrospun Polymer Fibers." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/28226362020696693596.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立成功大學
材料科學及工程學系碩博士班
95
A novel synthetic approach was successfully demonstrated as the efficient fabrication for Janus nanoparticles. Instead of using two-dimensional plane surfaces, one-dimensional polymer fibers provided even more interfacial area to confine or to encapsulate zero-dimensional colloids. A polymer-based electrospinning technique capable of making polymeric fiber mats was employed to produce substrates with high surface-to-volume ratio. A polymer blending system, the mixture of poly(methyl methacrylate) (PMMA) and poly(4-vinyl pyridine) (P4VP), was adapted to generate the electrospun fibers with desired surface properties. Silica colloids were assembled onto the electrospun polymer substrates due to the interaction between silanol groups from silica colloid surface and pyridine groups from P4VP. The thermally-induced embedment under the precise temperature manipulation was conducted to protect one of the two hemispheres. Exposed hemispheric surface modification of embedded silica colloids was then carried out by the silanization reaction with 3-aminopropyl trimethoxysilane via a chemical vapor deposition. Uniform functionalization on Janus particles were further confirmed by the attachment of gold nanoparticles onto the amino-enriched hemispheric surfaces. Fabrication and characterization of Janus particles were discussed. In this research, not only the fabrication of Janus particles from template-assisted method was demonstrated, but also the phase separation of fibers from emulsion electrospinning was discussed. Successful mass production of uniform Janus particles in this research work opens the great potentials of using these unique materials in the dual-functional devices, supra-structure materials, electronic papers, anisotropic image probes, and more.

Книги з теми "Janus fiber":

1

Publishers, Museum Museum. Notebook: Janus-Faced Helmet Mask, Ejagham People, 20th Century, Wood, Skin, Pigment, Iron, Cloth, Fiber, African Art. Independently Published, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Janus fiber":

1

Keshavarz Bahaghighat, Khadijeh, and Mohammad Hossein Navid Famili. "Janus Fiber Fabrication Using Electrospinning Process." In Eco-friendly and Smart Polymer Systems, 502–4. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії