Добірка наукової літератури з теми "Kernel Inference"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Kernel Inference".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Kernel Inference"

1

Nishiyama, Yu, Motonobu Kanagawa, Arthur Gretton, and Kenji Fukumizu. "Model-based kernel sum rule: kernel Bayesian inference with probabilistic models." Machine Learning 109, no. 5 (2020): 939–72. http://dx.doi.org/10.1007/s10994-019-05852-9.

Повний текст джерела
Анотація:
AbstractKernel Bayesian inference is a principled approach to nonparametric inference in probabilistic graphical models, where probabilistic relationships between variables are learned from data in a nonparametric manner. Various algorithms of kernel Bayesian inference have been developed by combining kernelized basic probabilistic operations such as the kernel sum rule and kernel Bayes’ rule. However, the current framework is fully nonparametric, and it does not allow a user to flexibly combine nonparametric and model-based inferences. This is inefficient when there are good probabilistic mod
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rogers, Mark F., Colin Campbell, and Yiming Ying. "Probabilistic Inference of Biological Networks via Data Integration." BioMed Research International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/707453.

Повний текст джерела
Анотація:
There is significant interest in inferring the structure of subcellular networks of interaction. Here we consider supervised interactive network inference in which a reference set of known network links and nonlinks is used to train a classifier for predicting new links. Many types of data are relevant to inferring functional links between genes, motivating the use of data integration. We use pairwise kernels to predict novel links, along with multiple kernel learning to integrate distinct sources of data into a decision function. We evaluate various pairwise kernels to establish which are mos
Стилі APA, Harvard, Vancouver, ISO та ін.
3

LUGO-MARTINEZ, JOSE, and PREDRAG RADIVOJAC. "Generalized graphlet kernels for probabilistic inference in sparse graphs." Network Science 2, no. 2 (2014): 254–76. http://dx.doi.org/10.1017/nws.2014.14.

Повний текст джерела
Анотація:
AbstractGraph kernels for learning and inference on sparse graphs have been widely studied. However, the problem of designing robust kernel functions that can effectively compare graph neighborhoods in the presence of noisy and complex data remains less explored. Here we propose a novel graph-based kernel method referred to as an edit distance graphlet kernel. The method was designed to add flexibility in capturing similarities between local graph neighborhoods as a means of probabilistically annotating vertices in sparse and labeled graphs. We report experiments on nine real-life data sets fr
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lazarus, Eben, Daniel J. Lewis, and James H. Stock. "The Size‐Power Tradeoff in HAR Inference." Econometrica 89, no. 5 (2021): 2497–516. http://dx.doi.org/10.3982/ecta15404.

Повний текст джерела
Анотація:
Heteroskedasticity‐ and autocorrelation‐robust (HAR) inference in time series regression typically involves kernel estimation of the long‐run variance. Conventional wisdom holds that, for a given kernel, the choice of truncation parameter trades off a test's null rejection rate and power, and that this tradeoff differs across kernels. We formalize this intuition: using higher‐order expansions, we provide a unified size‐power frontier for both kernel and weighted orthonormal series tests using nonstandard “fixed‐ b” critical values. We also provide a frontier for the subset of these tests for w
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Billio, M. "Kernel-Based Indirect Inference." Journal of Financial Econometrics 1, no. 3 (2003): 297–326. http://dx.doi.org/10.1093/jjfinec/nbg014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Li Lyna, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, and Yunxin Liu. "nn-METER." GetMobile: Mobile Computing and Communications 25, no. 4 (2022): 19–23. http://dx.doi.org/10.1145/3529706.3529712.

Повний текст джерела
Анотація:
Inference latency has become a crucial metric in running Deep Neural Network (DNN) models on various mobile and edge devices. To this end, latency prediction of DNN inference is highly desirable for many tasks where measuring the latency on real devices is infeasible or too costly. Yet it is very challenging and existing approaches fail to achieve a high accuracy of prediction, due to the varying model-inference latency caused by the runtime optimizations on diverse edge devices. In this paper, we propose and develop nn-Meter, a novel and efficient system to accurately predict the DNN inferenc
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Robinson, P. M. "INFERENCE ON NONPARAMETRICALLY TRENDING TIME SERIES WITH FRACTIONAL ERRORS." Econometric Theory 25, no. 6 (2009): 1716–33. http://dx.doi.org/10.1017/s0266466609990302.

Повний текст джерела
Анотація:
The central limit theorem for nonparametric kernel estimates of a smooth trend, with linearly generated errors, indicates asymptotic independence and homoskedasticity across fixed points, irrespective of whether disturbances have short memory, long memory, or antipersistence. However, the asymptotic variance depends on the kernel function in a way that varies across these three circumstances, and in the latter two it involves a double integral that cannot necessarily be evaluated in closed form. For a particular class of kernels, we obtain analytic formulas. We discuss extensions to more gener
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yuan, Ao. "Semiparametric inference with kernel likelihood." Journal of Nonparametric Statistics 21, no. 2 (2009): 207–28. http://dx.doi.org/10.1080/10485250802553382.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cheng, Yansong, and Surajit Ray. "Multivariate Modality Inference Using Gaussian Kernel." Open Journal of Statistics 04, no. 05 (2014): 419–34. http://dx.doi.org/10.4236/ojs.2014.45041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Agbokou, Komi, and Yaogan Mensah. "INFERENCE ON THE REPRODUCING KERNEL HILBERT SPACES." Universal Journal of Mathematics and Mathematical Sciences 15 (October 10, 2021): 11–29. http://dx.doi.org/10.17654/2277141722002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Kernel Inference"

1

Fouchet, Arnaud. "Kernel methods for gene regulatory network inference." Thesis, Evry-Val d'Essonne, 2014. http://www.theses.fr/2014EVRY0058/document.

Повний текст джерела
Анотація:
De nouvelles technologies, notamment les puces à adn, multiplient la quantité de données disponibles pour la biologie moléculaire. dans ce contexte, des méthodes informatiques et mathématiques sont activement développées pour extraire le plus d'information d'un grand nombre de données. en particulier, le problème d'inférence de réseaux de régulation génique a été abordé au moyen de multiples modèles mathématiques et statistiques, des plus basiques (corrélation, modèle booléen ou linéaire) aux plus sophistiqués (arbre de régression, modèles bayésiens avec variables cachées). malgré leurs qualit
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chan, Karen Pui-Shan. "Kernel density estimation, Bayesian inference and random effects model." Thesis, University of Edinburgh, 1990. http://hdl.handle.net/1842/13350.

Повний текст джерела
Анотація:
This thesis contains results of a study in kernel density estimation, Bayesian inference and random effects models, with application to forensic problems. Estimation of the Bayes' factor in a forensic science problem involved the derivation of predictive distributions in non-standard situations. The distribution of the values of a characteristic of interest among different items in forensic science problems is often non-Normal. Background, or training, data were available to assist in the estimation of the distribution for measurements on cat and dog hairs. An informative prior, based on the k
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Araya, Valdivia Ernesto. "Kernel spectral learning and inference in random geometric graphs." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM020.

Повний текст джерела
Анотація:
Cette thèse comporte deux objectifs. Un premier objectif concerne l’étude des propriétés de concentration des matrices à noyau, qui sont fondamentales dans l’ensemble des méthodes à noyau. Le deuxième objectif repose quant à lui sur l’étude des problèmes d’inférence statistique dans le modèle des graphes aléatoires géométriques. Ces deux objectifs sont liés entre eux par le formalisme du graphon, qui permet représenter un graphe par un noyau. Nous rappelons les rudiments du modèle du graphon dans le premier chapitre. Le chapitre 2 présente des bornes précises pour les valeurs propres individue
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jitkrittum, Wittawat. "Kernel-based distribution features for statistical tests and Bayesian inference." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10037987/.

Повний текст джерела
Анотація:
The kernel mean embedding is known to provide a data representation which preserves full information of the data distribution. While typically computationally costly, its nonparametric nature has an advantage of requiring no explicit model specification of the data. At the other extreme are approaches which summarize data distributions into a finite-dimensional vector of hand-picked summary statistics. This explicit finite-dimensional representation offers a computationally cheaper alternative. Clearly, there is a trade-off between cost and sufficiency of the representation, and it is of inter
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hsu, Yuan-Shuo Kelvin. "Bayesian Perspectives on Conditional Kernel Mean Embeddings: Hyperparameter Learning and Probabilistic Inference." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/24309.

Повний текст джерела
Анотація:
This thesis presents the narrative of a particular journey towards discovering and developing Bayesian perspectives on conditional kernel mean embeddings. It is motivated by the desire and need to learn flexible and richer representations of conditional distributions for probabilistic inference in various contexts. While conditional kernel mean embeddings are able to achieve such representations, it is unclear how their hyperparameters can be learned for probabilistic inference in various settings. These hyperparameters govern the space of possible representations, and critically influence the
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Adams, R. P. "Kernel methods for nonparametric Bayesian inference of probability densities and point processes." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595350.

Повний текст джерела
Анотація:
I propose two new kernel-based models that enable an exact generative procedure: the Gaussian process density sampler (GPDS) for probability density functions, and the sigmoidal Gaussian Cox process (SGCP) for the Poisson process. With generative priors, I show how it is now possible to construct two different kinds of Markov chains for inference in these models. These Markov chains have the desired posterior distribution as their equilibrium distributions, and, despite a parameter space with uncountably many dimensions, require only a finite amount of computation to simulate. The GPDS and SGC
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gogolashvili, Davit. "Global and local Kernel methods for dataset shift, scalable inference and optimization." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS363v2.pdf.

Повний текст джерела
Анотація:
Dans de nombreux problèmes du monde réel, les données de formation et les données de test ont des distributions différentes. Cette situation est communément appelée " décalage de l'ensemble de données ". Les paramètres les plus courants pour le décalage des ensembles de données souvent considérés dans la littérature sont le décalage des covariables et le décalage des cibles. Dans cette thèse, nous étudions les modèles nonparamétriques appliqués au scénario de changement d'ensemble de données. Nous développons un nouveau cadre pour accélérer la régression par processus gaussien. En particulier,
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Maity, Arnab. "Efficient inference in general semiparametric regression models." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Minnier, Jessica. "Inference and Prediction for High Dimensional Data via Penalized Regression and Kernel Machine Methods." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10327.

Повний текст джерела
Анотація:
Analysis of high dimensional data often seeks to identify a subset of important features and assess their effects on the outcome. Furthermore, the ultimate goal is often to build a prediction model with these features that accurately assesses risk for future subjects. Such statistical challenges arise in the study of genetic associations with health outcomes. However, accurate inference and prediction with genetic information remains challenging, in part due to the complexity in the genetic architecture of human health and disease. A valuable approach for improving prediction models with a lar
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Weller, Jennifer N. "Bayesian Inference In Forecasting Volcanic Hazards: An Example From Armenia." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Kernel Inference"

1

Fauzi, Rizky Reza, and Yoshihiko Maesono. Statistical Inference Based on Kernel Distribution Function Estimators. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1862-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Silva, Catarina. Inductive inference for large scale text classification: Kernel approaches and techniques. Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

C, Jones M., ed. Kernel smoothing. Chapman & Hall, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Causal Inference from Statistical Data. Logos-Verlag Berlin, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fauzi, Rizky Reza, and Yoshihiko Maesono. Statistical Inference Based on Kernel Distribution Function Estimators. Springer, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Silva, Catarina, and Bernadete Ribeiro. Inductive Inference for Large Scale Text Classification: Kernel Approaches and Techniques. Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jones, M. C., and M. P. Wand. Kernel Smoothing. Taylor & Francis Group, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jones, M. C., and M. P. Wand. Kernel Smoothing. Taylor & Francis Group, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Kernel Inference"

1

Vovk, Vladimir. "Kernel Ridge Regression." In Empirical Inference. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41136-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fauzi, Rizky Reza, and Yoshihiko Maesono. "Kernel Quantile Estimation." In Statistical Inference Based on Kernel Distribution Function Estimators. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1862-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fauzi, Rizky Reza, and Yoshihiko Maesono. "Kernel Density Function Estimator." In Statistical Inference Based on Kernel Distribution Function Estimators. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1862-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fauzi, Rizky Reza, and Yoshihiko Maesono. "Kernel Distribution Function Estimator." In Statistical Inference Based on Kernel Distribution Function Estimators. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1862-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fauzi, Rizky Reza, and Yoshihiko Maesono. "Kernel-Based Nonparametric Tests." In Statistical Inference Based on Kernel Distribution Function Estimators. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1862-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Silva, Catarina, and Bernardete Ribeiro. "Kernel Machines for Text Classification." In Inductive Inference for Large Scale Text Classification. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04533-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vert, Jean-Philippe. "Classification of Biological Sequences with Kernel Methods." In Grammatical Inference: Algorithms and Applications. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11872436_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Christmann, Andreas, and Robert Hable. "On the Consistency of the Bootstrap Approach for Support Vector Machines and Related Kernel-Based Methods." In Empirical Inference. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41136-6_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fukumizu, Kenji. "Nonparametric Bayesian Inference with Kernel Mean Embedding." In Modern Methodology and Applications in Spatial-Temporal Modeling. Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55339-7_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fauzi, Rizky Reza, and Yoshihiko Maesono. "Mean Residual Life Estimator." In Statistical Inference Based on Kernel Distribution Function Estimators. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1862-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Kernel Inference"

1

Chen, Weiteng, Yu Hao, Zheng Zhang, et al. "SyzGen++: Dependency Inference for Augmenting Kernel Driver Fuzzing." In 2024 IEEE Symposium on Security and Privacy (SP). IEEE, 2024. http://dx.doi.org/10.1109/sp54263.2024.00269.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Neumann, Felix, Frederik Deroo, Georg Von Wichert, and Darius Burschka. "Particle-Based Dynamic Semantic Occupancy Mapping Using Bayesian Generalized Kernel Inference." In 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2024. https://doi.org/10.1109/itsc58415.2024.10920259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kim, Junyoung, Junwon Seo, and Jihong Min. "Evidential Semantic Mapping in Off-road Environments with Uncertainty-aware Bayesian Kernel Inference." In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10802766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Song, Yingchen, Yaobin Wang, Chaoyu Xiong, Tianhai Wang, and Pingping Tang. "An Efficient Sampling-Based SpMM Kernel for Balancing Accuracy and Speed in GNN Inference." In 2024 IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA). IEEE, 2024. https://doi.org/10.1109/ispa63168.2024.00066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Armeniakos, Giorgos, Georgios Mentzos, and Dimitrios Soudris. "Accelerating TinyML Inference on Microcontrollers Through Approximate Kernels." In 2024 31st IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2024. https://doi.org/10.1109/icecs61496.2024.10848979.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Krajsek, Kai, and Hanno Scharr. "Bayesian inference in kernel feature space." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 31st International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2012. http://dx.doi.org/10.1063/1.3703633.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sigal, L., R. Memisevic, and D. J. Fleet. "Shared Kernel Information Embedding for discriminative inference." In 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2009. http://dx.doi.org/10.1109/cvprw.2009.5206576.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Castro, Ivan, Cristobal Silva, and Felipe Tobar. "Initialising kernel adaptive filters via probabilistic inference." In 2017 22nd International Conference on Digital Signal Processing (DSP). IEEE, 2017. http://dx.doi.org/10.1109/icdsp.2017.8096055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sigal, Leonid, Roland Memisevic, and David J. Fleet. "Shared Kernel Information Embedding for discriminative inference." In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops). IEEE, 2009. http://dx.doi.org/10.1109/cvpr.2009.5206576.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Doherty, Kevin, Jinkun Wang, and Brendan Englot. "Bayesian generalized kernel inference for occupancy map prediction." In 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017. http://dx.doi.org/10.1109/icra.2017.7989356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!