Статті в журналах з теми "Kernel Inference"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Kernel Inference".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Nishiyama, Yu, Motonobu Kanagawa, Arthur Gretton, and Kenji Fukumizu. "Model-based kernel sum rule: kernel Bayesian inference with probabilistic models." Machine Learning 109, no. 5 (2020): 939–72. http://dx.doi.org/10.1007/s10994-019-05852-9.
Повний текст джерелаRogers, Mark F., Colin Campbell, and Yiming Ying. "Probabilistic Inference of Biological Networks via Data Integration." BioMed Research International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/707453.
Повний текст джерелаLUGO-MARTINEZ, JOSE, and PREDRAG RADIVOJAC. "Generalized graphlet kernels for probabilistic inference in sparse graphs." Network Science 2, no. 2 (2014): 254–76. http://dx.doi.org/10.1017/nws.2014.14.
Повний текст джерелаLazarus, Eben, Daniel J. Lewis, and James H. Stock. "The Size‐Power Tradeoff in HAR Inference." Econometrica 89, no. 5 (2021): 2497–516. http://dx.doi.org/10.3982/ecta15404.
Повний текст джерелаBillio, M. "Kernel-Based Indirect Inference." Journal of Financial Econometrics 1, no. 3 (2003): 297–326. http://dx.doi.org/10.1093/jjfinec/nbg014.
Повний текст джерелаZhang, Li Lyna, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, and Yunxin Liu. "nn-METER." GetMobile: Mobile Computing and Communications 25, no. 4 (2022): 19–23. http://dx.doi.org/10.1145/3529706.3529712.
Повний текст джерелаRobinson, P. M. "INFERENCE ON NONPARAMETRICALLY TRENDING TIME SERIES WITH FRACTIONAL ERRORS." Econometric Theory 25, no. 6 (2009): 1716–33. http://dx.doi.org/10.1017/s0266466609990302.
Повний текст джерелаYuan, Ao. "Semiparametric inference with kernel likelihood." Journal of Nonparametric Statistics 21, no. 2 (2009): 207–28. http://dx.doi.org/10.1080/10485250802553382.
Повний текст джерелаCheng, Yansong, and Surajit Ray. "Multivariate Modality Inference Using Gaussian Kernel." Open Journal of Statistics 04, no. 05 (2014): 419–34. http://dx.doi.org/10.4236/ojs.2014.45041.
Повний текст джерелаAgbokou, Komi, and Yaogan Mensah. "INFERENCE ON THE REPRODUCING KERNEL HILBERT SPACES." Universal Journal of Mathematics and Mathematical Sciences 15 (October 10, 2021): 11–29. http://dx.doi.org/10.17654/2277141722002.
Повний текст джерелаMemisevic, R., L. Sigal, and D. J. Fleet. "Shared Kernel Information Embedding for Discriminative Inference." IEEE Transactions on Pattern Analysis and Machine Intelligence 34, no. 4 (2012): 778–90. http://dx.doi.org/10.1109/tpami.2011.154.
Повний текст джерелаMaswadah, M. "Kernel Inference on the Inverse Weibull Distribution." Communications for Statistical Applications and Methods 13, no. 3 (2006): 503–12. http://dx.doi.org/10.5351/ckss.2006.13.3.503.
Повний текст джерелаRacine, Jeffrey S., and James G. MacKinnon. "Inference via kernel smoothing of bootstrap values." Computational Statistics & Data Analysis 51, no. 12 (2007): 5949–57. http://dx.doi.org/10.1016/j.csda.2006.11.013.
Повний текст джерелаSun, Yixiao, and Jingjing Yang. "Testing-optimal kernel choice in HAR inference." Journal of Econometrics 219, no. 1 (2020): 123–36. http://dx.doi.org/10.1016/j.jeconom.2020.06.007.
Повний текст джерелаHayes, Kyle, Michael W. Fouts, Ali Baheri, and David S. Mebane. "Forward variable selection enables fast and accurate dynamic system identification with Karhunen-Loève decomposed Gaussian processes." PLOS ONE 19, no. 9 (2024): e0309661. http://dx.doi.org/10.1371/journal.pone.0309661.
Повний текст джерелаKondratyev, Dmitry A. "Towards Automatic Deductive Verification of C Programs with Sisal Loops Using the C-lightVer System." Modeling and Analysis of Information Systems 28, no. 4 (2021): 372–93. http://dx.doi.org/10.18255/1818-1015-2021-4-372-393.
Повний текст джерелаLei, Zijian, and Liang Lan. "Memory and Computation-Efficient Kernel SVM via Binary Embedding and Ternary Model Coefficients." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 8316–23. http://dx.doi.org/10.1609/aaai.v35i9.17011.
Повний текст джерелаLu, Chi-Ken, and Patrick Shafto. "Conditional Deep Gaussian Processes: Empirical Bayes Hyperdata Learning." Entropy 23, no. 11 (2021): 1387. http://dx.doi.org/10.3390/e23111387.
Повний текст джерелаKumar, Mukesh, and Santanu Kumar Rath. "Classification of Microarray Data Using Kernel Fuzzy Inference System." International Scholarly Research Notices 2014 (August 21, 2014): 1–18. http://dx.doi.org/10.1155/2014/769159.
Повний текст джерелаCawley, Gavin C., and Nicola L. C. Talbot. "Kernel learning at the first level of inference." Neural Networks 53 (May 2014): 69–80. http://dx.doi.org/10.1016/j.neunet.2014.01.011.
Повний текст джерелаWang, Kai. "Conditional asymptotic inference for the kernel association test." Bioinformatics 33, no. 23 (2017): 3733–39. http://dx.doi.org/10.1093/bioinformatics/btx511.
Повний текст джерелаLi, Wuchen, Luwen Zhang, Jian Xu, Linghui Li, and Liping Bai. "Jump amplitude inference in SDEs with cosine kernel." Results in Applied Mathematics 26 (May 2025): 100596. https://doi.org/10.1016/j.rinam.2025.100596.
Повний текст джерелаAuzina, Ilze A., and Jakub M. Tomczak. "Approximate Bayesian Computation for Discrete Spaces." Entropy 23, no. 3 (2021): 312. http://dx.doi.org/10.3390/e23030312.
Повний текст джерелаStordal, Andreas S., Rafael J. Moraes, Patrick N. Raanes, and Geir Evensen. "p-Kernel Stein Variational Gradient Descent for Data Assimilation and History Matching." Mathematical Geosciences 53, no. 3 (2021): 375–93. http://dx.doi.org/10.1007/s11004-021-09937-x.
Повний текст джерелаXiao, Chengcheng, Xiaowen Liu, Chi Sun, Zhongyu Liu, and Enjie Ding. "Hierarchical Prototypes Polynomial Softmax Loss Function for Visual Classification." Applied Sciences 12, no. 20 (2022): 10336. http://dx.doi.org/10.3390/app122010336.
Повний текст джерелаMassaroppe, Lucas, and Luiz Baccalá. "Kernel Methods for Nonlinear Connectivity Detection." Entropy 21, no. 6 (2019): 610. http://dx.doi.org/10.3390/e21060610.
Повний текст джерелаNie, Junlan, Ruibo Gao, and Ye Kang. "Urban Noise Inference Model Based on Multiple Views and Kernel Tensor Decomposition." Fluctuation and Noise Letters 20, no. 03 (2021): 2150027. http://dx.doi.org/10.1142/s0219477521500279.
Повний текст джерелаMaswadah, Mohamed, and Seham Mohamed. "Bayesian Inference on the Generalized Exponential Distribution Based on the Kernel Prior." Science Journal of Applied Mathematics and Statistics 12, no. 2 (2024): 29–36. http://dx.doi.org/10.11648/j.sjams.20241202.12.
Повний текст джерелаHou, Yuxin, Ari Heljakka, and Arno Solin. "Gaussian Process Priors for View-Aware Inference." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 7762–70. http://dx.doi.org/10.1609/aaai.v35i9.16948.
Повний текст джерелаLiang, Junjie, Yanting Wu, Dongkuan Xu, and Vasant G. Honavar. "Longitudinal Deep Kernel Gaussian Process Regression." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (2021): 8556–64. http://dx.doi.org/10.1609/aaai.v35i10.17038.
Повний текст джерелаZhang, Rui, Christian Walder, and Marian-Andrei Rizoiu. "Variational Inference for Sparse Gaussian Process Modulated Hawkes Process." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 6803–10. http://dx.doi.org/10.1609/aaai.v34i04.6160.
Повний текст джерелаWang, Qihuan, Haolin Yang, Qianghao He, Dong Yue, Ce Zhang, and Duanyang Geng. "Real-Time Detection System of Broken Corn Kernels Based on BCK-YOLOv7." Agronomy 13, no. 7 (2023): 1750. http://dx.doi.org/10.3390/agronomy13071750.
Повний текст джерелаCui, Chen, Shengyi Jiang, and Bruno C. d. S. Oliveira. "Greedy Implicit Bounded Quantification." Proceedings of the ACM on Programming Languages 7, OOPSLA2 (2023): 2083–111. http://dx.doi.org/10.1145/3622871.
Повний текст джерелаTeng, Tong, Jie Chen, Yehong Zhang, and Bryan Kian Hsiang Low. "Scalable Variational Bayesian Kernel Selection for Sparse Gaussian Process Regression." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 5997–6004. http://dx.doi.org/10.1609/aaai.v34i04.6061.
Повний текст джерелаPatel, Zeel B., Palak Purohit, Harsh M. Patel, Shivam Sahni, and Nipun Batra. "Accurate and Scalable Gaussian Processes for Fine-Grained Air Quality Inference." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12080–88. http://dx.doi.org/10.1609/aaai.v36i11.21467.
Повний текст джерелаGudmundarson, Ragnar L., and Gareth W. Peters. "Assessing portfolio diversification via two-sample graph kernel inference. A case study on the influence of ESG screening." PLOS ONE 19, no. 4 (2024): e0301804. http://dx.doi.org/10.1371/journal.pone.0301804.
Повний текст джерелаRen, Ming, Chi Cheung, and Gao Xiao. "Gaussian Process Based Bayesian Inference System for Intelligent Surface Measurement." Sensors 18, no. 11 (2018): 4069. http://dx.doi.org/10.3390/s18114069.
Повний текст джерелаRocha, Gustavo H. M. A., Rosangela H. Loschi, and Reinaldo B. Arellano-Valle. "Inference in flexible families of distributions with normal kernel." Statistics 47, no. 6 (2013): 1184–206. http://dx.doi.org/10.1080/02331888.2012.688207.
Повний текст джерелаGao, Junbin, Paul W. Kwan, and Daming Shi. "Sparse kernel learning with LASSO and Bayesian inference algorithm." Neural Networks 23, no. 2 (2010): 257–64. http://dx.doi.org/10.1016/j.neunet.2009.07.001.
Повний текст джерелаCapobianco, Enrico. "Kernel methods and flexible inference for complex stochastic dynamics." Physica A: Statistical Mechanics and its Applications 387, no. 16-17 (2008): 4077–98. http://dx.doi.org/10.1016/j.physa.2008.03.003.
Повний текст джерелаLam, Clifford, and Jianqing Fan. "Profile-kernel likelihood inference with diverging number of parameters." Annals of Statistics 36, no. 5 (2008): 2232–60. http://dx.doi.org/10.1214/07-aos544.
Повний текст джерелаLi, Bochong, and Lingchong You. "Stochastic Sensitivity Analysis and Kernel Inference via Distributional Data." Biophysical Journal 107, no. 5 (2014): 1247–55. http://dx.doi.org/10.1016/j.bpj.2014.07.025.
Повний текст джерелаLi, Degui, Peter C. B. Phillips, and Jiti Gao. "Kernel-based Inference in Time-Varying Coefficient Cointegrating Regression." Journal of Econometrics 215, no. 2 (2020): 607–32. http://dx.doi.org/10.1016/j.jeconom.2019.10.005.
Повний текст джерелаGonzález-Vanegas, Wilson, Andrés Álvarez-Meza, José Hernández-Muriel, and Álvaro Orozco-Gutiérrez. "AKL-ABC: An Automatic Approximate Bayesian Computation Approach Based on Kernel Learning." Entropy 21, no. 10 (2019): 932. http://dx.doi.org/10.3390/e21100932.
Повний текст джерелаHuh, Jaeseok, Jonghun Park, Dongmin Shin, and Yerim Choi. "A Hierarchical SVM Based Behavior Inference of Human Operators Using a Hybrid Sequence Kernel." Sustainability 11, no. 18 (2019): 4836. http://dx.doi.org/10.3390/su11184836.
Повний текст джерелаXiao, Heng, Donglin Jing, Fujun Zhao, and Shaokang Zha. "Feature Symmetry Fusion Remote Sensing Detection Network Based on Spatial Adaptive Selection." Symmetry 17, no. 4 (2025): 602. https://doi.org/10.3390/sym17040602.
Повний текст джерелаSong, Le, Kenji Fukumizu, and Arthur Gretton. "Kernel Embeddings of Conditional Distributions: A Unified Kernel Framework for Nonparametric Inference in Graphical Models." IEEE Signal Processing Magazine 30, no. 4 (2013): 98–111. http://dx.doi.org/10.1109/msp.2013.2252713.
Повний текст джерелаWang, Lin, Shuqiao Zhou, Tianhao Zhang, Chao Guo, and Xiaojin Huang. "An Unsupervised Anomaly Detection Method for Nuclear Reactor Coolant Pumps Based on Kernel Self-Organizing Map and Bayesian Posterior Inference." Energies 18, no. 11 (2025): 2887. https://doi.org/10.3390/en18112887.
Повний текст джерелаLee, Dong-Yeong, Hayotjon Aliev, Muhammad Junaid, et al. "High-Speed CNN Accelerator SoC Design Based on a Flexible Diagonal Cyclic Array." Electronics 13, no. 8 (2024): 1564. http://dx.doi.org/10.3390/electronics13081564.
Повний текст джерелаDixit, Purushottam D. "Introducing User-Prescribed Constraints in Markov Chains for Nonlinear Dimensionality Reduction." Neural Computation 31, no. 5 (2019): 980–97. http://dx.doi.org/10.1162/neco_a_01184.
Повний текст джерела