Добірка наукової літератури з теми "Knowledge Graph-based Retrieval Augmented Generation (KG-RAG)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Knowledge Graph-based Retrieval Augmented Generation (KG-RAG)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Knowledge Graph-based Retrieval Augmented Generation (KG-RAG)"
Tian, Shiyu, Shuyue Xing, Xingrui Li, Yangyang Luo, Caixia Yuan, Wei Chen, Huixing Jiang, and Xiaojie Wang. "A Systematic Exploration of Knowledge Graph Alignment with Large Language Models in Retrieval Augmented Generation." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 24 (April 11, 2025): 25291–99. https://doi.org/10.1609/aaai.v39i24.34716.
Повний текст джерелаHamza, Ameer, Abdullah, Yong Hyun Ahn, Sungyoung Lee, and Seong Tae Kim. "LLaVA Needs More Knowledge: Retrieval Augmented Natural Language Generation with Knowledge Graph for Explaining Thoracic Pathologies." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 3 (April 11, 2025): 3311–19. https://doi.org/10.1609/aaai.v39i3.32342.
Повний текст джерелаSong, Sihan, Chuncheng Yang, Li Xu, Haibin Shang, Zhuo Li, and Yinghui Chang. "TravelRAG: A Tourist Attraction Retrieval Framework Based on Multi-Layer Knowledge Graph." ISPRS International Journal of Geo-Information 13, no. 11 (November 16, 2024): 414. http://dx.doi.org/10.3390/ijgi13110414.
Повний текст джерелаSaran Raj. S and Dr. C. Meenakshi. "A Smart Legal Assistant for Indian Laws." International Journal of Latest Technology in Engineering Management & Applied Science 14, no. 4 (May 15, 2025): 588–92. https://doi.org/10.51583/ijltemas.2025.140400064.
Повний текст джерелаZhang, Haiyu, Yinghui Zhao, Boyu Sun, Yaqi Wu, Zetian Fu, and Xinqing Xiao. "Large Language Model Based Intelligent Fault Information Retrieval System for New Energy Vehicles." Applied Sciences 15, no. 7 (April 6, 2025): 4034. https://doi.org/10.3390/app15074034.
Повний текст джерелаMartin, Andreas, Hans Friedrich Witschel, Maximilian Mandl, and Mona Stockhecke. "Semantic Verification in Large Language Model-based Retrieval Augmented Generation." Proceedings of the AAAI Symposium Series 3, no. 1 (May 20, 2024): 188–92. http://dx.doi.org/10.1609/aaaiss.v3i1.31199.
Повний текст джерелаYao, Yao, and Horacio González–Vélez. "AI-Powered System to Facilitate Personalized Adaptive Learning in Digital Transformation." Applied Sciences 15, no. 9 (April 30, 2025): 4989. https://doi.org/10.3390/app15094989.
Повний текст джерелаBalasubramanian, Abhinav. "Accelerating Research with Automated Literature Reviews: A Rag-Based Framework." International Journal of Multidisciplinary Research and Growth Evaluation. 6, no. 2 (2025): 337–42. https://doi.org/10.54660/.ijmrge.2025.6.2.337-342.
Повний текст джерелаYang, Jiawei, Chuanyao Sun, Junwu Zhou, Qingkai Wang, Kanghui Zhang, and Tao Song. "Knowledge-Inference-Based Intelligent Decision Making for Nonferrous Metal Mineral-Processing Flowsheet Design." Minerals 15, no. 4 (April 3, 2025): 374. https://doi.org/10.3390/min15040374.
Повний текст джерелаVanGundy, Braxton, Nipa Phojanamongkolkij, Barclay Brown, Ramana Polavarapu, and Joshua Bonner. "Requirement Discovery Using Embedded Knowledge Graph with ChatGPT." INCOSE International Symposium 34, no. 1 (July 2024): 2011–27. http://dx.doi.org/10.1002/iis2.13253.
Повний текст джерелаДисертації з теми "Knowledge Graph-based Retrieval Augmented Generation (KG-RAG)"
Schaeffer, Marion. "Towards efficient Knowledge Graph-based Retrieval Augmented Generation for conversational agents." Electronic Thesis or Diss., Normandie, 2025. http://www.theses.fr/2025NORMIR06.
Повний текст джерелаConversational agents have become widespread in recent years. Today, they have transcended their initial purpose of simulating a conversation with a computer program and are now valuable tools for accessing information and carrying out various tasks, from customer service to personal assistance. With the rise of text-generative models and Large Language Models (LLMs), the capabilities of conversational agents have increased tenfold. However, they are now subject to hallucinations, producing false information. A popular technique to limit the risk of hallucinations is Retrieval Augmented Generation (RAG), which injects knowledge into a text generation process. Such injected knowledge can be drawn from Knowledge Graphs (KGs), which are structured machine-readable knowledge representations. Therefore, we explore Knowledge Graph-based Retrieval Augmented Generation (KG-RAG) to build trusted conversational agents. We demonstrate our approach on a real-world use case for citizen support by building conversational agents for disability management in cities. We first present a history of conversational agents, introducing the approaches implemented over the years and the evaluation techniques. We then define KGs and ontologies, and explore construction and evaluation techniques. As we could not find a directly exploitable KG, our first contribution introduces the Ontology Learning Applied Framework (OLAF). This modular system is built for automated and repeatable KG construction from unstructured text. OLAF integrates linguistic, statistical, and LLM-based techniques to generate Minimum Viable Ontologies for specific domains. Applied to real-world datasets, OLAF demonstrates robust performance through gold-standard evaluations and task-specific Competency Questions. We detail the construction process for a KG about disability management in a French city. We then propose an architecture for KG-RAG systems to enhance information retrieval by aligning user queries with KG structures through entity linking, graph queries, and LLM-based retrieval approaches. We demonstrate our architecture on different use cases, which we evaluate using criteria such as performance, human preference, and environmental impact. While user preferences advantage Text-RAG, KG-RAG's reduced computational footprint underscores its potential for sustainable AI practices. Finally, we identify the critical part of the architecture as the retriever. Therefore, we tackle the retrieval task in our architecture by exploring embeddings in various contexts, i.e. improving EL, retrieval, and providing a caching system. We also propose mechanisms for handling multi-turn conversations. This work establishes a comprehensive framework for KG-RAG systems, combining the semantic depth of KGs with the generative capabilities of LLMs to deliver accurate, contextual, and sustainable conversational agents. Contributions include OLAF for scalable KG construction, a robust KG-RAG pipeline, and embedding-based enhancements for retrieval and interaction quality. By addressing conversational agents' industrial challenges, such as scalability, retrieval precision, and conversational coherence, this research lays the foundation for deploying KG-RAG systems in diverse and specialised domains
Частини книг з теми "Knowledge Graph-based Retrieval Augmented Generation (KG-RAG)"
Malakhov, Kyrylo. "From Archimate to Computer Ontologies: Advancing Semantic Enterprise Architecture With RAG/RIG AI Services in RDF/OWL." In Digital Transformation and Intelligent Systems: Theory, Models, Practice, 57–111. Iowa State University Digital Press, 2025. https://doi.org/10.31274/isudp.2025.197.02.
Повний текст джерелаIlyas, Qazi Mudassar, and Sadia Aziz. "Enhancing the RAG Pipeline Through Advanced Optimization Techniques." In Advances in Computational Intelligence and Robotics, 59–80. IGI Global, 2025. https://doi.org/10.4018/979-8-3693-6255-6.ch003.
Повний текст джерелаShi, Yunxiao, Xing Zi, Zijing Shi, Haimin Zhang, Qiang Wu, and Min Xu. "Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240748.
Повний текст джерелаGustafson, Jerry Ryan David, Gaganpreet Jhajj, Xiaokun Zhang, and Fuhua Oscar Lin. "Enhancing Project-Based Learning With a GenAI Tool Based on Retrieval." In Advances in Educational Marketing, Administration, and Leadership, 161–94. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-5443-8.ch006.
Повний текст джерелаLe, Nguyen-Khang, Dieu-Hien Nguyen, and Le Minh Nguyen. "ANSPRE: Improving Question-Answering in Large Language Models with Answer-Prefix Generation." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240778.
Повний текст джерелаDarwish, Dina. "Integration of LLMs in Smart Cities for Sustainable Energy Solutions." In Revolutionizing Urban Development and Governance With Emerging Technologies, 405–30. IGI Global, 2025. https://doi.org/10.4018/979-8-3373-1375-7.ch014.
Повний текст джерелаТези доповідей конференцій з теми "Knowledge Graph-based Retrieval Augmented Generation (KG-RAG)"
Dong, Chenxi, Yimin Yuan, Kan Chen, Shupei Cheng, and Chujie Wen. "How to Build an Adaptive AI Tutor for Any Course Using Knowledge Graph-Enhanced Retrieval-Augmented Generation (KG-RAG)." In 2025 14th International Conference on Educational and Information Technology (ICEIT), 152–57. IEEE, 2025. https://doi.org/10.1109/iceit64364.2025.10975937.
Повний текст джерелаChen, Qi, and Lin Ni. "TCM MLKG-RAG: Traditional Chinese Medicine Intelligent Diagnosis Based on Multi-Layer Knowledge Graph Retrieval-Augmented Generation." In 2024 4th International Conference on Electronic Information Engineering and Computer Communication (EIECC), 958–62. IEEE, 2024. https://doi.org/10.1109/eiecc64539.2024.10929529.
Повний текст джерелаXiao, Wei, Yu Liu, XiangLong Li, Feng Gao, and JinGuang Gu. "TKG-RAG: A Retrieval-Augmented Generation Framework with Text-chunk Knowledge Graph." In 2024 25th International Arab Conference on Information Technology (ACIT), 1–9. IEEE, 2024. https://doi.org/10.1109/acit62805.2024.10877117.
Повний текст джерелаHou, Yingqi, Yichang Shao, Zhongyi Han, and Zhirui Ye. "Construction and Application of Traffic Accident Knowledge Graph Based on LLM." In 2024 International Conference on Smart Transportation Interdisciplinary Studies. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2025. https://doi.org/10.4271/2025-01-7139.
Повний текст джерелаZhao, Ruilin, Feng Zhao, Long Wang, Xianzhi Wang, and Guandong Xu. "KG-CoT: Chain-of-Thought Prompting of Large Language Models over Knowledge Graphs for Knowledge-Aware Question Answering." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/734.
Повний текст джерелаKuratomi, Gustavo, Paulo Pirozelli, Fabio G. Cozman, and Sarajane M. Peres. "A RAG-Based Institutional Assistant." In Encontro Nacional de Inteligência Artificial e Computacional, 755–66. Sociedade Brasileira de Computação - SBC, 2024. https://doi.org/10.5753/eniac.2024.245243.
Повний текст джерелаRai, P., A. Jain, and A. Anand. "Generative AI and Large Language Model Assisted Causal Discovery and Inference for Driving Process Improvements." In ADIPEC. SPE, 2024. http://dx.doi.org/10.2118/221872-ms.
Повний текст джерелаSchönwälder, Erik, Martin Hahmann, and Gritt Ott. "Using compact Retrieval-Augmented Generation for knowledge preservation in SMBs." In 13th International Conference on Human Interaction & Emerging Technologies: Artificial Intelligence & Future Applications. AHFE International, 2025. https://doi.org/10.54941/ahfe1005891.
Повний текст джерелаDanter, Daniel, Heidrun Mühle, and Andreas Stöckl. "Advanced Chunking and Search Methods for Improved Retrieval-Augmented Generation (RAG) System Performance in E-Learning." In 2024 AHFE International Conference on Human Factors in Design, Engineering, and Computing (AHFE 2024 Hawaii Edition). AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1005756.
Повний текст джерелаZhang, Leo, and Carlos Gonzalez. "An AI-Driven Debate Judging System using Emotional and Content Analysisbased on Artificial Intelligence and Machine Learning." In 9th International Conference on Artificial Intelligence, Soft Computing And Applications, 217–30. Academy & Industry Research Collaboration, 2025. https://doi.org/10.5121/csit.2025.150419.
Повний текст джерела