Добірка наукової літератури з теми "Lactosérum – Teneur en protéines"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Lactosérum – Teneur en protéines".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Lactosérum – Teneur en protéines"
Mafwila, M., K. Budiongo, and M. Bavanda. "Effets du mode de préparation et de la durée de stockage sur les teneurs en protéines et en matières grasses de la farine du fruit de l'arbre à pain (Artocarpus incisus (Thunb.) L. f.)." Revue d’élevage et de médecine vétérinaire des pays tropicaux 44, no. 4 (April 1, 1991): 463–68. http://dx.doi.org/10.19182/remvt.9154.
Повний текст джерелаBOICHARD, D., A. GOVIGNON-GION, H. LARROQUE, C. MAROTEAU, I. PALHIÈRE, G. TOSSER-KLOPP, R. RUPP, M. P. SANCHEZ, and M. BROCHARD. "Déterminisme génétique de la composition en acides gras et protéines du lait des ruminants, et potentialités de sélection." INRAE Productions Animales 27, no. 4 (October 21, 2014): 283–98. http://dx.doi.org/10.20870/productions-animales.2014.27.4.3074.
Повний текст джерелаBohoua, GL, and ZU Haque. "Effet des peptides du lactosérum sur l’activité superficielle des protéines." Sciences des Aliments 26, no. 6 (December 28, 2006): 525–32. http://dx.doi.org/10.3166/sda.26.525-532.
Повний текст джерелаPIERRE, A., and J. FAUQUANT. "Principes pour un procédé industriel de fractionnement des protéines du lactosérum." Le Lait 66, no. 4 (1986): 405–19. http://dx.doi.org/10.1051/lait:1986426.
Повний текст джерелаGault, P., M. Mahaut, and J. Korolczuk. "Caractéristiques rhéologiques et gélification thermique du concentré de protéines de lactosérum." Le Lait 70, no. 3 (1990): 217–32. http://dx.doi.org/10.1051/lait:1990318.
Повний текст джерелаLahouel, N., O. Kheroua, F. Mezemaz, and D. Saidi. "Évaluation de l’activité antigénique des hydrolysats de protéines du lactosérum camelin." Revue Française d'Allergologie 56, no. 6 (October 2016): 471–76. http://dx.doi.org/10.1016/j.reval.2015.12.001.
Повний текст джерелаMOUROT, J., and B. LEBRET. "Modulation de la qualité de la viande de porc par l’alimentation." INRAE Productions Animales 22, no. 1 (February 14, 2009): 33–40. http://dx.doi.org/10.20870/productions-animales.2009.22.1.3330.
Повний текст джерелаDOREAU, M., and Y. CHILLIARD. "Influence d’une supplémentation de la ration en lipides sur la qualité du lait chez la vache." INRAE Productions Animales 5, no. 2 (February 28, 1992): 103–11. http://dx.doi.org/10.20870/productions-animales.1992.5.2.4224.
Повний текст джерелаRichard, J. P., and P. Paquin. "114. Dosage des protéines laitièeres dans des poudres de lactosérum par colorimétrie." Canadian Institute of Food Science and Technology Journal 22, no. 4 (October 1989): 417. http://dx.doi.org/10.1016/s0315-5463(89)70549-6.
Повний текст джерелаNowakowski, Wiesław. "Action de I'AlA sur la teneur en azote total et protéinique des graines de céréales cultivées à different niveau de la capacité capillaire en eau." Acta Agrobotanica 26, no. 1 (2015): 89–95. http://dx.doi.org/10.5586/aa.1973.006.
Повний текст джерелаДисертації з теми "Lactosérum – Teneur en protéines"
Khaldi, Marwa. "Étude du lien entre la physico-chimie de dérivés laitiers et leur aptitude à l’encrassement lors du traitement thermomécanique en échangeur de chaleur." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10032/document.
Повний текст джерелаThis Ph.D. work is a contribution for understanding the fouling in plate heat exchangers (PHE) during the heat treatment of whey protein solutions. This work aims at establishing the relationship between the composition of the different whey protein solutions (β-lactoglobulin content (β-lg) and calcium), their denaturation behaviour and their ability to foul the hot surfaces of the PHE.This study showed the strong impact of the calcium content and the calcium/protein molar ratio on the β-lg thermal denaturation mechanisms, the distributions of the deposit fouling, deposit formation dynamics and the structure of the first deposit layers.The determination of the β-lg denaturation kinetic constants and the knowledge of the thermal profile allowed to simulate the concentration profiles of the different β-lg species (native, unfolded and aggregated) along the PHE and to study the correlation between the dry deposit mass of and the amount of denatured β-lg in the PHE. This simulation highlighted the negligible role of the aggregates in the fouling mechanisms and both the influence of the unfolded species and the calcium content on the distribution of protein deposition. Finally, a new correlation between the distribution of dry deposit masses in each channel of the PHE and the denaturation kinetic parameters was determined for each studied protein solution, showing thus that chemical reaction engineering approaches are requested for predicting proteinaceous fouling
Erabit, Nicolas. "Caractérisation expérimentale et modélisation de la dénaturation et de l’agrégation de la beta-lactoglobuline au cours d’un traitement thermique de type industriel." Electronic Thesis or Diss., Paris, AgroParisTech, 2012. http://www.theses.fr/2012AGPT0094.
Повний текст джерелаThis work aims to model the formation of whey protein aggregates during continuous thermo-mechanical treatment (heat exchanger) with integration of the physicochemical properties (protein content and mineral content). This simulation work is supported by knowledge from literature and experimentation carried out in addition with literature.A two-step work was done at two scales. At laboratory scale, the samples were submitted to well controlled and almost homogenous thermo-mechanical treatments. This was used as data base to develop a mechanistic model of transformation for the irreversible aggregation of beta-lactoglobulin in solution in function of time/temperature/shear. This first step allows obtaining a model for one profile but not for a pilot-scale heat treatment. The hypothesis is that the dispersion of aggregate sizes in continuous heat treatment is partly due to distribution of residence times: proteins in the slowest parts of the fluid have more time to aggregate. Experiments were carried out on a continuous pilot of heat treatment
Saint-Sauveur, Diane. "Propriétés immunomodulantes des protéines et peptides du lactosérum." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26519/26519.pdf.
Повний текст джерелаGulzar, Muhammad. "Dry heating of whey proteins under controlled physiocochdemical conditions : structures, inteactions and functionalities." Rennes, Agrocampus Ouest, 2011. http://www.theses.fr/2011NSARB220.
Повний текст джерелаDry heating is a pre-texturization process for food protein ingredients to improve their techno-functional properties (gelling, foaming, and emulsifying). The aim of this thesis was to identify the physicochemical characteristics of whey powders that modulate the structural changes of proteins during dry heating and the gelling properties of dry heated proteins. For this purpose, whey powders with various physicochemical characteristics in terms of pH, water activity, and composition (protein ratio, trace of calcium and lactose) were dry heated under different heat intensities (temperature/times). The water activity of the powder and dry heat intensity (temperature/times) accelerate the kinetic of denaturation/aggregation of whey proteins. Trace of lactose and pH also affect the structure of dry heated proteins. At pH 2. 5 the protein molecules were mainly linked together by intermolecular disulfide bonds, while at pH 6. 5, covalent cross-links other than disulfide bonds were also involved in formed aggregates. Depending upon its nature (free or fixed to proteins) and pH of powder, the lactose affects differently the denaturation/aggregation of whey proteins. In addition, non-native protein monomers having mass loss of 18 Da were also generated. Depending upon the quantity of soluble and insoluble aggregates of proteins, the gelling properties were changed. These results show the dominance of certain physicochemical characteristics of powder on protein structure modifications and their gelling properties, thus giving indications for improving the reproducibility of the functionality of dry heated protein ingredients at the industry
Michel, Agnès. "Production de protéines de levures à partir de lactosérum brut." Lyon 1, 1986. http://www.theses.fr/1986LYO10709.
Повний текст джерелаThiers, Claudine. "Étude du fractionnement d'hydrolysats trypsiques de protéines du lactosérum par nanofiltration." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ44973.pdf.
Повний текст джерелаMahmoudi, Najet. "Impact de la structure sur les propriétés interfaciales d'agrégats de protéines globulaires du lactosérum." Nantes, 2007. http://www.theses.fr/2007NANT2102.
Повний текст джерелаWhey proteins are widely used in the food industry for their emulsifying and foaming properties. The thermo-mechanical treatment during processing leads to aggregate formation whose role in the stabilization of dispersed systems is still poorly understood. In the present work, whey protein isolates have been subjected to thermal treatments, with or without shearing, in order to generate different types of aggregates. We have shown by light scattering and small angle neutron scattering as well as by cryo-transmission electron microscopy that aggregates formed without mechanical treatment have a fractal structure. The size and the fractal dimension of these aggregates depend on the ionic force and the protein concentration for neutral pH. Under shear, spherical structures of nanometric size have been observed. With dynamic drop tensiometry, Langmuir film balance studies and AFM the air-water interfacial layers have been characterized for the different aggregates types. It could be shown that the tension and dilatational elasticity properties depend on the presence of isolated proteins as well as on the size of the objects and their internal cohesion
Bordenave-Juchereau, Stéphanie. "Hydrolyse de l'alpha-lactalbumine caprine en réacteur à l'ultrafiltration : génération et caractérisation de peptides issus de l'hydrolyse pepsique." La Rochelle, 2000. http://www.theses.fr/2000LAROS036.
Повний текст джерелаCloss, Brigitte. "Influence de la stucture sur les propriétés de surface des protéines du lactosérum." Dijon, 1990. http://www.theses.fr/1990DIJOS034.
Повний текст джерелаRullier, Bénédicte. "Rôle des agrégats de protéines dans la formation et la stabilisation de mousses." Nantes, 2009. http://www.theses.fr/2009NANT2095.
Повний текст джерелаThe foam formation depends on the nature of the protein and on their capacity to stabilize the air/water interfaces. During food processes, proteins undergo thermomechanical treatments leading to their aggregation in self-assembled structures. However, only a given fraction of the proteins is aggregated and this part may be considerably influence the foaming properties. This thesis aims at considering the aggregation part in the foam formation and stabilization at the different foam scales (air/water interface and foam film). Protein aggregates with different sizes were obtained by heat-induced denaturation of b-lactoglobulin, major whey protein for which the aggregation is well-known. Whatever the aggregate size, solutions containing exclusively protein aggregates lead to less stable foams than that of non aggregated proteins alone, due to the low capacity of aggregates to adsorb at the air/water interfaces. With non aggregated proteins, aggregates are able to improve the foaming properties. The viscoelasticity of the interfacial adsorbed layers is reinforced and a gel-like network is formed within the foam film, rigidifying the interface and slowing down the foam drainage. In the case of the gel-like network cannot be formed, protein aggregates can locate in the Plateau borders, slowing down the flow in the foam
Книги з теми "Lactosérum – Teneur en protéines"
Le compteur de glucides: Glucides assimilables, protéines et calories ainsi que des conseils pour réduire la teneur en glucides de son alimentation! Varennes, Québec: AdA, 2007.
Знайти повний текст джерелаPatrizia, Diemling, ed. Food combining cookbook: Over 70 fast, delicious and original food combining recipes. London: Lorenz, 1997.
Знайти повний текст джерела1925-, Ory Robert L., American Chemical Society. Division of Agricultural and Food Chemistry., and American Chemical Society Meeting, eds. Plant proteins: Applications, biological effects, and chemistry. Washington, DC: American Chemical Society, 1986.
Знайти повний текст джерелаEunice, Li-Chan, ed. Hydrophobic interactions in food systems. Boca Raton, Fla: CRC Press, 1988.
Знайти повний текст джерелаOry, Robert L. Plant Proteins: Applications, Biological Effects, and Chemistry (Acs Symposium Series). An American Chemical Society Publication, 1986.
Знайти повний текст джерелаNakai, Shuryo. Hydrophobic Interactions in Food Systems. Taylor & Francis Group, 2018.
Знайти повний текст джерелаNakai, Shuryo. Hydrophobic Interactions in Food Systems. Taylor & Francis Group, 2018.
Знайти повний текст джерелаHydrophobic Interactions in Food Systems. Taylor & Francis Group, 2017.
Знайти повний текст джерелаNakai, Shuryo. Hydrophobic Interactions in Food Systems. Taylor & Francis Group, 2018.
Знайти повний текст джерелаЧастини книг з теми "Lactosérum – Teneur en protéines"
Kratochvil, L., M. Kasýk, and K. Zadražil. "Les Possibilit’s D’Influencer la Teneur du Lait en Protéines par L’Alimentation." In MILK the vital force, 145. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3733-8_121.
Повний текст джерела