Добірка наукової літератури з теми "Lattice Boltzmann scheme"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Lattice Boltzmann scheme".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Lattice Boltzmann scheme"

1

Dubois, François, and Pierre Lallemand. "On Triangular Lattice Boltzmann Schemes for Scalar Problems." Communications in Computational Physics 13, no. 3 (2013): 649–70. http://dx.doi.org/10.4208/cicp.381011.270112s.

Повний текст джерела
Анотація:
AbstractWe propose to extend the d’Humieres version of the lattice Boltzmann scheme to triangular meshes. We use Bravais lattices or more general lattices with the property that the degree of each internal vertex is supposed to be constant. On such meshes, it is possible to define the lattice Boltzmann scheme as a discrete particle method, without need of finite volume formulation or Delaunay-Voronoi hypothesis for the lattice. We test this idea for the heat equation and perform an asymptotic analysis with the Taylor expansion method for two schemes named D2T4 and D2T7. The results show a conv
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xu, Kun, and Li-Shi Luo. "Connection Between Lattice-Boltzmann Equation and Beam Scheme." International Journal of Modern Physics C 09, no. 08 (1998): 1177–87. http://dx.doi.org/10.1142/s0129183198001072.

Повний текст джерела
Анотація:
In this paper we analyze and compare the lattice-Boltzmann equation with the beam scheme in detail. We notice the similarity and differences between the lattice Boltzmann equation and the beam scheme. We show that the accuracy of the lattice-Boltzmann equation is indeed second order in space. We discuss the advantages and limitations of the lattice-Boltzmann equation and the beam scheme. Based on our analysis, we propose an improved multi-dimensional beam scheme.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Venturi, Sara, Silvia Di Francesco, Martin Geier, and Piergiorgio Manciola. "Forcing for a Cascaded Lattice Boltzmann Shallow Water Model." Water 12, no. 2 (2020): 439. http://dx.doi.org/10.3390/w12020439.

Повний текст джерела
Анотація:
This work compares three forcing schemes for a recently introduced cascaded lattice Boltzmann shallow water model: a basic scheme, a second-order scheme, and a centred scheme. Although the force is applied in the streaming step of the lattice Boltzmann model, the acceleration is also considered in the transformation to central moments. The model performance is tested for one and two dimensional benchmarks.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gao, Shangwen, Chengbin Zhang, Yingjuan Zhang, Qiang Chen, Bo Li, and Suchen Wu. "Revisiting a class of modified pseudopotential lattice Boltzmann models for single-component multiphase flows." Physics of Fluids 34, no. 5 (2022): 057103. http://dx.doi.org/10.1063/5.0088246.

Повний текст джерела
Анотація:
Since its emergence, the pseudopotential lattice Boltzmann (LB) method has been regarded as a straightforward and practical approach for simulating single-component multiphase flows. However, its original form always results in a thermodynamic inconsistency, which, thus, impedes its further application. Several strategies for modifying the force term have been proposed to eliminate this limitation. In this study, four typical and widely used improved schemes—Li's single-relaxation-time (SRT) scheme [Li et al., “Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows,” Ph
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Qiu, Ruofan, Rongqian Chen, and Yancheng You. "An implicit-explicit finite-difference lattice Boltzmann subgrid method on nonuniform meshes." International Journal of Modern Physics C 28, no. 04 (2017): 1750045. http://dx.doi.org/10.1142/s0129183117500450.

Повний текст джерела
Анотація:
In this paper, an implicit-explicit finite-difference lattice Boltzmann method with subgrid model on nonuniform meshes is proposed. The implicit-explicit Runge–Kutta scheme, which has good convergence rate, is used for the time discretization and a mixed difference scheme, which combines the upwind scheme with the central scheme, is adopted for the space discretization. Meanwhile, the standard Smagorinsky subgrid model is incorporated into the finite-difference lattice Boltzmann scheme. The effects of implicit-explicit Runge–Kutta scheme and nonuniform meshes of present lattice Boltzmann metho
Стилі APA, Harvard, Vancouver, ISO та ін.
6

van der Sman, R. G. M., and M. H. Ernst. "Convection-Diffusion Lattice Boltzmann Scheme for Irregular Lattices." Journal of Computational Physics 160, no. 2 (2000): 766–82. http://dx.doi.org/10.1006/jcph.2000.6491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

LALLEMAND, PIERRE, and LI-SHI LUO. "HYBRID FINITE-DIFFERENCE THERMAL LATTICE BOLTZMANN EQUATION." International Journal of Modern Physics B 17, no. 01n02 (2003): 41–47. http://dx.doi.org/10.1142/s0217979203017060.

Повний текст джерела
Анотація:
We analyze the acoustic and thermal properties of athermal and thermal lattice Boltzmann equation (LBE) in 2D and show that the numerical instability in the thermal lattice Boltzmann equation (TLBE) is related to the algebraic coupling among different modes of the linearized evolution operator. We propose a hybrid finite-difference (FD) thermal lattice Boltzmann equation (TLBE). The hybrid FD-TLBE scheme is far superior over the existing thermal LBE schemes in terms of numerical stability. We point out that the lattice BGK equation is incompatible with the multiple relaxation time model.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wen, Mengke, Weidong Li, and Zhangyan Zhao. "A hybrid scheme coupling lattice Boltzmann method and finite-volume lattice Boltzmann method for steady incompressible flows." Physics of Fluids 34, no. 3 (2022): 037114. http://dx.doi.org/10.1063/5.0085370.

Повний текст джерела
Анотація:
We present a new hybrid method coupling the adaptive mesh refinement lattice Boltzmann method (AMRLBM) and the finite-volume lattice Boltzmann method (FVLBM) to improve both the simulation efficiency and adaptivity for steady incompressible flows with complex geometries. The present method makes use of the domain decomposition, in which the FVLBM sub-domain is applied to the region adjacent to the walls, and is coupled to the lattice Boltzmann method (LBM) sub-domain in the rest of the flow field to enhance the ability of the LBM to deal with irregular geometries without sacrificing the high e
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Van Der Sman, R. G. M. "Lattice-Boltzmann Scheme for Natural Convection in Porous Media." International Journal of Modern Physics C 08, no. 04 (1997): 879–88. http://dx.doi.org/10.1142/s0129183197000758.

Повний текст джерела
Анотація:
A lattice-Boltzmann scheme for natural convection in porous media is developed and applied to the heat transfer problem of a 1000 kg potato packaging. The scheme has features new to the field of LB schemes. It is mapped on a orthorhombic lattice instead of the traditional cubic lattice. Furthermore the boundary conditions are formulated with a single paradigm based upon the particle fluxes. Our scheme is well able to reproduce (1) the analytical solutions of simple model problems and (2) the results from cooling down experiments with potato packagings.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Liang, Zhaoli Guo, Baochang Shi, and Chuguang Zheng. "Evaluation of Three Lattice Boltzmann Models for Particulate Flows." Communications in Computational Physics 13, no. 4 (2013): 1151–72. http://dx.doi.org/10.4208/cicp.160911.200412a.

Повний текст джерела
Анотація:
AbstractA comparative study is conducted to evaluate three types of lattice Boltzmann equation (LBE) models for fluid flows with finite-sized particles, including the lattice Bhatnagar-Gross-Krook (BGK) model, the model proposed by Ladd [Ladd AJC, J. Fluid Mech., 271, 285-310 (1994); Ladd AJC, J. Fluid Mech., 271, 311-339 (1994)], and the multiple-relaxation-time (MRT) model. The sedimentation of a circular particle in a two-dimensional infinite channel under gravity is used as the first test problem. The numerical results of the three LBE schemes are compared with the theoretical results and
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Lattice Boltzmann scheme"

1

Karra, Satish. "Modeling electrospinning process and a numerical scheme using Lattice Boltzmann method to simulate viscoelastic fluid flows." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Späth, Peter. "Renewed Theory, Interfacing, and Visualization of Thermal Lattice Boltzmann Schemes." Doctoral thesis, Universitätsbibliothek Chemnitz, 2000. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000648.

Повний текст джерела
Анотація:
In this Doktorarbeit the Lattice Boltzmann scheme, a heuristic method for the simulation of flows in complicated boundaries, is investigated. Its theory is renewed by emphasizing the entropy maximization principle, and new means for the modelling of geometries (including moving boundaries) and the visual representation of evoluting flows are presented. An object oriented implemen- tation is given with communication between objects realized by an interpreter object and communication from outside realized via interprocess communica- tion. Within the new theoretical apprach the applicability of e
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Michelet, Jordan. "Extraction du fouillis de mer dans des images radar marin cohérent : modèles de champ de phases, méthodes de Boltzmann sur réseau, apprentissage." Electronic Thesis or Diss., La Rochelle, 2022. http://www.theses.fr/2022LAROS048.

Повний текст джерела
Анотація:
Nous nous intéressons au problème d’extraction du fouillis de mer dans des images radar marin. Le parti pris est de développer des méthodes de traitement d’image permettant de s’affranchir au mieux d’hypothèses sur la nature du fouillis de mer et du signal d’intérêt. D’une part, nous proposons un algorithme basé sur une approche variationnelle originale : un modèle multiphasique à interface diffuse. Les résultats obtenus montrent que l’algorithme est efficace lorsque le signal d’intérêt a un rapport signal-sur-fouillis suffisamment grand. D’autre part, nous nous intéressons à l’implémentation
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Uphoff, Sonja [Verfasser], and Manfred [Akademischer Betreuer] Krafczyk. "Development and Validation of turbulence models for Lattice Boltzmann schemes / Sonja Uphoff ; Betreuer: Manfred Krafczyk." Braunschweig : Technische Universität Braunschweig, 2013. http://d-nb.info/1175821896/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Février, Tony. "Extension et analyse des schémas de Boltzmann sur réseau : les schémas à vitesse relative." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112316/document.

Повний текст джерела
Анотація:
Cette thèse introduit et étudie une nouvelle classe de schémas de Boltzmann sur réseau appelés schémas à vitesse relative. Les schémas de Boltzmann sur réseau visent à approcher des problèmes de nature macroscopique en mimant la dynamique microscopique d’équations cinétiques du type Boltzmann. L’algorithme calcule des distributions de particules évoluant au travers de deux phases de transport et de relaxation, les particules se déplaçant en les noeuds d’un réseau cartésien en espace. Les schémas de Boltzmann à plusieurs temps de relaxation (ou schéma MRT de d’Humières), dont la relaxation im-
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jobic, Yann. "Numerical approach by kinetic methods of transport phenomena in heterogeneous media." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4723/document.

Повний текст джерела
Анотація:
Les phénomènes de transport en milieux poreux sont étudiés depuis près de deux siècles, cependant les travaux concernant les milieux fortement poreux sont encore relativement peu nombreux. Les modèles couramment utilisés pour les poreux classiques (lits de grains par exemple) sont peu applicables pour les milieux fortement poreux (les mousses par exemple), un certain nombre d’études ont été entreprises pour combler ce manque. Néanmoins, les résultats expérimentaux et numériques caractérisant les pertes de charge dans les mousses sont fortement dispersés. Du fait des progrès de l’imagerie 3D, u
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kotnala, Sourabh. "Lattice Boltzmann Relaxation Scheme for Compressible Flows." Thesis, 2012. http://etd.iisc.ac.in/handle/2005/3257.

Повний текст джерела
Анотація:
Lattice Boltzmann Method has been quite successful for incompressible flows. Its extension for compressible (especially supersonic and hypersonic) flows has attracted lot of attention in recent time. There have been some successful attempts but nearly all of them have either resulted in complex or expensive equilibrium function distributions or in extra energy levels. Thus, an efficient Lattice Boltzmann Method for compressible fluid flows is still a research idea worth pursuing for. In this thesis, a new Lattice Boltzmann Method has been developed for compressible flows, by using the concept
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kotnala, Sourabh. "Lattice Boltzmann Relaxation Scheme for Compressible Flows." Thesis, 2012. http://hdl.handle.net/2005/3257.

Повний текст джерела
Анотація:
Lattice Boltzmann Method has been quite successful for incompressible flows. Its extension for compressible (especially supersonic and hypersonic) flows has attracted lot of attention in recent time. There have been some successful attempts but nearly all of them have either resulted in complex or expensive equilibrium function distributions or in extra energy levels. Thus, an efficient Lattice Boltzmann Method for compressible fluid flows is still a research idea worth pursuing for. In this thesis, a new Lattice Boltzmann Method has been developed for compressible flows, by using the concept
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, Su-Yuan, and 陳司原. "Development of Semiclassical Lattice Boltzmann Method Using Multi Relaxation Time Scheme for Flow Field Simulation." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/99784384360484233614.

Повний текст джерела
Анотація:
碩士<br>國立臺灣大學<br>應用力學研究所<br>100<br>A Multi Relaxation Time Semiclassical Lattice Boltzmann Method based on the Uehling-Uhlenbeck Boltzmann-BGK equation (Uehling-Uhlenbeck Boltzmann Bhatnagar-Gross-Krook Equation)and Multi Relaxation Time Lattice Boltzmann Method(MRT-LBM)is presented. The method is directly derived by projecting the kinetic governing equation onto the tensor Hermite polynomials and various hydrodynamic approximation orders can be achieved. Simulations of the lid driven cavity flows based on D2Q9 lattice model for several Reynolds numbers and three different particles that obey B
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kuriščák, Pavel. "Simulace proudění nenewtonovských tekutin pomocí lattice Boltzmannovy metody." Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-313927.

Повний текст джерела
Анотація:
Title: Non-newtonian fluid flow simulation using lattice Boltzmann method Author: Bc. Pavel Kuriščák Department: Mathematical Institute, Charles University Supervisor: RNDr. Ing. Jaroslav Hron Ph.D. Supervisor's e-mail address: Jaroslav.Hron@mff.cuni.cz Abstract: The aim of this thesis is to find and estabilish a modification to the Lattice Boltzmann Method, allowing it to simulate non-newtonian behaviour of fluids. In the theoretical part of thesis, there is introduced a derivation, based on the work of [22], that is capable of arriving to macroscopical Navier-Stokes equa- tions completely a
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Lattice Boltzmann scheme"

1

Kun, Xu. Connection between the lattice Boltzmann equation and the beam scheme. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Succi, Sauro. Lattice Boltzmann Models for Microflows. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0029.

Повний текст джерела
Анотація:
The Lattice Boltzmann method was originally devised as a computational alternative for the simulation of macroscopic flows, as described by the Navier–Stokes equations of continuum mechanics. In many respects, this still is the main place where it belongs today. Yet, in the past decade, LB has made proof of a largely unanticipated versatility across a broad spectrum of scales, from fully developed turbulence, to microfluidics, all the way down to nanoscale flows. Even though no systematic analogue of the Chapman–Enskog asymptotics is available in this beyond-hydro region (no guarantee), the fa
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Succi, Sauro. Entropic Lattice Boltzmann. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0021.

Повний текст джерела
Анотація:
The LB with enhanced collisions opened the way to the top-down design of LB schemes, with major gains in flexibility and computational efficiency. However, compliance with the second principle was swept under the carpet in the process, with detrimental effects on the numerical stability of the method. It is quite fortunate that, albeit forgotten, the above compliance did not get lost in the top-down procedure. Entropic LB schemes, the object of the present chapter, explain the whys and hows of this nice smile of Lady Luck.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Succi, Sauro. Lattice Relaxation Schemes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0014.

Повний текст джерела
Анотація:
In Chapter 13, it was shown that the complexity of the LBE collision operator can be cut down dramatically by formulating discrete versions with prescribed local equilibria. In this chapter, the process is taken one step further by presenting a minimal formulation whereby the collision matrix is reduced to the identity, upfronted by a single relaxation parameter, fixing the viscosity of the lattice fluid. The idea is patterned after the celebrated Bhatnagar–Gross–Krook (BGK) model Boltzmann introduced in continuum kinetic theory as early as 1954. The second part of the chapter describes the co
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cantor, Brian. The Equations of Materials. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198851875.001.0001.

Повний текст джерела
Анотація:
This book describes some of the important equations of materials and the scientists who derived them. It is aimed at anyone interested in the manufacture, structure, properties and engineering application of materials such as metals, polymers, ceramics, semiconductors and composites. It is meant to be readable and enjoyable, a primer rather than a textbook, covering only a limited number of topics and not trying to be comprehensive. It is pitched at the level of a final year school student or a first year undergraduate who has been studying the physical sciences and is thinking of specialising
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Lattice Boltzmann scheme"

1

Vergassola, Massimo, R. Benzi, and S. Succi. "A Lattice Boltzmann Scheme for the Burger Equation." In Correlations and Connectivity. Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2157-3_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

van der Sman, R. G. M. "Lattice Boltzmann Scheme for Diffusion on Triangular Grids." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44860-8_111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Albuquerque, Paul, Davide Alemani, Bastien Chopard, and Pierre Leone. "Coupling a Lattice Boltzmann and a Finite Difference Scheme." In Computational Science - ICCS 2004. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-25944-2_70.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Derksen, J. J., J. L. Kooman, and H. E. A. van den Akker. "Parallel fluid flow simulations by means of a lattice-Boltzmann scheme." In High-Performance Computing and Networking. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0031625.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Tao, and Shuyu Sun. "A Compact and Efficient Lattice Boltzmann Scheme to Simulate Complex Thermal Fluid Flows." In Lecture Notes in Computer Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93713-7_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mohamad, A. A. "Multi-Relaxation Schemes." In Lattice Boltzmann Method. Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-455-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mohamad, A. A. "Multi-Relaxation Schemes." In Lattice Boltzmann Method. Springer London, 2019. http://dx.doi.org/10.1007/978-1-4471-7423-3_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bellotti, Thomas. "Monotonicity for Genuinely Multi-step Methods: Results and Issues From a Simple Lattice Boltzmann Scheme." In Springer Proceedings in Mathematics & Statistics. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40860-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dünweg, B., P. Ahlrichs, and R. Everaers. "Simulation of the Dynamics of Polymers in Solution via a Hybrid Molecular Dynamics-Lattice Boltzmann Scheme." In Springer Proceedings in Physics. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-59406-9_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Banda, Mapundi Kondwani. "Variants of Relaxation Schemes and the Lattice Boltzmann Model Relaxation Systems." In Numerical Mathematics and Advanced Applications. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18775-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Lattice Boltzmann scheme"

1

Seta, Takeshi, Kenichi Okui, and Eisyun Takegoshi. "Lattice Boltzmann Simulation of Nucleation." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45163.

Повний текст джерела
Анотація:
We propose a lattice Boltzmann model capable of simulating nucleation. This LBM modifies a pseudo-potential so that it recovers a full set of hydrodynamic equations for two-phase flows based on the van der Waals-Cahn-Hilliard free energy theory through the Chapman-Enskog expansion procedure. Numerical measurements of thermal conductivity and of surface tension agree well with theoretical predictions. Simulations of phase transition, nucleation, pool boiling are carried out. They demonstrate that the model is applicable to two-phase flows with thermal effects. Using finite difference Lattice Bo
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hsu, C. T., S. W. Chiang, and K. F. Sin. "A Novel Dynamics Lattice Boltzmann Method for Gas Flows." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31237.

Повний текст джерела
Анотація:
The lattice Boltzmann method (LBM), where discrete velocities are specifically assigned to ensure that a particle leaves one lattice node always resides on another lattice node, has been developed for decades as a powerful numerical tool to solve the Boltzmann equation for gas flows. The efficient implementation of LBM requires that the discrete velocities be isotropic and that the lattice nodes be homogeneous. These requirements restrict the applications of the currently-used LBM schemes to incompressible and isothermal flows. Such restrictions defy the original physics of Boltzmann equation.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kamali, R., and A. H. Tabatabaee Frad. "Simulation of Hypersonic Viscous Flow Past a 2D Circular Cylinder Using Lattice Boltzmann Method." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30482.

Повний текст джерела
Анотація:
It is known that the Lattice Boltzmann Method is not very effective when it is being used for the high speed compressible viscous flows; especially complex fluid flows around bodies. Different reasons have been reported for this unsuccessfulness; Lacking in required isotropy in the employed lattices and the restriction of having low Mach number in Taylor expansion of the Maxwell Boltzmann distribution as the equilibrium distribution function, might be mentioned as the most important ones. In present study, a new numerical method based on Li et al. scheme is introduced which enables the Lattice
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ubertini, Stefano. "Computational Fluid Dynamics Through an Unstructured Lattice Boltzmann Scheme." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41194.

Повний текст джерела
Анотація:
Computational fluid dynamics, in its conventional meaning, computes pertinent flow fields in terms of velocity, density, pressure and temperature by numerically solving the Navier-Stokes equations in time and space. At the turn of the 1980s, the Lattice Boltzmann Method (LBM) has been proposed as an alternative approach to solve fluid dynamics problems and due to the refinements and the extensions of the last years, it has been used to successfully compute a number of nontrivial fluid dynamics problems, from incompressible turbulence to multiphase flow and bubble flow simulations. The most sev
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kravets, Bogdan, Muhammad S. Khan, and Harald Kruggel-Emden. "Development and application of a thermal lattice Boltzmann scheme." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912623.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fu, S. C., W. W. F. Leung, and R. M. C. So. "A Lattice Boltzmann Method Based Numerical Scheme for Microchannel Flows." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67654.

Повний текст джерела
Анотація:
Lattice Boltzmann method (LBM) has been recently developed into an alternative and promising numerical scheme for modeling fluid physics and fluid flows. The equation is hyperbolic and can be solved locally, explicitly, and efficiently on parallel computers. LBM has been applied to different types of complex flows with varying degree of success, but rarely to micro-scale flow. Due to its small scale, micro-channel flow exhibits many interesting phenomena that are not observed in its macro-scale counterpart. It is known that the Navier-Stokes equations can still be used to treat micro-channel f
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ma, Yu, Yahui Wang, Kuilong Song, and Qian Sun. "Adaptive Mesh Refinement for Neutron Transfer With Lattice Boltzmann Scheme." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66093.

Повний текст джерела
Анотація:
This paper presents a novel lattice Boltzmann (LB) model for neutron transfer and a block-structured adaptive-mesh-refinement (SAMR) technique for proposed LB model. By discretizing the general Boltzmann equation, the LB model for neutron transfer is established and the corresponding parameters are obtained. The SAMR technique removes the requirement of tree-type data structure in traditional adaptive-mesh-refinement technique and adjusts the time step adaptively and identically in all blocks. By applying the node-type distribution function, the needs for rescaling the distribution functions i
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ye Zhao. "GPU-accelerated surface denoising and morphing with lattice Boltzmann scheme." In 2008 IEEE International Conference on Shape Modeling and Applications (SMI). IEEE, 2008. http://dx.doi.org/10.1109/smi.2008.4547942.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sun, Xiuyu, Zhiqiang Wang, and George Chen. "Parallel active contour with Lattice Boltzmann scheme on modern GPU." In 2012 19th IEEE International Conference on Image Processing (ICIP 2012). IEEE, 2012. http://dx.doi.org/10.1109/icip.2012.6467208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mikheev, Sergei A., and Gerasim V. Krivovichev. "Numerical analysis of two-step finite-difference-based lattice Boltzmann scheme." In 2014 International Conference on Computer Technologies in Physical and Engineering Applications (ICCTPEA). IEEE, 2014. http://dx.doi.org/10.1109/icctpea.2014.6893313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!