Добірка наукової літератури з теми "Le métabolisme des lipides"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Le métabolisme des lipides".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Le métabolisme des lipides"
Damiri, L., M. Alaoui Mhamdi, and J. Bahhou. "Dynamique des populations microphytobenthiques couplée à leur composition biochimique au sein du réservoir Allal El Fassi (Maroc)." Revue des sciences de l'eau 15, no. 1 (April 12, 2005): 101–9. http://dx.doi.org/10.7202/705439ar.
Повний текст джерелаLagarde, M. "Métabolisme des lipides bio-actifs." Pathologie Biologie 51, no. 5 (July 2003): 241–43. http://dx.doi.org/10.1016/s0369-8114(03)00076-2.
Повний текст джерелаLavaud, J. J. "Influence de la conservation au froid des sarments de Vitis vinifera L. var. ugni blanc sur les constituants lipidiques des boutures au cours de la rhizogénèse." OENO One 23, no. 2 (June 30, 1989): 67. http://dx.doi.org/10.20870/oeno-one.1989.23.2.1239.
Повний текст джерелаDelseny, Michel, Lionel Verdoucq, Sylvie Maisonneuve, and Thomas Roscoe. "GENOMIQUE ET LIPIDES Génomique et métabolisme des lipides des plantes." Oléagineux, Corps gras, Lipides 9, no. 2 (March 2002): 130–34. http://dx.doi.org/10.1051/ocl.2002.0130.
Повний текст джерелаRolland-Cachera, Marie Françoise. "Apports lipidiques pendant la période périnatale ; relation avec l’obésité de l’enfant et du futur adulte." OCL 25, no. 3 (March 21, 2018): D307. http://dx.doi.org/10.1051/ocl/2018017.
Повний текст джерелаMorise, A., P. Weill, E. Fénart, and D. Hermier. "Métabolisme intestinal des lipides : influence du sexe." Cahiers de Nutrition et de Diététique 39, no. 1 (February 2004): 78. http://dx.doi.org/10.1016/s0007-9960(04)94418-5.
Повний текст джерелаPréau, Sébastien, Alexandre Pierre, Raphael Favory, Benoit Brassart, Arthur Durand, Claire Bourel, and Steve Lancel. "Dysfonction énergétique au cours du sepsis." Médecine Intensive Réanimation 33, no. 1 (March 29, 2024): 29–46. http://dx.doi.org/10.37051/mir-00200.
Повний текст джерелаHOCQUETTE, J. F., I. ORTIGUES-MARTY, M. DAMON, P. HERPIN, and Y. GEAY. "Métabolisme énergétique des muscles squelettiques chez les animaux producteurs de viande." INRAE Productions Animales 13, no. 3 (June 18, 2000): 185–200. http://dx.doi.org/10.20870/productions-animales.2000.13.3.3780.
Повний текст джерелаGautier, T., D. Masson, and L. Lagrost. "Métabolisme des lipides et des lipoprotéines chez l'homme." EMC - Endocrinologie - Nutrition 7, no. 2 (January 2010): 1–16. http://dx.doi.org/10.1016/s1155-1941(10)51260-5.
Повний текст джерелаBeliard, S., B. Cariou, T. Gautier, E. Nobecourt, and R. Valero. "Métabolisme des lipides et des lipoprotéines chez l’homme." EMC - Endocrinologie - Nutrition 30, no. 4 (September 2019): 1–21. https://doi.org/10.1016/s1155-1941(19)84692-9.
Повний текст джерелаДисертації з теми "Le métabolisme des lipides"
Mateos, Diaz Eduardo. "Etude par spectroscopie infrarouge (FTIR) des interactions de la lipase pancréatique apparentée de type 2 (PLRP2) avec les phospholipides et les sels biliaires." Electronic Thesis or Diss., Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4763.
Повний текст джерелаGuinea pig pancreatic lipase-related protein type 2 (GPLRP2) hydrolyzes a large set of lipid substrates, but displays however some selectivity depending on the supramolecular structure of substrate and the presence of surfactants like bile salts (NaTDC). We used Fourier transform infrared (FTIR) spectroscopy to study the interactions between phospholipids (DPPC), surfactants and GPLRP2 under conditions close to those of the GI tract. To study the adsorption step independently from hydrolysis, a GPLRP2 inactive variant (S152G) was produced. Various phospholipid dispersions were prepared: multilamellar (MLV) and large unilamellar vesicles (LUV) and mixed micelles with surfactants. GPLRP2 was found to hydrolyze DPPC present in mixed DPPC-NaTDC micelles but was inactive on DPPC vesicles and DPPC-Triton X100 micelles. FTIR analysis of GPLRP2 S152G interaction with the DPPC-NaTDC system showed a decrease in the conformational disorder and mobility of the acyl chains, a dehydratation of the interface, and changes in the orientation and H-bonding of DPPC polar head-groups. These effects were not observed with MLV, LUV and DPPC-Triton X100 micelles, thus indicating a specific recognition of DPPC in mixed phospholipid-bile salt micelles, in agreement with phospholipase activity measurements. Changes in the IR spectra during DPPC hydrolysis by GPLRP2 were monitored. Specific spectral features were associated to the production of lipolysis products and could be used for quantifying phospholipid lipolysis by FTIR
Duez, Hélène. "Rôle des récepteurs nucléaires PPARα et Rev-erbα dans le métabolisme des lipides et lipoprotéines, et le développement de l'athérosclérose". Lille 2, 2003. http://www.theses.fr/2003LIL2P007.
Повний текст джерелаSalomon, Sarah. "Rôle des bétaine lipides dans l'adaptation à la carence en phosphate chez les algues et les plantes." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALV026.
Повний текст джерелаDuring evolution, organisms have developed different strategies to adapt to environmental stresses. Nutrient scarcity is a significant stress that can lead to substantial metabolic changes. Phosphorus is an essential nutrient for growth, it is assimilated as inorganic phosphate (Pi) and is often found to be limiting in ecosystems. In plants, phosphate deficiency greatly affects growth and induces massive membrane lipid remodeling to mobilize intracellular Pi reserves. A significant portion of intracellular Pi is stored in a particular class of glycerolipids called phospholipids (PL), which are the major components of extraplastidial membranes. Under deficiency conditions, PLs are degraded to provide new Pi sources to the cell. The degraded PLs are then replaced by non-phosphorus lipids to maintain membrane structure and integrity. However, this lipid remodeling is limited and only recycles a portion of the membrane PLs. Nutrient deficiency adaptation mechanisms are also present in microalgae, a highly diversified group of unicellular photosynthetic organisms. In these organisms, the response to Pi deficiency involves another class of non-phosphorus glycerolipids called betaine lipids (BL). BLs can completely replace the degraded PLs during Pi deficiency in certain species, such as the microalga Phaeodactylum tricornutum, representing a particularly efficient adaptive process. Throughout evolution, BL synthesis has gradually diminished and was definitively lost in seed plants, raising questions about the reasons for their disappearance. This project focuses on the study and comparison of lipid remodeling during Pi deficiency in two photosynthetic organisms: microalgae and terrestrial plants.The first objective was to generate BL-producing plants to study the impact of their production on their phenotype and their tolerance to Pi deficiency. Stable transformations of Arabidopsis thaliana were performed with the BTA1 gene encoding the enzyme responsible for DGTS synthesis, the best-known and studied BL species. The BTA1 gene from the microalga Microchloropsis gaditana was used, resulting in low DGTS production in the transformed A. thaliana plants. No major phenotypic impact was observed, but when the enzyme was transiently expressed in the leaves of the plant Nicotiana benthamiana, DGTS production was massive, representing approximately 20% of total glycerolipids. In this model, DGTS appears to accumulate in a proliferation of endoplasmic reticulum membranes, suggesting that it fulfills the same structural role as PLs. The second objective of this project was to study the impact of the absence of another BL species, DGTA, in P. tricornutum. Knockout mutants for the BTA1 gene were generated and analyzed. The results provided several interesting insights into the DGTA synthesis pathway and its importance in the algal response to Pi deficiency. Although DGTS is not detected in P. tricornutum, it acts as an intermediate in DGTA synthesis. DGTA was also found to be essential for maintaining the growth of P. tricornutum under Pi deficiency conditions and in the process of PLs degradation under this condition. Further research is needed to expand the study of BLs to other organisms
Tempesta, Marie-Caroline. "Enzymologie des arylsulfatases lysosomiques et non lysosomiques. Métabolisme des sulfolipides dans les cellules en culture." Toulouse 3, 1993. http://www.theses.fr/1993TOU30163.
Повний текст джерелаTroufflard, Stéphanie. "Etude du métabolisme carboné dans l'embryon de lin oléagineux lors de l'accumulation des réserves lipidiques." Amiens, 2004. http://www.theses.fr/2004AMIE0419.
Повний текст джерелаAbida, Heni. "Characterization of lipid metabolism in the marine diatom Phaeodactylum tricornutum." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS231.
Повний текст джерелаThe ocean dominates the surface of our planet and plays a major role in regulating the biosphere. For example, the microscopic photosynthetic organisms living in the ocean provide 50% of the oxygen we breathe every year, and much of our food and mineral resources are extracted from the ocean. In a time of ecological crisis linked to the accumulation of anthropogenic greenhouse gases in the atmosphere, we must investigate more sustainable energies than fossil fuels. Much attention has been given to biodiesel but so far most efforts to efficiently produce triacylglycerols in microalgae have focused on green algae. In this thesis I propose approaches to better understand another type of microalgae that is significantly divergent from green lineages: diatoms. Diatoms are a major phylum of phytoplankton in the ocean and account for 40% of marine primary productivity. While diatoms appear to be at least as effective as green algae for producing lipids, the fatty acid and glycerolipid biosynthetic pathways leading to their production have not yet been well characterized. Therefore, I propose to better characterize these pathways in the model diatom Phaeodactylum tricornutum in order to help unlock the potential of diatoms for lipid-based biotechnological applications.In this thesis, I discuss our attempts to establish a reference for the glycerolipidome of P. tricornutum and of our assessment of the lipid remodeling and accumulation that occurs in response to nitrogen- and phosphorus-starvation. A range of accessions of P. tricornutum isolated from different parts of the ocean were also examined to compare their responses to nutrient deprivation. We found that the metabolic response leading to lipid accumulation in different nutrient-deprived conditions are distinct. Nitrogen-deprivation appears to trigger the recycling of chloroplastic galactoglycerolipids as well as a strong increase in de novo fatty acid synthesis while the response to phosphorus-deprivation was more severe as we observed a higher triacylglycerol pool and the complete depletion of phospholipids. Furthermore, we observed several differences among accessions of P. tricornutum regarding their ability to accumulate triacylglycerol in response to nutrient starvation and propose the hypothesis that these differences are linked to their ability to recycle intracellular carbon from non-lipid storage molecules.Genome-enabled approaches have also allowed significant steps towards elucidating the lipid metabolism of microalgae in the past decade, but our understanding of diatom metabolic pathways is still limited compared to that of other microalgae and higher plants. There have been several attempts to characterize the stress response in P. tricornutum by using transcriptomic approaches but this data is difficult to exploit to its full potential without a better annotation of genes encoding the relevant pathways. Therefore, in this thesis I discuss our attempts to annotate P. tricornutum lipid metabolism genes. Based on this annotation I have attempted to better characterize a selection of genes by genetic engineering and have pursued a comparative study of several published transcriptomes of P. tricornutum in nutrient deprived conditions to produce a list of candidate genes likely to be involved in triacylglycerol accumulation. Finally, we used this data to help interpret genome and transcriptome data of the newly sequenced oleaginous diatom Fistulifera solaris to help understand how it accumulates unusually high amounts of triacylglycerol for applications in the biotechnology and bioenergy industry
Broccardo, Cyril. "Etude de la sous-classe ABCA de la famille des transporteurs ABC : Analyse génomique et inactivation fonctionnelle du gène ABC-1." Aix-Marseille 2, 2000. http://www.theses.fr/2000AIX22011.
Повний текст джерелаLauressergues, Emilie. "Antipsychotiques et métabolisme hépatique des lipides et du cholestérol." Lille 2, 2010. http://www.theses.fr/2010LIL2S020.
Повний текст джерелаSchizophrenia is a psychiatric disorder that heavily impacts the mental functions and social relations of the patients concerned. More than 1 % of the world population suffers from this disease that is characterized by different kinds of symptoms which are commonly subclassified as either positive (hallucinations, illusions) or negative (loss of affect and motivation, social withdrawal). These symptoms can be controlled by treatment with antipsychotic drugs (APDs) which act primarily through the modulation of dopamine and serotonin receptors. Unfortunately, some of these drugs induce important metabolic side effects such as weight gain (as much as 10 kg the first year with clozapine for example), dyslipemia, alterations of glucose homeostasis and development of diabetes. The consequences of these disturbances are treatment disruption and an increase of cardiovascular risks which contributes to a death rate twice as high for schizophrenic patients versus the general population, associated with a reduction in the average life expectancy by 10 years. The mechanisms underlying the side effects by APDs are not completely understood. At the level of the central nervous system (CNS), actions on serotoninergic, dopaminergic or histaminergic receptors are believed to be implicated in metabolic side effects (particularly by modifying appetite or energy homeostasis). In the periphery, certain APDs perturb essential physiological functions such as insulin secretion by pancreatic b cells, glucose transport into skeletal muscle and lipogenesis at the adipose tissue level, as well as physiological parameters like the sensitivity of various tissues to insulin. Althoug the liver is an essential organ for maintaining the nutrients homeostasis, few studies show an interest for the direct impact of these molecules on this tissue. The main goal of this thesis is to characterise the impact of APDs on hepatic lipid and cholesterol metabolism using various markers from appropriate hepatocyte cellular models, such as de novo synthesis of lipids and cholesterol, the quantification of the mature transcription factors SREBP-1 and -2 (sterol regulatory element binding protein) as well as the evaluation of the expression of several genes of interest. In the first part, we selected hepatocyte cellular models (cells isolated from rat liver and the human IHH cell line) and showed their relevance for the study of the “potential adverse effects” of different compounds on lipid and cholesterol metabolism. For this, the physiological and sensitive character of these cultures was shown through their response to nutritional (or hormonal) changes and to pharmacological treatments. In the second part, we highlighted three profiles of APD molecules :-molecules strongly inducting de novo lipogenesis and cholesterogenesis (clozapine, olanzapine, risperidone and NDMC), -molecules with more moderate effects (haloperidol and paliperidone), -molecules with little or no effect(s) (aripiprazole, quetiapine, bifeprunox and chlorpromazine). Induction of de novo lipogenesis and cholesterogenesis by certain APDs is associated to the stimulation of the SREBP pathway (transcription factors and SREBP target genes) and correlate relatively well with the metabolic disturbances of schizophrenia patients under APD treatment. We therefore suggest that certain unfavourable effects of these APD molecules are due to a direct action on the liver. Furthermore we stated that those APDs that present the most unfavourable profiles in our in vitro models, activate the PERK pathway (protein kinase RNA-like ER kinase) of the UPR (unfolding protein response), illustrating the presence of endoplasmic reticulum (ER) stress. However, the ER stress is known to activate the SREBP pathways and to cause, in chronic, diseases such as steatosis, dyslipidemia and diabetes. This discovery opens new perspectives regarding the research for the action mechanisms of these molecules. More precisely, in our human hepatocyte model we show that the treatment with thapsigargine (inductive of ER stress by calcium depletion) stimulates the SREBP pathways. Whereas no detectable modification of the cytosolic calcium concentrations was observed following APD treatment, the use of calcium chelating agents reverses the effects of clozapine on the SREBP-1 and -2 pathways. We therefore presume that clozapine, by disturbing calcium homeostasis, generates ER stress which would activate the SREBPs pathways and lipogenesis and cholesterogenesis in consequence. To corroborate these findings, two experimental studies in rat and mouse were conducted that support our in vitro results. In the rat, a study employing acute drug administration confirms that clozapine, olanzapine and risperidone, at an early stage (1h, 3h), cause transcriptional deregulations of hepatic lipogenic, cholesterogenic and UPR genes. In the mouse, a study with chronic administration of risperidone indicates significant inductions of weight gain in relation to the activation of the SREBP-1c pathway and of FAS (fatty acid synthase). Altogether these data suggest that independent of their specific effects at the CNS level, APDs can modulate hepatic lipid metabolism. In conclusion, rat primary hepatocyte cultures and IHH cells are models of interest for the detection of potential unfavourable effects of molecules on hepatic lipid and cholesterol metabolism. Moreover, the SREBP pathways (proteins and target genes associated) are appropriate indicators of cellular metabolic disturbances and thus can be considered as pertinent markers of the respective processes. These models could therefore be integrated in the research process and in the selection of new chemical compounds destined to become APDs. With respect to the clinic, our results support the strategy to associate hypolipemic or hypocholesterolemic (statines) treatments to patients treated with clozapine, olanzapine and risperidone
Yonkeu, Jeanne. "Métabolisme des lipides erythrocytaires dans l'anémie à hématies falciformes." Tours, 1986. http://www.theses.fr/1986TOUR3301.
Повний текст джерелаSentex, Emmanuelle. "Régulation du métabolisme des lipides cardiaques par la trimétazidine." Dijon, 1997. http://www.theses.fr/1997DIJOS049.
Повний текст джерелаКниги з теми "Le métabolisme des lipides"
Nicolaou, Anna, and George Kokotos. Bioactive lipids. Bridgwater: The Oily Press, 2004.
Знайти повний текст джерелаVance, Dennis E. Biochemistry of lipids, lipoproteins and membranes. 5th ed. Amsterdam: Elsevier, 2008.
Знайти повний текст джерелаD, Feng Li Ph, and Prestwich Glenn D, eds. Functional lipidomics. Boca Raton: Taylor & Francis, 2006.
Знайти повний текст джерела1944-, Grimaldi André, ed. Dyslipidémie et athérogenèse. Paris: Elsevier, 2004.
Знайти повний текст джерелаAlvin, Berger, and Roberts Matthew A, eds. Unraveling lipid metabolism with microarrays. New York: Marcel Dekker, 2005.
Знайти повний текст джерелаJ, Packard Christopher, and Rader Daniel John, eds. Lipids and atherosclerosis. London: Taylor & Francis, 2006.
Знайти повний текст джерелаJ, Moffatt Robert, and Stamford Bryant A, eds. Lipid metabolism and health. Boca Raton, FL: CRC Press, 2005.
Знайти повний текст джерелаNATO Advanced Research Workshop on Action of Free Radicals and Active Forms of Oxygen on Lipoproteins and Membrane Lipids: Cellular Interactions and Atherogenesis (1988 Bandol, France). Free radicals, lipoproteins, and membrane lipids. New York: Plenum Press, 1990.
Знайти повний текст джерелаH, Gelb Michael, ed. Protein lipidation protocols. Totowa, N.J: Humana Press, 1999.
Знайти повний текст джерелаC, Bucharles, and Centre de documentation internationale des industries utilisatrices de produits agricoles., eds. Les Lipides animaux dans la filière viande. Paris: Edition APRIA, 1985.
Знайти повний текст джерелаЧастини книг з теми "Le métabolisme des lipides"
Kleinzeller, A. "Synthesis of Lipides." In Advances in Enzymology - and Related Areas of Molecular Biology, 299–341. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470122532.ch7.
Повний текст джерелаBruder, N., L. Velly, and E. Cantais. "Métabolisme et fonctions cérébrales." In Désordres métaboliques et réanimation, 287–304. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-287-99027-4_14.
Повний текст джерелаOrban, J. C., C. Ichai, and X. Leverve. "Lactate: métabolisme et physiopathologie." In Désordres métaboliques et réanimation, 181–98. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-287-99027-4_8.
Повний текст джерелаBataille, A., and L. Jacob. "Métabolisme et fonctions rénales." In Désordres métaboliques et réanimation, 201–14. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-287-99027-4_9.
Повний текст джерелаDe Lonlay, Pascale, Sandrine Dubois, Vassili Valayannopoulos, Eliane Depondt, Chris Ottolenghi, and Daniel Rabier. "Classification des maladies héréditaires du métabolisme." In Prise en charge médicale et diététique des maladies héréditaires du métabolisme, 1–14. Paris: Springer Paris, 2013. http://dx.doi.org/10.1007/978-2-8178-0046-2_1.
Повний текст джерелаCatizone, Luigi. "Notions sur le métabolisme hydro-électrolytique." In Guide de la dialyse, 13–14. Paris: Springer Paris, 1999. http://dx.doi.org/10.1007/978-2-8178-0768-3_3.
Повний текст джерелаBoirie, Y., C. Guillet, and S. Walrand. "Métabolisme protéique chez la personne âgée." In Traité de nutrition de la personne âgée, 11–16. Paris: Springer Paris, 2009. http://dx.doi.org/10.1007/978-2-287-98117-3_2.
Повний текст джерелаDe Lonlay, Pascale, Sandrine Dubois, Vassili Valayannopoulos, Eliane Depondt, Chris Ottolenghi, and Daniel Rabier. "Anomalies du métabolisme des purines et pyrimidines." In Prise en charge médicale et diététique des maladies héréditaires du métabolisme, 373–76. Paris: Springer Paris, 2013. http://dx.doi.org/10.1007/978-2-8178-0046-2_29.
Повний текст джерелаDelarue, J. "Métabolisme glucido-lipidique chez la personne âgée." In Traité de nutrition de la personne âgée, 17–21. Paris: Springer Paris, 2009. http://dx.doi.org/10.1007/978-2-287-98117-3_3.
Повний текст джерелаQuintard, H., E. Fontaine, C. Ichai, and X. Leverve. "Métabolisme énergétique: de l’organisme á la cellule." In Désordres métaboliques et réanimation, 439–52. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-287-99027-4_23.
Повний текст джерелаТези доповідей конференцій з теми "Le métabolisme des lipides"
Baratova, N. G., Z. B. Davlyatnazarova, I. Abdulsamat, N. Kh Norkulov, I. S. Kasparova, and K. Aliev. "LIPIDES PEROXIDATION OF IPOMOEA BATATAS PLANTS UNDER SALINITY." In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-106-108.
Повний текст джерела