Добірка наукової літератури з теми "Leukemia inhibitory factor"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Leukemia inhibitory factor".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Leukemia inhibitory factor":

1

Nicola, Nicos A., and Jeffrey J. Babon. "Leukemia inhibitory factor (LIF)." Cytokine & Growth Factor Reviews 26, no. 5 (October 2015): 533–44. http://dx.doi.org/10.1016/j.cytogfr.2015.07.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Metcalf, Donald. "The leukemia inhibitory factor (LIF)." International Journal of Cell Cloning 9, no. 2 (1991): 95–108. http://dx.doi.org/10.1002/stem.5530090201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vanchieri, C. "Leukemia Inhibitory Factor Has Multiple Personalities." JNCI Journal of the National Cancer Institute 86, no. 4 (February 16, 1994): 262. http://dx.doi.org/10.1093/jnci/86.4.262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hinds, Mark G., Till Maurer, Jian-Guo Zhang, Nicos A. Nicola, and Raymond S. Norton. "Solution Structure of Leukemia Inhibitory Factor." Journal of Biological Chemistry 273, no. 22 (May 29, 1998): 13738–45. http://dx.doi.org/10.1074/jbc.273.22.13738.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Senturk, Levent M., and Aydin Arici. "Leukemia Inhibitory Factor in Human Reproduction." American Journal of Reproductive Immunology 39, no. 2 (February 1998): 144–51. http://dx.doi.org/10.1111/j.1600-0897.1998.tb00346.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

RAY, DAVID W., SONG-GUANG REN, and SHLOMO MELMED. "Leukemia Inhibitory Factor Regulates Proopiomelanocortin Transcriptiona." Annals of the New York Academy of Sciences 840, no. 1 (May 1998): 162–73. http://dx.doi.org/10.1111/j.1749-6632.1998.tb09560.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lass, Amir, Weishui Weiser, Alain Munafo, and Ernest Loumaye. "Leukemia inhibitory factor in human reproduction." Fertility and Sterility 76, no. 6 (December 2001): 1091–96. http://dx.doi.org/10.1016/s0015-0282(01)02878-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hilton, Douglas J., and Nicholas M. Gough. "Leukemia inhibitory factor: A biological perspective." Journal of Cellular Biochemistry 46, no. 1 (May 1991): 21–26. http://dx.doi.org/10.1002/jcb.240460105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pepper, M. S., N. Ferrara, L. Orci, and R. Montesano. "Leukemia inhibitory factor (LIF) inhibits angiogenesis in vitro." Journal of Cell Science 108, no. 1 (January 1, 1995): 73–83. http://dx.doi.org/10.1242/jcs.108.1.73.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Using an in vitro model in which endothelial cells can be induced to invade a three-dimensional collagen gel to form capillary-like tubular structures, we demonstrate that leukemia inhibitory factor (LIF) inhibits angiogenesis in vitro. The inhibitory effect was observed on both bovine aortic endothelial (BAE) and bovine microvascular endothelial (BME) cell, and occurred irrespective of the angiogenic stimulus, which included basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), the synergistic effect of the two in combination, or the tumor promoter phorbol myristate acetate. LIF inhibited bFGF- and VEGF-induced proliferation in BAE and BME cells. In addition, LIF inhibited BAE but not BME cell migration in a conventional two-dimensional assay. Finally, LIF decreased the proteolytic activity of BAE and BME cells and increased their expression of plasminogen activator inhibitor-1. These results demonstrate that LIF inhibits angiogenesis in vitro, an effect that can be correlated with a LIF-mediated decrease in endothelial cell proliferation, migration and extracellular proteolysis.
10

Hanington, Patrick C., Shunmoogum A. Patten, Laura M. Reaume, Andrew J. Waskiewicz, Miodrag Belosevic, and Declan W. Ali. "Analysis of leukemia inhibitory factor and leukemia inhibitory factor receptor in embryonic and adult zebrafish (Danio rerio)." Developmental Biology 314, no. 2 (February 2008): 250–60. http://dx.doi.org/10.1016/j.ydbio.2007.10.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Leukemia inhibitory factor":

1

Voyle, Roger Bruce. "Mechanisms of intracellular and extracellular cytokine production from the human leukaemia inhibitory factor gene." Title page, contents and summary only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phv975.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Addendum attached to back facing leaves. Includes bibliographical references (leaves 172-199). The findings establish leukemia inhibitory factor, and possibly oncostatin M, as new members of a small but growing class of cytokines produced in an intracellularly active form and also suggest that the production of alternate transcripts and intercellularly-retained proteins may be a common and important feature of cytokines of the IL-6 and other families.
2

Haines, Bryan Peter. "Alternate transcription and translation of the LIF gene produces a novel intracellular protein /." Title page, contents and summary only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phh1518.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Xiyuan. "The expression of human leukemia inhibitory factor in Pichia pastoris." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Background: Leukemia inhibitory factor (LIF) is an interleukin 6 class cytokine that inhibits cell differentiation during cell development. LIF is widely used as an important component in stem cell culture medium for cell therapy and tissue engineering applications, to inhibit spontaneous cell differentiation. However, commercially available recombinant LIF proteins are expensive, unstable, and prone to degradation in prolonged tissue culture, which has limited its applications. Purpose: We aim to develop a lab-scale method, using a yeast cell, namely, P. pastoris, to produce recombinant hLIF (rhLIF), with novel recombinant protein expression techniques. Methods: We first designed the structure of plasmid and generated the plasmid using the service of an external supplier. The plasmid was amplified in E. coli using a heat shock method. The amplified plasmid was then linearized and transcribed in the P. pastoris. Methanol was used in the medium to induce the expression of rhLIF in P. pastoris. The resultant rhLIF was tested verified by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) Results: The plasmids were successfully amplified in E. coli. The generation of rhLIF in P. pastoris was verified by the SDS-PAGE results. To our knowledge, it is the first study to express rhLIF using lower eukaryotic yeast. Future direction: In the future studies, we will study the glycosylation sites of rhLIF using liquid chromatography–mass spectrometry (LC–MS). In addition, the function and stability of the rhLIF will be compared with commercial products.
4

Hsu, Li-Wei. "Structure and expression of murine leukemia inhibitory factor (LIF) gene." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334839.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Davis, Stephanie. "Leukemia Inhibitory Factor as a Neuroprotective Agent against Focal Cerebral Ischemia." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Previous publications from this laboratory demonstrated that administration of leukemia inhibitory factor (LIF) (125 µg/kg) to young, male Sprague-Dawley rats at 6, 24, and 48 h after middle cerebral artery occlusion (MCAO) reduced infract volume, improved sensimotor skills, and alleviated damage to white matter at 72 h after the injury. In vitro studies using cultured oligodendrocytes (OLs) showed that LIF (200 ng/ml) also protects against 24 h of oxygen-glucose deprivation through activation of Akt signaling and upregulation of the antioxidant enzymes peroxiredoxin IV and metallothionein III. Other groups have demonstrated that LIF reduces neurodegeneration in animal models of disease, but the neuroprotective mechanisms of LIF during permanent ischemia have not yet been examined. The overall hypothesis to be tested in this project is whether LIF exerts similar protective mechanisms against neurons during ischemia through increased antioxidant enzyme expression in neurons. In the first set of experiments, superoxide dismutase (SOD) activity was significantly increased in the ipsilateral hemisphere of LIF-treated rats compared to rats that received PBS treatment at 72 h after MCAO. Western blot and immunohistochemical analysis revealed that SOD3 was upregulated in brain tissue and induced specifically in cortical neurons tissue at this time point. Neurons that expressed high levels of SOD3 at 72 h after MCAO also showed high levels of phosphorylated Akt (Ser473). LIF (200 ng/ml) reduced necrotic and apoptotic cell death against 24 h of OGD as measured by lactate dehydrogenase (LDH) release and caspase-3 activation. Quantitative real-time PCR analysis showed that LIF treatment upregulated SOD3 gene expression in vitro during OGD. Treatment with 10 µM Akt Inhibitor IV and transfection with SOD3 siRNA counteracted the neuroprotective effects of LIF in vitro, showing that upregulation of SOD3 and activation of Akt signaling are necessary for LIF-mediated neuroprotection. Several transcription factors that regulated Akt-inducible genes were previously identified by this lab, including myeloid zinc finger-1 (MZF-1) and specificity protein-1 (Sp1). The goal of the second set of experiments was to determine whether LIF exerted protective actions through MZF-1 and Sp1. According to analysis with Genomatix, MZF-1 and Sp1 have multiple binding sites in the promoter for the rat SOD3 gene. Western blot analysis showed that there was a trend towards increased MZF-1 protein expression in the brains of LIF-treated rats that approached significance. Immunohistochemical analysis and quantitative real-time PCR showed a significant in vitro upregulation in MZF-1 expression among LIF-treated neurons compared to PBS-treated neurons. Sp1 gene expression was not changed by LIF treatment, but there was a trend towards increased protein expression. In addition, there was a significant correlation between Sp1 and MZF-1 among brain samples from LIF-treated rats but not PBS-treated or sham rats at 72 h after MCAO. Immunohistochemical analysis revealed that Sp1 and MZF-1 co-localized with neuronal nuclei and SOD3 at 72 h after MCAO. Neurons that were transfected with MZF-1 or Sp1 siRNA following isolation did not show a significant decrease in LDH release after 24 h OGD that was observed among neurons transfected with scrambled siRNA. These data demonstrate that Sp1 and MZF-1 are involved with the neuroprotective signaling of LIF under ischemia. This laboratory has demonstrated that LIF activates transcription of protective genes and increases the activity of transcription factors through modulation of intracellular signaling. However, the upstream signaling mechanisms of LIF during ischemia had not previously been investigated. Previous investigators found that the LIF-specific subunit of the heterodimeric LIF receptor (LIFR) is induced by CNS injury. Western blot analysis was used to determine whether LIFR was induced in the brain and the spleen, which plays a role in the peripheral immune response, after MCAO. According to these results, LIF treatment significantly upregulates LIF in the brain compared to PBS treatment or sham injury at 72 h after MCAO. Genomatix analysis of the LIFR promoter region revealed a binding site for Sp1, which is one of the transcription factors responsible for neuroprotection by LIF. At this same time point, splenic LIFR expression is significantly reduced after MCAO compared to sham injury. LIF treatment did not significantly increase LIFR expression, but did significantly increase spleen size compared to PBS treatment at 72 h after MCAO. Although there was a trend towards increased LIFR expression in the spleen from 24 h to 72 h after MCAO, this increase was not statistically significant. However, there was a significant positive correlation between spleen weight and LIFR expression among rats euthanized 24-72 h after MCAO/sham injury. In addition, there was a significant negative correlation between LIFR expression in the brain and the spleen weight, thus showing that LIFR is upregulated following the splenic response. According to findings from other groups, JAK1 has been shown to associate with the heterodimeric LIF receptor (LIFR/gp130) and directly activate PI3K/Akt signaling. To test whether JAK1 contributes neuroprotection during ischemia, cultured neurons were treated with several concentrations (2.5-50 nM) of GLPG0634, a JAK1-specific inhibitor prior to 24 h of OGD. With the exception of the 2.5 nM concentration, all concentrations of GLPG0634 significantly decreased LDH release compared to DMSO treatment, with the 5 nM concentration having the most potent effect on reducing cytotoxicity. However, the 5 nM concentration had no significant did not significantly reduce LDH release compared to DMSO treatment under 24 h of normoxic conditions. These results indicate that JAK1 activity is primarily detrimental to neurons during ischemia. Although it is possible that LIF signaling activates JAK1, it is unlikely that JAK1 is responsible for LIF-mediated neuroprotection during ischemia. The results of these experiments allowed us to determine several molecular mechanisms for LIF-mediated neuroprotection. LIF, which binds to its heterodimeric receptor, activates Akt signaling during ischemia. The transcription factors Sp1 and MZF-1, which are located downstream of Akt, bind to the promoter of the SOD3 gene. In addition, Sp1 also regulates the LIFR gene. SOD3 upregulation increases total SOD activity, which decreases apoptotic and necrotic cell death during apoptosis. Due to its ability to promote antioxidant expression and survival signaling in multiple neural cell types, LIF shows promise as a novel treatment for permanent focal cerebral ischemia.
6

Schiemann, William Paul. "Determination and characterization of leukemia inhibitory factor receptor signal transduction systems /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/6277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ng, Yu Pong. "Leukemia inhibitory factor receptor signaling in NGF-induced neuronal differentiation of PC12 cells /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?BICH%202004%20NG.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2004.
Includes bibliographical references (leaves 134-172). Also available in electronic version. Access restricted to campus users.
8

Alberti, Kristin. "Biologische Verfügbarkeit des Zytokins Leukemia inhibitory factor nach kovalenter Ankopplung an Polymeroberflächen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-65099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Für medizinische Anwendungen sind Stammzellen aufgrund ihrer Eigenschaften (Selbsterneuerung, hohe Proliferationsrate und Differenzierungsmöglichkeit in verschiedene Zelltypen) beispielsweise in den Bereichen des regenerativen Gewebeersatzes und der Zelltherapie sehr interessant. In vivo umgibt die Stammzellen eine definierte Mikroumgebung, die sie unterstützt sich zu teilen, ihren undifferenzierten Status aufrecht zu erhalten und Tochterzellen für das Wachstum, die routinemäßige Erneuerung oder den Ersatz von Gewebe zu produzieren. Diese Mikroumgebungen werden als Stammzellnischen bezeichnet. Für die Kultivierung von Stammzellen in vitro muss die in vivo-Situation möglichst getreu nachgestaltet werden. Ziel der Forschung ist die Schaffung einer künstlichen Umgebung, die sowohl die funktionellen Eigenschaften einer Nische besitzt als auch frei von Risiken xenogener Pathogene oder Gewebeunverträglichkeiten für die Anwendung am humanen Organismus eingesetzt werden kann. Einen Ansatz dafür bietet beispielsweise die Kopplung von Faktoren, die für den Erhalt der Stammzelleigenschaften notwendig sind, an synthetische Oberflächen. Ausgehend vom Bedarf an Kultur- oder Modellsystemen für die Expansion von (embryonalen) Stammzellen sollte in dieser Arbeit analysiert werden, ob alternierende Maleinsäureanhydrid (MA)-Copolymere ein geeignetes Trägersystem für die biofunktionelle kovalente Immobilisierung spezifischer Zytokine sind und dadurch unter anderem als künstliche Stammzellnische Anwendung finden können. MA-Copolymere eignen sich aufgrund ihrer spontanen Reaktion mit Aminogruppen für die Immobilisierung von Proteinen. Das Zytokin LIF (Leukemia inhibitory factor) existiert in vivo auch in immobilisierter Form und ist in embryonalen Mausstammzellen (mESC) allein in der Lage, das Stammzellpotential dieser Zellen zu erhalten. Aus diesem Grund ist LIF für die Analyse der Aufgabenstellung geeignet. Nach der Charakterisierung LIF-modifizierter Oberflächen wurde die biologische Verfügbarkeit des kovalent immobilisierten Zytokins mit Hilfe von LIF-sensitiven Fibroblasten und mESC der Linie R1 überprüft. Anschließend wurde im Mausmodell in vivo der Erhalt der Pluripotenz der mESC durch immobilisiertes LIF analysiert. Dafür standen die Oberflächen Poly(ethylen-alt-maleinsäureanhydrid) (PEMA) und Poly(octadecen-alt-maleinsäureanhydrid) (POMA) jeweils ohne und mit Polyethylenglykol (PEG7)-Modifizierung zur Verfügung, an die LIF kovalent gekoppelt wurde. Zusätzlich wurde LIF physisorptiv an einer Kollagen-Fibronektin-Matrix über hydrolysiertem POMA immobilisiert. Mit Hilfe von radioaktiv markiertem LIF konnte gezeigt werden, dass die Gesamtbeladungsmenge mit Zytokin von den Eigenschaften der MA-modifizierten Träger abhing. Auf PEMA konnten mit steigenden Immobilisierungskonzentrationen höhere Belegungsdichten an der Oberfläche erreicht werden, die im analysierten Bereich eine lineare Abhängigkeit zeigten. Aufgrund der starken Quellung in wässrigen Lösungen war eine Einlagerung von LIF-Molekülen in die Polymerschicht möglich und führte bei hohen Immobilisierungskonzentrationen auch nach 3 Tagen Inkubation mit proteinhaltigem Medium noch zur Verdrängung nicht kovalent gebundener Zytokinmoleküle aus PEMA-Oberflächen. Obwohl ein Teil des LIF in die Polymerschicht eindrang, war der Großteil der Moleküle für einen spezifischen Antikörper zugänglich. Hydrophobe Oberflächen mit POMA konnten bei hohen Immobilisierungskonzentrationen weniger LIF binden und zeigten Sättigungsverhalten der Oberflächen bei einer Belegungsdichte von 178 ng/cm^2 LIF. Eine Freisetzung von LIF nach mehr als 3 Tagen konnte nicht beobachtet werden. Gleichzeitig war hier aufgrund der hydrophoben Polymerseitenketten die Antikörperzugänglichkeit deutlich reduziert. Wegen des geringen Quellungsverhaltens von POMA in wässrigen Lösungen konnte eine Einlagerung des immobilisierten Zytokins in die Polymerschicht aber ausgeschlossen werden. Die kovalente LIF-Immobilisierung über PEG7-Spacer führte im Vergleich zu den nicht PEG-modifizierten Oberflächen PEMA und POMA zu jeweils geringeren Belegungsdichten, ohne dabei den Charakter der Abhängigkeit von der Immobilisierungskonzentration zu verändern (linear für PEMA+PEG7, Sättigung für POMA+PEG7). Die schlechte Antikörperzugänglichkeit von immobilisiertem LIF auf POMA konnte durch die Einführung des PEG7-Spacers deutlich verbessert werden und erreichte einen Wert ähnlich dem der hydrophilen PEMA-Oberflächen. Kovalent immobilisiertes LIF zeigte auf den vier MA-Oberflächen homogene und definiert einstellbare Belegungsdichten auf den einzelnen Proben. Die physisorptive Immobilisierung von LIF an extrazelluläre Matrixkomponenten auf hydrolysiertem POMA führte zu inhomogenen und bereits bei geringen Immobilisierungskonzentrationen instabilen Belegungsdichten. Die Einstellung definierter Belegungsdichten und die homogene Verfügbarkeit des Zytokins sind für die spätere Anwendung bei der Kultivierung wichtig, da so allen Zellen die gleiche definierte Zytokindosis unabhängig von der Oberflächencharakteristik präsentiert wird und Populationsunterschiede vermieden werden. LIF-sensitive Mausfibroblasten der Linie NIH3T3 reagierten auf immobilisiertes LIF mit der Aktivierung des Signalwegproteins STAT3. Durch den direkten Vergleich von STAT3-Aktivierungsprofilen nach Stimulation mit gelöstem oder immobilisiertem LIF konnte gezeigt werden, dass durch beide Präsentationsformen innerhalb der ersten 15 Minuten nach Stimulationsbeginn eine starke Aktivierung von STAT3 erfolgt, die anschließend wieder abklingt. Die Profile beider Präsentationsformen unterschieden sich in ihren Intensitäten nur bei der starken STAT3-Aktivierung. Dabei ergaben sich bei gelöstem LIF aufgrund der größeren Kontaktfläche mit Zytokin (gesamte Zelloberfläche) etwas stärkere Aktivierungen. Durch die sehr ähnlichen Aktivierungsprofile konnte nachgewiesen werden, dass das Zytokin LIF für Zellen zugänglich an MA-Copolymere mit und ohne Spacer-Modifizierung immobilisiert werden kann. Dabei lag ein Teil der Moleküle in einer Konformation und Orientierung gebunden vor, die die Funktionalität des Zytokins erhalten konnten. Zwischen den Oberflächen mit kovalenter LIF-Immobilisierung konnten keine wesentlichen Unterschiede in der STAT3-Aktivierung festgestellt werden. LIF war an all diesen Oberflächen für die LIF-sensitiven NIH3T3 Mausfibroblasten biologisch verfügbar. LIF-abhängige embryonale Mausstammzellen (mESC) reagierten nach 72 Stunden LIF-Stimulation mit der Aktivierung von STAT3. Bei Belegungsdichten ab 8 ng/cm^2 kovalent immobilisiertem LIF auf POMA mit und ohne PEG7-Spacer konnten ähnliche Aktivierungen wie durch die Stimulation mit gelöstem LIF festgestellt werden. Dies bestätigte die biofunktionelle LIF-Immobilisierung. Zwischen den POMA-Oberflächen mit und ohne PEG7 war dabei kein deutlicher Unterschied erkennbar. Eine reduzierte Zugänglichkeit des Antikörpers auf POMA beeinflusste demnach die biologische Verfügbarkeit des Zytokins für die mESC nicht. Der Erhalt des Stammzellpotentials durch kovalent an POMA gebundenes LIF konnte in vitro durch die Präsenz von Oct4 im Zellkern der mESC nachgewiesen werden. Durch die instabile Immobilisierung bei physisorptiver Assoziation des Zytokins an Matrixkomponenten über hydrolysiertem POMA reduzierte sich der Erhalt des Stammzellpotentials auf diesen Oberflächen stark. Kovalent immobilisiertes LIF dagegen konnte auch während der Kultur über mehrere Passagen hinweg die Pluripotenz der murinen ESC erhalten. Nach der Fusion mit Blastozysten beteiligten sich diese kultivierten Zellen in vivo erfolgreich an der Bildung von Chimären. Dabei konnten keine Unterschiede der Chimärenhäufigkeit zwischen der Kultivierung der mESC mit gelöstem oder kovalent an POMA immobilisiertem LIF festgestellt werden. Kovalent an MA-Copolymere immobilisiertes LIF ist demnach in der Lage, gelöstes LIF vollständig zu ersetzen und über mehrere Passagen hinweg allein das Stammzellpotential von mESC zu erhalten. Die Experimente zeigten, dass sich MA-Copolymere für die funktionelle kovalente Immobilisierung von Signalmolekülen eignen. Dabei konnten keine starken Unterschiede bei der Reaktion der Zellen auf die Oberflächen PEMA oder POMA festgestellt werden. Auch die Einführung eines zusätzlichen Spacers war für die Signaltransduktion nach Stimulation mit kovalent immobilisiertem LIF nicht notwendig. Für künftige Arbeiten zur kovalenten Immobilisierung von LIF an MA-Copolymeren ist deshalb aus Stabilitäts- und Effizienzgründen die Oberfläche POMA zu bevorzugen. Diese Favorisierung kann jedoch aufgrund der unterschiedlichen Tertiärstruktur anderer Proteine und ihrer verschiedenen Steifigkeiten sowie bei der Verwendung anderer Zelltypen nicht automatisch für ein anderes Modellsystem übernommen werden. Die Verwendung hydrophiler Oberflächen oder die Kopplung über Spacer sollte demnach in Abhängigkeit vom zu immobilisierenden Protein und den auszusiedelnden Zellen geprüft werden. Die vorgestellte Kopplungsmethode umgeht die Modifikation des Proteins sowie Behandlungen zur Vernetzung des Zytokins. Die Immobilisierungsreaktion ist bei Raumtemperatur und Umgebungsdruck sowie unter sterilen Bedingungen durchführbar. Immobilisierte Zytokine werden homogen kovalent an der Oberfläche gebunden und sind dort für die Zellen zugänglich. Außerdem ermöglicht die Einstellung definierter Belegungsdichten die gezielte Applikation von Zytokindosen. MA-Copolymere sind somit nicht nur für die Kultivierung von Stammzellen unter Erhaltung des Stammzellstatus einsetzbar, sondern eignen sich auch für Differenzierungsstudien. Teilergebnisse dieser Arbeit wurden publiziert unter K. Alberti, R.E. Davey, K. Onishi, S. George, K. Salchert, F.P. Seib, M. Bornhäuser, T. Pompe, A. Nagy, C.Werner, and P.W. Zandstra. Functional immobilization of signaling proteins enables control of stem cell fate. Nat Methods, 5(7):645–650, Jul 2008 und T. Pompe, K. Salchert, K. Alberti, P.W. Zandstra, and C. Werner. Immobilization of growth factors on solid supports for the modulation of stem cell fate. Nat Protocols, 5(6):1042–1050, Jun 2010
In vitro cultivation of (embryonic) stem cells requires a defined environment. Together different properties as cytokine supplement, extracellular matrix composition or topographic design can mimic this stem cell niche in an artificial system. For mouse embryonic stem cells the cytokine leukemia inhibitory factor (LIF) is able to keep those cells in undifferentiated state and to enhance self renewal without the supplement of other factors. In vivo LIF exists in both diffusible and extracellular matrix immobilized form. This work investigates whether LIF can be immobilized covalently to alternating maleic anhydride (MA)-copolymers in a functional manner. When bioavailable, covalently immobilized LIF should be able to interact with specific cytokine receptor subunits and provide information to keep murine embryonic stem cells in a pluripotent state. In aqueous solution with neutral pH (such as phosphate buffered saline, PBS) and ambient temperature and pressure MA-copolymers react spontaneously with aminogroups and therefore represent a useful support for covalent protein immobilization. Depending on the choice of co-monomer, properties of copolymer vary: ethylene results in hydrophilic poly-(ethylene-alt-maleic anhydride) (PEMA), octadecene in more hydrophobic poly-(octadecene-alt-maleic anhydride) (POMA). LIF can be covalently immobilized onto the MA-copolymers as shown by radiolabeling experiments. The amount of cytokine coupled to PEMA increased linear whereas on POMA saturation could be observed for higher concentrations. A subsequent coupling of a polyethylene glycol spacer (PEG7) further modified the properties and led to more hydrophilic surfaces. The amount of LIF per area decreased in comparison to MA-copolymers without the spacer but the graph characteristics remained unaltered (linear for PEMA+PEG7, saturation for POMA+PEG7). During the first three days in buffer solution supplemented with bovine serum albumin, unbound LIF was displaced and the amount of immobilized cytokine remained stable. This Stability after preincubation allowed to immobilize required amounts of LIF per area. Although hydrophilic surfaces with PEMA showed swelling behavior resulting in increased layer thickness after incubation in PBS, accessibility to LIF for an antibody was not impaired. The amounts per area detected by radiolabeling method and using the antibody were similar and indicated that LIF was not covered by copolymers. For cell culture addition of diffusible as well as immobilized growth factors or cytokines requires dosage control. Frequently it is necessary to provide homogeneous distribution of the factor of interest. In the present study analysis by fluorescence microscopy confirmed homogeneity for surfaces with covalently immobilized LIF (iLIF) but not for LIF physisorbed to extracellular matrix components collagen type I and fibronectin. LIF transduces signals via the JAK/STAT pathway. Preliminary experiments with LIF-sensitive fibroblasts showed similar activation of STAT3 after stimulation with immobilized or diffusible LIF. The results of STAT3 activation revealed an activation profile with high intensities within the first 15 minutes for both immobilized and diffusible LIF followed by decrease. STAT3 activation profiles were similar on different surfaces and independent of LIF presentation mode. These results revealed that fibroblasts could recognize covalently immobilized LIF onto MA-copolymers and were able to activate STAT3. In the absence of LIF mESC start to differentiate within 24 to 36 hours and loose their pluripotency. To confirm the functional immobilization of LIF mouse embryonic stem cells (mESC) were cultivated on iLIF-modified POMA or POMA+PEG7 surfaces for 72 hours and stained for activated STAT3. Results showed a dose-dependent activation increasing with the iLIF amount per area. Higher amounts (8 and 75 ng/cm^2) of iLIF activated STAT3 similar to 10 ng/ml diffusible LIF. Introduction of PEG7 spacer did not further increased STAT3 activation. Both, the amount of ESC marker Oct4 and the percentage of Oct4-positive cells increased with higher amounts of iLIF and showed similar results as obtained with 10 ng/ml diffusible LIF. Murine ESC cultivated on LIF physisorbed to matrix components expressed similar amounts of transcription factor Oct4 compared to unstimulated cells. STAT3 activation and Oct4 expression in the absence of diffusible cytokine indicated a functional covalent immobilization of LIF. To confirm the pluripotency, mESC were stimulated for 6 to 8 subcultures only with iLIF, cell aggregates were fused with mouse embryos and implanted in pseudopregnant surrogate mothers. Three weeks after birth the contribution of mESC aggregates to chimera was evaluated. ESC stimulated with iLIF only contributed to chimera formation with around the same frequency as mESC cultivated with 10 ng/ml diffusible LIF. Thus, iLIF maintained pluripotency of mESC during in vitro expansion and could replace diffusible LIF. As shown by the experiments, MA-copolymers provide a support to covalently immobilize cell signaling molecules in a functional manner. This method of coupling does not need any protein modification or cross-linking treatment after protein incubation. Reaction can be carried out under sterile conditions at ambient temperature and pressure. The immobilized ligand is distributed equally on the supporting copolymer and the adjustment of required ligand amounts is possible. These properties characterize MA-copolymers as a suitable support to immobilize cell signaling molecules not only for keeping the stem cell fate but also for differentiation studies. Parts of this work were published: K. Alberti, R.E. Davey, K. Onishi, S. George, K. Salchert, F.P. Seib, M. Bornhäuser, T. Pompe, A. Nagy, C.Werner, and P.W. Zandstra. Functional immobilization of signaling proteins enables control of stem cell fate. Nat Methods, 5(7):645–650, Jul 2008. T. Pompe, K. Salchert, K. Alberti, P.W. Zandstra, and C. Werner. Immobilization of growth factors on solid supports for the modulation of stem cell fate. Nat Protocols, 5(6):1042–1050, Jun 2010
9

Gascan, Hugues. "Caracterisation du facteur de croissance hilda : leukemia inhibitory factor produit par des cellules tumorales humaines." Nantes, 1988. http://www.theses.fr/1988NANT04VS.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Port, Martha D. "Regulation of expression and function of neurokine receptors /." Thesis, Connect to this title online; UW restricted, 2008. http://hdl.handle.net/1773/6283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Leukemia inhibitory factor":

1

Paglia, Diana. The role of leukemia inhibitory factor in skin biology. Ottawa: National Library of Canada, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gregory, Bock, Marsh Joan, and Widdows Kate, eds. Polyfunctional cytokines: IL-6 and LIF. Chichester, Eng: Wiley, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Negative regulators of hematopoiesis: Studies on their nature, action, and potential role in cancer therapy. New York, N.Y: New York Academy of Sciences, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Najman, Albert, Athanasius Anagnostou, and Nicholas Dainiak. Negative regulators of hematopoiesis : Studies on their nature, action, and potential role in cancer therapy. New York Academy of Sciences, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Athanasius, Anagostou, Dainiak Nicholas, Najman Albert, and International Conference on Negative Regulators of Hematopoiesis, (2nd : 1990 : Providence, R.I.), eds. Negative regulators of hematopoiesis: Studies of their nature, action, and potential role in cancer therapy. New York, N.Y: New York Academy of Sciences, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Anagnostou, Athanasius, and Nicholas Dainiak. Negative Regulators of Hematopoiesis: Studies on Their Nature, Action, and Potential Role in Cancer Therapy (Annals of the New York Academy of Scien). New York Academy of Sciences, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Leukemia inhibitory factor":

1

Ratajczak, Mariusz Z. "Leukemia Inhibitory Factor." In Encyclopedia of Cancer, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_3324-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ratajczak, Mariusz Z. "Leukemia Inhibitory Factor." In Encyclopedia of Cancer, 2473–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-46875-3_3324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ratajczak, Mariusz Z. "Leukemia Inhibitory Factor." In Encyclopedia of Cancer, 2025–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16483-5_3324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Agca, Cavit, and Christian Grimm. "Leukemia Inhibitory Factor Signaling in Degenerating Retinas." In Retinal Degenerative Diseases, 389–94. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-3209-8_49.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hooper, Marcus J., and John D. Ash. "Müller Cell Biological Processes Associated with Leukemia Inhibitory Factor Expression." In Retinal Degenerative Diseases, 479–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75402-4_59.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ravandi, Farhad, and Zeev Estrov. "The Role of Leukemia Inhibitory Factor in Cancer and Cancer Metastasis." In Growth Factors and their Receptors in Cancer Metastasis, 1–25. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/0-306-48399-8_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tanaka, Masato, Tatsuya Yamashita, and Satoshi Terada. "The Effect of Interleukin-6 and Leukemia Inhibitory Factor on Hybridoma Cells." In Animal Cell Technology: Basic & Applied Aspects, 47–51. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-9646-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ash, John D. "Leukemia Inhibitory Factor Prevents Photoreceptor Cell Death in rd-/- Mice by Blocking Functional Differentiation." In New Insights Into Retinal Degenerative Diseases, 135–44. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1355-1_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Torchinsky, A., U. R. Markert, and V. Toder. "TNF-&agr;-Mediated Stress-Induced Early Pregnancy Loss:A Possible Role of Leukemia Inhibitory Factor." In Chemical Immunology and Allergy, 62–71. Basel: KARGER, 2005. http://dx.doi.org/10.1159/000087913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fletcher, Frederick A., Kateri A. Moore, Douglas E. Williams, Dirk Anderson, Charles Maliszewski, and John W. Belmont. "Effects of Leukemia Inhibitory Factor (LIF) on Gene Transfer Efficiency into Murine Hematolymphoid Progenitors." In Mechanisms of Lymphocyte Activation and Immune Regulation III, 131–38. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5943-2_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Leukemia inhibitory factor":

1

Quinton, Lee J., Joseph P. Mizgerd, Matthew R. Jones, and Eri Allen. "Endogenous Leukemia Inhibitory Factor Limits Acute Lung Injury During Pneumonia." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a1090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nair, Hareesh B., Bindu Santhamma, Surya Viswanadhapa, and Klaus J. Nickisch. "Abstract LB-208: First-in-class steroidal leukemia inhibitory factor (LIF) inhibitor in targeted cancer therapy." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-lb-208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Poon, J., M. A. Campos, R. F. Foronjy, S. Nath, G. Gupta, C. Railwah, A. J. Dabo, N. Baumlin, M. A. Salathe, and P. Geraghty. "Cigarette Smoke Exposure Reduces Leukemia Inhibitory Factor Levels During Respiratory Syncytial Viral Infection." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a4517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chang, Xiaofei, Yong G. Cho, Il-Seok Park, Chunbo Shao, Patrick Ha, Sara I. Pai, David Sidransky, and Myoung S. Kim. "Abstract 4799: Promoter methylation of leukemia inhibitory factor receptor gene in colorectal carcinoma." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-4799.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nair, Hareesh B., Bindu Santhamma, Suryavathi Viswanadhapalli, Gangadhara R. Sareddy, Xinlei Pan, Vijaya Manthati, Ratna K. Vadlamudi, Murali Ramachandran, and Klaus J. Nickisch. "Abstract LB-B04: Development of a first-in-class leukemia inhibitory factor (LIF)/LIFR inhibitor, EC359 for targeted therapy." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; October 26-30, 2017; Philadelphia, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1535-7163.targ-17-lb-b04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Na, E., K. E. Traber, F. T. Korkmaz, Y. Kim, C. V. Odom, L. A. Baird, M. R. Jones, J. P. Mizgerd, and L. J. Quinton. "Determining Epithelial-Specific Roles for the Lung-Protective Cytokine Leukemia Inhibitory Factor (LIF) During Pneumonia." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a6166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Krasnapolski, Martin A., Ana Quaglino, Edith Kordon, and Elisa D. Bal de Kier Joffe. "Abstract 3121: Study of leukemia inhibitory factor (LIF) system in a murine mammary tumor comprising luminal and myoepithelial cells." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kamohara, Hidenobu, Yoshiharu Hiyoshi, Junji Kurashige, Koichi Kinoshita, Masaaki Iwatsuki, and Hideo Baba. "Abstract 4111: Induction of CXCL8 by TNFalpha and LIF (Leukemia Inhibitory Factor) in pancreatic carcinoma cells: Impact of CXCL8 as an autocrine growth factor." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Banerjee, Priyanka, Baidyanath Chakravarty, and Koel Chaudhury. "Expression of αvβ3 integrin, leukemia inhibitory factor and pinopodes as markers of endometrial receptivity in idiopathic recurrent spontaneous miscarriage." In 2010 International Conference on Systems in Medicine and Biology (ICSMB). IEEE, 2010. http://dx.doi.org/10.1109/icsmb.2010.5735419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Iorns, Elizabeth J., Toby M. Ward, Sonja Dean, Anna Jegg, Nirupa Murugaesu, David Sims, Christopher Lord, et al. "Abstract 4979: Whole genome in vivo RNA interference screening identifies the leukemia inhibitory factor receptor as a novel breast tumor suppressor." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-4979.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Leukemia inhibitory factor":

1

Splitter, Gary, Zeev Trainin, and Yacov Brenner. Lymphocyte Response to Genetically Engineered Bovine Leukemia Virus Proteins in Persistently Lymphocytic Cattle from Israel and the U.S. United States Department of Agriculture, July 1995. http://dx.doi.org/10.32747/1995.7570556.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The goal of this proposal was to identify proteins of BLV recognized by lymphocyte subpopulations and determine the contribution of these proteins to viral pathogenesis. Our hypothesis was that BLV pathogenesis is governed by the T-cell response and that the immune system likely plays an important role in controlling the utcome of infection. Our studies presented in ths final report demonstrate that T cell competency declines with advancing stages of infection. Dramatic differences were observed in lymphocyte proliferation to recombinant proteins encoded by BLV gag (p12, p15, and p24) and env (gp30 and gp15) genes in different disease stages. Because retroviruses are known to mutate frequently, examinatin of infected cattle from both Israel and the United States will likely detect variability in the immune response. This combined research approach provides the first opportunity to selectively address the importance of T-cell proliferation to BLV proteins and cytokines produced during different stages of BLV infection. Lack of this information regarding BLV infection has hindered understanding lympocyte regulation of BLV pathogenesis. We have developed the essential reagents necessary to determine the prominence of different lymphocyte subpopulations and cytokines produced during the different disease stages within the natural host. We found that type 1 cytokines (IL-2 and IFN-g) increased in PBMCs from animals in early disease, and decreasd in PBMCs from animals in late disease stages of BLV infection, while IL-10, increased with disease progression. Recently, a dichotomy between IL-12 and IL-10 has emerged in regards to progression of a variety of diseases. IL-12 activates type 1 cytokine production and has an antagonistic effect on type 2 cytokines. Here, using quantitative competitive PCR, we show that peripheral blood mononuclear cells from bovine leukemia virus infected animals in the alymphocytotic disease stage express increased amount of IL-12 p40 mRNA. In contrast, IL-12 p40 mRNA expression by PL animals was significantly decreased compared to normal and alymphocytotic animals. To examine the functions of these cytokines on BLV expression, BLV tax and pol mRNA expression and p24 protein production were quantified by competitive PCR, and by immunoblotting, respectively. IL-10 inhibited BLV tax and pol mRNA expression by BLV-infected PBMCs. In addition, we determined that macrophages secret soluble factor(s) that activate BLV expression, and that secretion of the soluble factor(s) could be inhibited by IL-10. In contrast, IL-2 increased BLV tax and pol mRNA, and p24 protein production. These findings suggest that macrophages have a key role in regulating BLV expression, and IL-10 produced by BLV-infected animals in late disease stages may serve to control BLV expression, while IL-2 in the early stage of disease may activate BLV expression. PGE2 is an important immune regulator produced only by macrophages, and is known to facilitate HIV replication. We hypothesized that PGE2 may regulate BLV expression. Here, we show that cyclooxygenase-2 (COX-2) mRNA expression was decreased in PBMCs treated with IL-10, while IL-2 enhanced COX-2 mRNA expression. In contrast, addition of PGE2 stimulated BLV tax and pol mRNA expression. In addition, the specific COX-2 inhibitor, NS-398, inhibited BLV expression, while addition of PGE2 increased BLV tax expression regardless of NS-398. These findings suggest that macrophage derived cyclooxygenase -2 products, such as PGE2, may regulate virus expression and disease rogression in BLV infection, and that cytokines (IL-2 and IL-10) may regulate BLV expression through PGE2 production.

До бібліографії