Добірка наукової літератури з теми "LI2MN03"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "LI2MN03".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "LI2MN03"

1

Shirazimoghadam, Yasaman, Abdel El kharbachi, Yang Hu, Thomas Diemant, Georginan Melinte, and Maximilian Fichtner. "(Digital Presentation) Recent Development of the Cobalt Free and Lithium Rich Manganese Based Disordered Rocksalt Oxyfluorides As a Cathode Material for Lithium Ion Batteries." ECS Meeting Abstracts MA2022-01, no. 2 (2022): 365. http://dx.doi.org/10.1149/ma2022-012365mtgabs.

Повний текст джерела
Анотація:
Recently, new types of cation disordered rocksalt (DRS) have been reported which show good reversibility. In our study we combined the strategy of using high-valent cations with partial substitution of fluorine for oxygen anions in disordered rocksalt-structure phase to achieve optimal Mn2+/Mn4+ double-redox reaction in the composition system Li2MnxTi1-xO2F (1/3 ≤ x ≤ 1). we synthesized 4 different compositions (Li2MnIIIO2F, Li2MnII 1/3MnIII 1/3TiIV 1/3O2F, Li2MnII 1/2TiIV 1/2O2F and Li2MnII 1/3TiIII 1/3TiIV 1/3O2F). Two of them were synthesized for the first time, Li2MnII 1/3MnIII 1/3TiIV 1/3
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Marinova, Delyana, Mariya Kalapsazova, Zlatina Zlatanova, Liuda Mereacre, Ekaterina Zhecheva, and Radostina Stoyanova. "Lithium Manganese Sulfates as a New Class of Supercapattery Materials at Elevated Temperatures." Materials 16, no. 13 (2023): 4798. http://dx.doi.org/10.3390/ma16134798.

Повний текст джерела
Анотація:
To make supercapattery devices feasible, there is an urgent need to find electrode materials that exhibit a hybrid mechanism of energy storage. Herein, we provide a first report on the capability of lithium manganese sulfates to be used as supercapattery materials at elevated temperatures. Two compositions are studied: monoclinic Li2Mn(SO4)2 and orthorhombic Li2Mn2(SO4)3, which are prepared by a freeze-drying method followed by heat treatment at 500 °C. The electrochemical performance of sulfate electrodes is evaluated in lithium-ion cells using two types of electrolytes: conventional carbonat
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Susai, Francis Amalraj, Michael Talianker, Jing Liu, et al. "Electrochemical Activation of Li2MnO3 Electrodes at 0 °C and Its Impact on the Subsequent Performance at Higher Temperatures." Materials 13, no. 19 (2020): 4388. http://dx.doi.org/10.3390/ma13194388.

Повний текст джерела
Анотація:
This work continues our systematic study of Li- and Mn- rich cathodes for lithium-ion batteries. We chose Li2MnO3 as a model electrode material with the aim of correlating the improved electrochemical characteristics of these cathodes initially activated at 0 °C with the structural evolution of Li2MnO3, oxygen loss, formation of per-oxo like species (O22−) and the surface chemistry. It was established that performing a few initial charge/discharge (activation) cycles of Li2MnO3 at 0 °C resulted in increased discharge capacity and higher capacity retention, and decreased and substantially stabi
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Guang, Hui Xu, Zhongheng Wang, and Sa Li. "Operando electrochemical fluorination to achieve Mn4+/Mn2+ double redox in a Li2MnO3-like cathode." Chemical Communications 58, no. 20 (2022): 3326–29. http://dx.doi.org/10.1039/d1cc06865b.

Повний текст джерела
Анотація:
The drastic changes (Li2MnO3→Li1.67MnO2.1F0.2) in the first cycle of Li2MnO3-like through oxygen release (O2−→O2) and in operando F-doping, activated a two-electron redox of Mn4+/2+ with a capacity of 326 mA h g−1.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pulido, Ruth, Nelson Naveas, Raúl J. Martin-Palma, et al. "Phonon Structure, Infra-Red and Raman Spectra of Li2MnO3 by First-Principles Calculations." Materials 15, no. 18 (2022): 6237. http://dx.doi.org/10.3390/ma15186237.

Повний текст джерела
Анотація:
The layer-structured monoclinic Li2MnO3 is a key material, mainly due to its role in Li-ion batteries and as a precursor for adsorbent used in lithium recovery from aqueous solutions. In the present work, we used first-principles calculations based on density functional theory (DFT) to study the crystal structure, optical phonon frequencies, infra-red (IR), and Raman active modes and compared the results with experimental data. First, Li2MnO3 powder was synthesized by the hydrothermal method and successively characterized by XRD, TEM, FTIR, and Raman spectroscopy. Secondly, by using Local Dens
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kuganathan, Navaratnarajah, Efstratia Sgourou, Yerassimos Panayiotatos, and Alexander Chroneos. "Defect Process, Dopant Behaviour and Li Ion Mobility in the Li2MnO3 Cathode Material." Energies 12, no. 7 (2019): 1329. http://dx.doi.org/10.3390/en12071329.

Повний текст джерела
Анотація:
Lithium manganite, Li2MnO3, is an attractive cathode material for rechargeable lithium ion batteries due to its large capacity, low cost and low toxicity. We employed well-established atomistic simulation techniques to examine defect processes, favourable dopants on the Mn site and lithium ion diffusion pathways in Li2MnO3. The Li Frenkel, which is necessary for the formation of Li vacancies in vacancy-assisted Li ion diffusion, is calculated to be the most favourable intrinsic defect (1.21 eV/defect). The cation intermixing is calculated to be the second most favourable defect process. High l
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chennakrishnan, Sandhiya, Venkatachalam Thangamuthu, Akshaya Subramaniyam, Viknesh Venkatachalam, Manikandan Venugopal, and Raju Marudhan. "Synthesis and characterization of Li2MnO3 nanoparticles using sol-gel technique for lithium ion battery." Materials Science-Poland 38, no. 2 (2020): 312–19. http://dx.doi.org/10.2478/msp-2020-0026.

Повний текст джерела
Анотація:
AbstractNanoparticles of Li2MnO3 were fabricated by sol-gel method using precursors of lithium acetate and manganese acetate, and citric acid as chelating agent in the stoichiometric ratio. TGA/DTA measurements of the sample in the regions of 30 °C to 176 °C, 176 °C to 422 °C and 422 °C to 462 °C were taken to identify the decomposition temperature and weight loss. The XRD analysis of the sample indicates that the synthesized material is monoclinic crystalline in nature and the calculated lattice parameters are 4.928 Å (a), 8.533 Å (b), and 9.604 Å (c). The surface morphology, particle size an
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mogashoa, Tshidi, Raesibe Sylvia Ledwaba, and Phuti Esrom Ngoepe. "Analysing the Implications of Charging on Nanostructured Li2MnO3 Cathode Materials for Lithium-Ion Battery Performance." Materials 15, no. 16 (2022): 5687. http://dx.doi.org/10.3390/ma15165687.

Повний текст джерела
Анотація:
Capacity degradation and voltage fade of Li2MnO3 during cycling are the limiting factors for its practical use as a high-capacity lithium-ion battery cathode. Here, the simulated amorphisation and recrystallisation (A + R) technique is used, for generating nanoporous Li2MnO3 models of different lattice sizes (73 Å and 75 Å), under molecular dynamics (MD) simulations. Charging was carried out by removing oxygen and lithium ions, with oxygen charge compensated for, to restrain the release of oxygen, resulting in Li2−xMnO3−x composites. Detailed analysis of these composites reveals that the model
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kadhum, Samah Abd, and Zainab Raheem Muslim. "Synthesis and Characterization of Li2MnO3 Using Sol-gel Technique." NeuroQuantology 20, no. 5 (2022): 808–12. http://dx.doi.org/10.14704/nq.2022.20.5.nq22238.

Повний текст джерела
Анотація:
Li2MnO3 nanoparticles were prepared using the Sol-Gel method and characterized by XRD, AFM, SEM, TGA and DSC with major peaks (18.81°), (37.10°) and (44.76°) using AfM, the average diameter of the nanoparticles was (45.71 nm). SEM was used to assess the surface morphology; The micropicture showed homogeneous spherical formations with particle sizes ranging from 2 to 4 meters. Thermal analysis was determined by TGA and DSC results showed a thermal stability from 500 to 750, indicating development of the phase. Li2MnO3 nanoparticles display excellent properties and are suitable as cathode materi
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhuravlev, Victor D., Sergei I. Shchekoldin, Stanislav E. Andrjushin, Elena A. Sherstobitova, Ksenia V. Nefedova, and Olga V. Bushkova. "Electrochemical Characteristics and Phase Composition of Lithium­Manganese Oxide Spinel with Excess Lithium Li1+xMn2O4." Electrochemical Energetics 20, no. 3 (2020): 157–70. http://dx.doi.org/10.18500/1608-4039-2020-20-3-157-170.

Повний текст джерела
Анотація:
The paper presents the results of the study of phase composition and electrochemical performance of lithium­manganese oxide spinel with excess lithium of nominal composition of Li1+xMn2O4 obtained by solidphase method. It was established that samples with x = 0.1 and 0.2 were composite materials with LiMn2O4 being the basic phase and Li2MnO3 being the impurity (3 and 7 mas.%, respectively) also comprising trace amounts of MnO2. The composite material with 3% of Li2MnO3 (x = 0.1) retained 80–90% of the initial specific capacity after 300 charge­discharge cycles at C/2, while single­phase stoich
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "LI2MN03"

1

Liu, G. R., S. C. Zhang, X. X. Lu, and X. Wei. "Preparation of Nanostructured Li2MnO3 Cathode Materials by Single-Step Hydrothermal Method." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35190.

Повний текст джерела
Анотація:
Nanosized (10~50 nm) cathode material Li2MnO3 was prepared for with MnSO4·H2O,KMnO4 and Li- OH aqueous solution as the precursor via single-step hydrothermal reaction by controlling the reaction time, proportion of processor, and the reagent concentration. The prepared materials were well crystallized and exhibited a monoclinic Li2MnO3 structure with a space group of C2/m phase. The electrochemical performance of the material was tested at current density of 60 mAg-1 (1/4 C) between 4.3V and 2.0 V at room temperature, showing good electrochemical properties with the initial discharge capa
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Boulineau, Adrien. "Contribution à la compréhension de la structure de Li2MnO3, de ses défauts et de phases dérivées." Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13747/document.

Повний текст джерела
Анотація:
Afin de mieux comprendre les évolutions structurales mises en évidence dans les oxydes lamellaires de formule générale Li1+x(Ni0.425Mn0.425Co0.15)O2 utilisés comme électrode positive pour batterie lithium-ion, la structure du composé Li2MnO3 a été étudiée en détail. Obtenu selon différentes voies de synthèses, réalisées à différentes températures, ce matériau qui peut être considéré comme un matériau model à fait l’objet d’une étude cristallographique où l’utilisation de la microscopie électronique a été privilégiée. Deux types de défauts ont été identifiés. D’une part, l’existence de fautes d
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Boulineau, Adrien Weill François. "Contribution à la compréhension de la structure de Li2MnO3, de ses défauts et de phases dérivées." S. l. : Bordeaux 1, 2008. http://tel.archives-ouvertes.fr/tel-00378262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

GOYAL, NAVNEET. "SYNTHESIS AND CHARACTERIZATION OF LI2MN03 AS AN ALTERNATIVE CATHODE MATERIAL FOR LI-ION BATTERIES." Thesis, 2017. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15999.

Повний текст джерела
Анотація:
Lithium ion batteries provides un-matched blend of high capacity and energy density, that is why this technology is highly portable for compact gadgets, power devices, control apparatuses, and electric vehicles(full/hybrid). There are vital improvements in latest positive terminal electrode (cathode) materials to substitute the well developed LiCoO2 as cathode material for using in lithium-ion battery (LIBs). In this research work alternative cathode material Li2MnO3 (LMO) nano fibers has been investigated by electro- spinning technique. Physiochemical characterization of LMO nano fibers are p
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fan, Zhe-Shuan, and 范哲軒. "First Principle Investigation of Li Ni1/3Co1/3Mn1/3O2‧Li2MnO3 Composite." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/47174669721185708047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, Chien-Liang, and 陳建良. "Preparation and characterization of Cr-doped Li2MnO3 cathodes for lithium ion batteries." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/b8gepd.

Повний текст джерела
Анотація:
碩士<br>大同大學<br>材料工程學系(所)<br>102<br>Monoclinic Li2MnO3 cathode materials were prepared via Pechini method followed by heat treatment at temperatures between 600 and 900 oC. The effects of heat-treatment temperature and Cr substitution on the physical and the electrochemical properties of Li2MnO3 were investigated. The crystalline structure, composition, and morphology of the prepared samples were studied by XRD, ICP-OES, and FE-SEM, the average valence and of Cr in the prepared samples were estimated by XPS, and the electrochemical properties were analyzed by capacity retention study with Li2MnO
Стилі APA, Harvard, Vancouver, ISO та ін.
7

NAVEEN and RITU RATHORE. "STRUCTURAL AND ELECTROCHEMICAL STUDY OF HIGH VOLTAGE CATHODE MATERIAL, Li2MnO3, AND IT’S REDOX REACTION ANALYSIS." Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/20173.

Повний текст джерела
Анотація:
Li-ion batteries have become indispensable in our modern, technology-driven world, powering a wide array of devices. As the demand for high-energy-density batteries continues to surge, there is a need to explore advanced cathode materials. In this regard, Li2MnO3 has emerged as a highly promising contender for high-voltage (>4.5 V) cathodes in Li-ion batteries. Li2MnO3 offers several advantages over conventional cathode materials such as LiCoO2 and intercalation-type compounds. Notably, Li2MnO3 possesses a remarkable high-voltage capability, which is crucial for achieving enhanced
Стилі APA, Harvard, Vancouver, ISO та ін.
8

賀安麗. "Investigation of Electrical Performance of x Li2MnO3.(1-x)LiMO2(M=Ni,Co,Mn) Prepared through a Two-stage Process of Co-precipitation and Hydrothermal Methods." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/43919016768411700784.

Повний текст джерела
Анотація:
碩士<br>國立清華大學<br>材料科學工程學系<br>101<br>Both Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 are layered structure, and they can be mixed to form a solid solution Li2MnO3.LiNi1/3Co1/3Mn1/3O2, which its charge-discharge region between 2 and 4.8 V. This material will release Li2O due to Li2MnO3 irreversible decomposition when voltage are above 4.5 V in the first charge cycle, and that’s the reson for loss of capacity in the first cycle. This experiment is composed by three part. First, I will discuss how the pH value affect the electrochemical performances when preparing Li2MnO3.LiNi1/3Co1/3Mn1/3O2 precursor through
Стилі APA, Harvard, Vancouver, ISO та ін.
9

(8070293), Zhimin Qi. "MANGANESE-BASED THIN FILM CATHODES FOR ADVANCED LITHIUM ION BATTERY." Thesis, 2021.

Знайти повний текст джерела
Анотація:
<p>Lithium ion batteries have been regarded as one of the most promising and intriguing energy storage devices in modern society since 1990s. A lithium ion battery contains three main components, cathode, anode, and electrolyte, and the performance of battery depends on each component and the compatibility between them. Electrolyte acts as a lithium ions conduction medium and two electrodes contribute mainly to the electrochemical performance. Generally, cathode is the limiting factor in terms of capacity and cell potential, which attracts significant research interests in this field.Different
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tamilarasan, S. "Investigation of Transition Metal Oxides towards Development of Functional Materials for Visible Light Absorption/Emission and Reversible Redox Lithium Deinsertion/Insertion." Thesis, 2016. http://etd.iisc.ac.in/handle/2005/2962.

Повний текст джерела
Анотація:
Materials chemistry basically deals with rational design and synthesis of new solids exhibiting various functional properties. A sound knowledge of crystal structures and chemical bonding is needed to understand the properties of materials. Space group, cell parameters and atomic positions provide a basic crystallographic description of the structure. Crystal structure could be described in a detailed way in terms of close packing of anions and occupancy of cations in different coordination sites. The coordination polyhedra and their interconnectivity bring out the interrelationships between d
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "LI2MN03"

1

Villars, P., K. Cenzual, R. Gladyshevskii, et al. "Li2MnGe." In Landolt-Börnstein - Group III Condensed Matter. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22847-6_373.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Villars, P., K. Cenzual, J. Daams, et al. "Li2MnF6." In Landolt-Börnstein - Group III Condensed Matter. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-44752-8_330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "LI2MN03"

1

Li, Shiyou, and Dan Lei. "Synthesis and electrochemical characterization of nanosized Li2MnO3 cathode material for lithium ion batteries." In 2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, RESOURCE AND ENVIRONMENTAL ENGINEERING (MSREE 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5005239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

TANG, WEIPING, XIAOJING YANG, and KENTA OOI. "FORMATION AND MECHANISM OF PLATE-FORM MANGANESE OXIDE BY SELECTIVE HYDROTHERMAL LITHIUM EXTRACTION FROM MONOCLINIC Li2MnO3." In Proceedings of the Seventh International Symposium on Hydrothermal Reactions. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705228_0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Saroha, Rakesh, Amrish K. Panwar, and Abhishek Bhardwaj. "Synthesis and electrochemical properties of low-temperature synthesized Li2MnO3/MWCNT/super P as a high capacity cathode material for lithium ion batteries." In NATIONAL CONFERENCE ON ADVANCED MATERIALS AND NANOTECHNOLOGY - 2018: AMN-2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5052107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Agnihotri, Shruti, Sangeeta Rattan, and A. L. Sharma. "Effect of MWCNT on prepared cathode material (Li2Mn(x)Fe(1-x)SiO4) for energy storage applications." In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946490.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!