Добірка наукової літератури з теми "LiMn204"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "LiMn204".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "LiMn204":

1

Song, Jie, Bing Xu, De Xin Huang, Cai Xia Li, and Qiang Li. "Synthesis, Structure and Properties of Super Fine LiMn2O4." Advanced Materials Research 177 (December 2010): 9–11. http://dx.doi.org/10.4028/www.scientific.net/amr.177.9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, super fine LiMn2O4 powder was synthesized by mechanochemical method starting from Li2CO3 and Mn2O3. The structure, size and morphology of LiMn2O4 were explored with X-ray diffraction and scanning electron microscopy (SEM). The electrochemical properties of LiMn2O4 were studied in 2 mol/L (NH4)2SO4 solution. The result showed that pure spinel LiMn204 powder was prepared after 8h grinding with 3.0KW of power and the particle size was about 1µm. Cyclic vohammetry curve indicate LiMn2O4 electrode material has better capacitive performances.
2

Chen, Mi Mi, Xian Yan Zhou, Xiang Zhong Huang, Mei Huang, Chang Wei Su, Jun Ming Guo, and Ying Jie Zhang. "Preparation and Characterization of LiMn2-xMgxO4 by Low-Temperature Flameless Solution Combustion Synthesis." Advanced Materials Research 581-582 (October 2012): 611–15. http://dx.doi.org/10.4028/www.scientific.net/amr.581-582.611.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The spinel Mg-doped LiMn2-xMgxO4(0≤x≤0.10)lithium ion cathode material was prepared by LiNO3, Mn(Ac)2.4H2O and Mg(Ac)2.4H2O by a low-temperature flameless solution combustion at 400°C, and HNO3 was used as oxidant. The results showed that the crystallinity of prepared material was superior to the pure LiMn2O4, and this method was better than traditional solid-state method. The particle sizes of the Mg-doped spinel LiMn2-xMgxO4 decreased with the increase of Mg doping, and the particle sizes were 50 to 90 nm; the crystal lattice interface was clear. The original capacities of Mg-doped were lower than that of undoped LiMn2O4 (109.2 mAh/g) excepts for x(Mg)=0.04, original capacity of which was 128mAh/g. However, the rentions of all the doped spinels were higher than that of undoped spinel.
3

Abou-Sekkina, Morsi, Fawaz Saad, Fouad El-Metwaly та Abdalla Khedr. "Synthesis, characterization, DC-electrical conductivity and γ-ray effect on Ag1+, Y3+ double doped nano lithium manganates (LiMn2−2x AgxYxO4) for rechargeable batteries". Materials Science-Poland 32, № 3 (1 вересня 2014): 315–23. http://dx.doi.org/10.2478/s13536-014-0205-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractPristine lithium manganate (LiMn2O4) and Ag1+, Y3+ double doped nano lithium manganate [LiMn2−2x AgxYxO4, (x = 0.025, 0.05)] spinels were synthesized via a coprecipitation method for rechargeable batteries applications. The synthesized LiMn1.9Ag0.05Y0.05O4 was exposed to different doses of γ-irradiation (10 and 30 kGy). The resulting spinel products were characterized by using thermogravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), electronic (UV-Vis) and electron spin resonance (ESR) spectra. LiMn2O4 exhibited a discharge capacity of 124 mAhg−1 while LiMn1.9Ag0.05Y0.05O4 had discharge capacities of 129 and 137 mAhg−1 for non irradiated and γ-irradiated (30 kGy) samples, respectively. The effects of the dopant cations and γ-irradiation on the discharge capacity and DC-electrical conductivity of some synthesized spinels were studied.
4

Zhang, Ligong, Yurong Zhang, and Xuehong Yuan. "Enhanced high-temperature performances of LiMn2O4 cathode by LiMnPO4 coating." Ionics 21, no. 1 (June 8, 2014): 37–41. http://dx.doi.org/10.1007/s11581-014-1169-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Singh, Priti, Anjan Sil, Mala Nath, and Subrata Ray. "Preparation and Characterization of Li [Mn2-xFex]O4 (x = 0.0-0.6) Spinel Nanoparticles as Cathode Materials for Lithium Ion Battery." Advanced Materials Research 67 (April 2009): 233–38. http://dx.doi.org/10.4028/www.scientific.net/amr.67.233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nanosized powders in the system LiMn2−xFexO4 (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) have been synthesized by sol-gel technique using citric acid as chelating agent. The effect of Fe substitution on the structure and surface morphology of spinel LiMn2O4 has been examined by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM) and Electrochemical characteristics. The materials for all the compositions except x = 0.6 exhibit a phase pure cubic spinel structure as evident from the XRD analyses. Doping with Fe increases the crystallinity in the materials and decreases the average particle size. The surface morphology of the synthesized particles is spherical and polygonal type. Average particle size lies in the range of 60 to 400 nm. Improved capacity retention in rechargeable 4 V Li/LiMn2-xFexO4 cells has been observed when a small amount of manganese in the spinel cathode is replaced with iron. The first discharge capacities of LiMn2−xFexO4 (x = 0.0, 0.1, 0.2, 0.3) in a voltage range of 3 V to 4.3 V decreases as the x increases, however, the cyclic performance improves.
6

Ikuhara, Yumi H., Yuji Iwamoto, Koichi Kikuta, and Shin-ichi Hirano. "Processing of epitaxial LiMn2O4 thin film on MgO(110) through metalorganic precursor." Journal of Materials Research 15, no. 12 (December 2000): 2750–57. http://dx.doi.org/10.1557/jmr.2000.0394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Epitaxial LiMn2O4 was successfully synthesized by coating a [Li–Mn–O] metalorganic precursor solution onto MgO (110) substrates at temperatures as low as 350 °C. Cross-sectional transmission electron microscopy observation revealed that the orientation relationship between LiMn2O4 and MgO was (111) LiMn2O4 //(111) MgO, (110) LiMn2O4 //(110) MgO, and [112] LiMn2O4 //[112] MgO, which resulted in the (111) LiMn2O4 planes growing perpendicular to the surface plane of MgO. The interface structure consisted of (111) layers of Mn atoms in the LiMn2O4 crystal aligned with the Mg atoms in the (111) planes of the MgO substrate when viewed along the [112] direction.
7

Kaiya, Hiroyuki, Shinya Suzuki, and Masaru Miyayama. "Effects of Lattice Defects on Cathode Properties of LiMn2O4 Synthesized at Low Temperatures for Lithium Ion Secondary Battery." Key Engineering Materials 388 (September 2008): 41–44. http://dx.doi.org/10.4028/www.scientific.net/kem.388.41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Effects of lattice defects on cathode properties of LiMn2O4 synthesized at low temperatures were investigated. LiMn2O4 powders were synthesized by a sol-gel method. The specific capacities of LiMn2O4 decreased from 134 to 81 mAh g-1 with decreasing heating temperature from 750 to 200°C. X-ray absorption spectroscopy showed that a large amount of lattice defects such as cation vacancies existed and cation mixing occurred in LiMn2O4 calcined at low temperatures. It was found that the low specific capacities of LiMn2O4 calcined at low temperatures were attributed to these lattice defects.
8

Simatupang, Martinus, Lia Asri, and Bambang Sunendar Purwasasmita. "PENGARUH PENAMBAHAN KITOSAN DAN ASAM SITRAT TERHADAP PEMBENTUKAN LiMn2O4 SPINEL MENGGUNAKAN METODE SOL-GEL." Jurnal Teknologi Bahan dan Barang Teknik 5, no. 2 (December 31, 2015): 61. http://dx.doi.org/10.37209/jtbbt.v5i2.60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
LiMn2O4 spinel banyak dikembangkan untuk katoda dalam baterai lithium karena memiliki kerapatan energi yang tinggi. Dalam penelitian ini, LiMn2O4 spinel disintesis menggunakan metode sol-gel dengan kitosan dan asam sitrat sebagai senyawa pengkelat. Densifikasi dilakukan pada suhu kalsinasi 600°C. Penambahan kitosan 1% (w/v) mampu meningkatkan fraksi massa fasa LiMn2O4 spinel hingga 73,9% (w/w). Penambahan asam sitrat 0,2 M ke dalam prekursor yang mengandung kitosan tidak memberikan hasil yang signifikan terhadap pembentukan fasa LiMn2O4 spinel, namun berperan dalam mencegah aglomerasi partikel. Kondisi optimum sintesis LiMn2O4 spinel diperoleh dengan penambahan kombinasi kitosan dan asam sitrat sebagai senyawa pengkelat, menghasilkan ukuran kristalit 28 nm dan konduktivitas sebesar 9,38 x10-6 s/cm2.Kata kunci: kitosan, LiMn2O4 spinel, sol-gel, asam sitrat
9

Ikuhara, Yumi H., Xiuliang Ma, Yuji Iwamoto, Yuichi Ikuhara, Koichi Kikuta, and Shin-ichi Hirano. "Interfaces between solution-derived LiMn2O4 thin films and MgO and Au/MgO substrates." Journal of Materials Research 17, no. 2 (February 2002): 358–66. http://dx.doi.org/10.1557/jmr.2002.0051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Spinel LiMn2O4 thin films have been prepared on MgO(110) and Au/MgO(110) substrates by a chemical solution deposition method. The interfaces between film and substrate were characterized by means of high-resolution transmission electron microscopy (HREM) as well as x-ray diffraction. Cross-sectional HREM observation revealed that LiMn2O4 films grew epitaxially on the MgO(110) and Au/MgO(110) substrates. In the LiMn2O4/MgO system, misfit dislocations formed to accommodate the lattice strain at the LiMn2O4/MgO interface. In the LiMn2O4/Au/MgO system, Au grew epitaxially on the MgO substrate with its surface facetted along {111} planes, probably because the surface energy of this plane is relatively low. The formation of these facets is considered to have a favorable effect on the growth of {111} planes of LiMn2O4 when deposited on the Au film.
10

Guo, Jun Ming, Gui Yang Liu, Jie Liu, De Wei Guo, Ke Xin Chen, and He Ping Zhou. "Effects of Fuel Content and Calcination Procedure on Phase Composition and Microstructure of LiMn2O4 Prepared by Solution Combustion Synthesis." Key Engineering Materials 368-372 (February 2008): 296–98. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Spinel LiMn2O4 was prepared by solution combustion synthesis. The effect of fuel content and calcination procedure on phase composition and microscopic structure of LiMn2O4 was studied. X-ray diffraction patterns showed that fuel content had no obvious influence on the grain size and phase purity of LiMn2O4. Higher calcination temperature led to higher phase purity, lager grain size, and better crystallization of resultant LiMn2O4. Below 600°C the effect of calcination time was inconspicuous, which became notable above 700°C. Scanning electron microscope images showed that nanocrystalline LiMn2O4 was obtained when the calcination temperature was lower than 600°C and the grain size increased at higher temperatures.

Дисертації з теми "LiMn204":

1

Hjelm, Anna-Karin. "Kinetic investigation of LiMn2O4 for rechargeable lithium batteries." Doctoral thesis, KTH, Chemical Engineering and Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

This thesis is concerned with kinetic characterisation of theinsertion compound LiMn2O4, which is used as positive electrodematerial in rechargeable lithium batteries. Three different typesof electrode configurations have been investigated, namely singleparticles, thin films and composite electrodes. Differentelectrochemical techniques, i.e. linear sweep voltammetry (LSV),electrochemical impedance spectroscopy (EIS), potential step, andgalvanostatic experiments were applied under various experimentalconditions. The majority of the experimental data were analysedby relevant mathematical models used for describing the reactionsteps of insertion compounds.

It was concluded that a model based on interfacialcharge-transfer, solid-phase diffusion and an external iR-dropcould be fairly well fitted to LSV data measured on a singleelectrode system over a narrow range of sweep rates. However, itwas also found that the fitted parameter values vary greatly withthe characteristic length and the sweep rate. This indicates thatthe physical description used is too simple for explaining theelectrochemical responses measured over a large range of chargeand discharge rates.

EIS was found to be a well-suited technique for separatingtime constants for different physical processes in the insertionand extraction reaction. It was demonstrated that the impedanceresponse is strongly dependent on the current collector used.According to the literature, reasonable values of theexchange-current density and solid-phase diffusion coefficientwere determined for various states-of-discharge, temperatures andelectrolyte compositions. Experiments were carried out in bothliquid and gel electrolytes. A method which improves thedistinction between the time constants related to thematerial’s intrinsic properties and possible porous effectsis presented. The method was applied to composite electrodes.This method utilises, in addition to the impedance responsemeasured in front of the electrode, also the impedance measuredat the backside of the electrode.

Finally, the kinetics of a composite electrode was alsoinvestigated by in situ X-ray diffraction (in situ XRD) incombination with galvanostatic and potentiostatic experiments. Noevidence of lithium concentration gradients could be observedfrom XRD data, even at the highest rate applied (i.e. ~6C), thusexcluding solid-phase diffusion and also phase-boundary movement,as described by Fick’s law, as the ratelimiting step.

Key words:linear sweep voltammetry, electrochemicalimpedance spectroscopy, potential step, in situ X-raydiffraction, microelectrodes, electrode kinetics, LiMn2O4cathode, rechargeable lithium batteries

2

Hlongwa, Ntuthuko Wonderboy. "Thermochemical Storage and Lithium Ion Capacitors Efficiency of Manganese-Graphene Framework." University of the Western Cape, 2018. http://hdl.handle.net/11394/6458.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Philosophiae Doctor - PhD (Chemistry)
Lithium ion capacitors are new and promising class of energy storage devices formed from a combination of lithium-ion battery electrode materials with those of supercapacitors. They exhibit better electrochemical properties in terms of energy and power densities than the above mentioned storage systems. In this work, lithium manganese oxide spinel (LiMn2O4; LMO) and lithium manganese phosphate (LiMnPO4; LMP) as well as their respective nickel-doped graphenised derivatives (G-LMNO and G-LMNP) were synthesized and each cathode material used to fabricate lithium ion capacitors in an electrochemical assembly that utilised activated carbon (AC) as the negative electrode and lithium sulphate electrolyte in a two-electrode system. The synthetic protocol for the preparation of the materials followed a simple solvothermal route with subsequent calcination at 500 - 800 ?C. The morphological, structural and electrochemical properties of the as prepared materials were thoroughly investigated through various characterisation techniques involving High resolution scanning electron microscopy (HRSEM), High resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), Small-angle X-ray scattering (SAXS), Electrochemical impedance spectroscopy (EIS), Cyclic voltammetry (CV) and Galvanostatic charge/discharge.
2021-12-31
3

Fujita, Miho, Takashi Hibino, Takayuki Hattori, and Mitsuru Sano. "Improved LiMn2O4/Graphite Li-Ion Cells at 55°C." The Electrochemical Society, 2007. http://hdl.handle.net/2237/18460.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Eriksson, Tom. "LiMn2O4 as a Li-ion Battery Cathode. From Bulk to Electrolyte Interface." Doctoral thesis, Uppsala universitet, Institutionen för materialkemi, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
LiMn2O4 is ideal as a high-capacity Li-ion battery cathode material by virtue of its low toxicity, low cost, and the high natural abundance of Mn. Surface related reactions and bulk kinetics have been the major focus of this work. The main techniques exploited have been: electrochemical cycling, X-ray diffraction, X-ray photoelectron spectroscopy, infrared spectroscopy and thermal analysis. Interface formation between the LiMn2O4 cathode and carbonate-based electrolytes has been followed under different pre-treatment conditions. The variables have been: number of charge/discharge cycles, storage time, potential, electrolyte salt and temperature. The formation of the surface layer was found not to be governed by electrochemical cycling. The species precipitating on the surface of the cathodes at ambient temperature have been determined to comprise a mixture of organic and inorganic compounds: LiF, LixPFy (or LixBFy, depending on the electrolyte salt used), LixPOyFz (or LixBOyFz) and poly(oxyethylene). Additional compounds were found at elevated temperatures: phosphorous oxides (or boron oxides) and polycarbonates. A model has been presented for the formation of these surface species at elevated temperatures. The cathode surface structure was found to change towards a lithium-rich and Mn3+-rich compound under self-discharge. The reduction of LiMn2O4, in addition to the high operating potential, induces oxidation of the electrolyte at the cathode surface. A novel in situ electrochemical/structural set-up has facilitated a study of the kinetics in the LiMn2O4 electrode. The results eliminate solid-phase diffusion as the rate-limiting factor in electrochemical cycling. The electrode preparation method used results in good utilisation of the electrode, even at high discharge rates.
5

Esaki, Shogo. "Cycle performance improvement of LiMn2O4 cathode material for lithium ion battery by formation of “Nano Inclusion”." Kyoto University, 2016. http://hdl.handle.net/2433/215650.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
著作権、出典、利用制限の表示を出版社より求められている。
Kyoto University (京都大学)
0048
新制・課程博士
博士(エネルギー科学)
甲第19824号
エネ博第330号
新制||エネ||66(附属図書館)
32860
京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻
(主査)准教授 高井 茂臣, 教授 萩原 理加, 教授 佐川 尚
学位規則第4条第1項該当
6

Silva, João Pedro da. "Síntese assistida por microondas de LiMn2O4, caracterização e testes como catodo para dispositivos de armazenamento de energia." Universidade Federal de São Carlos, 2011. https://repositorio.ufscar.br/handle/ufscar/6492.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Made available in DSpace on 2016-06-02T20:36:31Z (GMT). No. of bitstreams: 1 3616.pdf: 4536970 bytes, checksum: a09a48e60e18c8e6da33bf6a6d467ff4 (MD5) Previous issue date: 2011-03-02
Universidade Federal de Sao Carlos
Lithium manganese oxide - LiMn2O4 - was produced by a microwaveassited solid state reaction. Solid mixtures containing LiOH.H2O and -MnO2 (synthesized electrolytically) underwent microwave irradiation for 3, 4 and 5 min. The obtained material was characterized by X-ray diffraction (XRD), scanning electron microscopy and cyclic voltammetry. Conductivity measurements and charge / discharge tests were carried out with the mixture: 85% LiMn2O4 / 10% carbon black / 5% PVDF. XRD analyses showed that LiMn2O4 was obtained in a single phase of cubic structure belonging to the space group Fd3m in only 3 min of microwave irradiation. This short time for the LiMn2O4 synthesis represents an energy saving greater than 90% when compared with the time employed in the traditional method of synthesis. SEM micrographs showed morphological changes and particle size increase when the microwave irradiation time was increased. The mixture (85% LiMn2O4 / 10% carbon black / 5% PVDF) presented electronic conductivity similar to that of a semiconductor (σ ~ 10-1 S m-1), which is adequate for using as cathode in lithium ion battery. Charge and discharge tests showed good electrochemical stability for all the oxides synthesized at different times, evidenced by a small decrease (12 to 17%) of their specific capacities during 30 cycles of charge and discharge. The oxide produced at 3 min of microwave irradiation presented the highest charge supply (77 93 mA h g-1) at an elevated discharge rate (C/1), besides a highly uniform morphology and the lowest particle size (~1 μm).
Óxido de manganês litiado - LiMn2O4 - foi produzido por uma rota de síntese diferenciada, a síntese de estado sólido assistida por microondas. Misturas sólidas contendo LiOH.H2O e -MnO2, sintetizado eletroliticamente, foram irradiadas por microondas durante 3, 4 e 5 min. O material obtido foi caracterizado por difratometria de raios-X (DRX), microscopia eletrônica de varredura (MEV) e voltametria cíclica. Também foram realizadas medidas de condutividade e testes de carga e descarga com a mistura: 85% LiMn2O4 / 10% negro de acetileno / 5% PVDF. As análises de DRX indicaram que LiMn2O4 foi obtido com estrutura cúbica pertencente ao grupo espacial Fd3m em apenas 3 min de irradiação de microondas. O reduzido tempo de síntese do espinélio representa uma economia energética superior a 90%, quando comparado com o tempo empregado no método tradicional de síntese. As micrografias de MEV mostraram alterações de morfologia, bem como aumento no tamanho de partícula conforme é aumentado o tempo de irradiação por microondas. A condutividade eletrônica da mistura (85% LiMn2O4 / 10% negro de acetileno / 5% PVDF) é da ordem daquela de um material semicondutor (σ ~ 10-1 S m-1), adequada para sua utilização como catodo em bateria de íons lítio. Os testes de carga e descarga mostraram que os óxidos obtidos a diferentes tempos apresentam boa estabilidade eletroquímica, com queda de capacidade específica durante 30 ciclos de carga e descarga variando de 12 a 17%. Entretanto, o LiMn2O4 produzido a 3 min por irradiação de microondas apresentou o maior fornecimento de carga (77 93 mA h g-1) quando os óxidos foram testados a uma elevada taxa de descarga (C/1). Além disso, este material destacou-se por apresentar uniformidade morfológica e o menor tamanho de partícula (~1 μm).
7

Rudisch, Christian. "Nuclear Magnetic Resonance on Selected Lithium Based Compounds." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-130485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis presents the NMR measurements on the single crystals LiMnPO4 and Li0.9FeAs. Therefore, the thesis is divided into two separated sections. The first part reports on the competitive next generation cathode material LiMnPO4 with a stable reversible capacity up to 145 mAh/g and a rather flat discharge voltage curve at 4.1 V. For the basic understanding of the material the magnetic properties have been investigated by a Li and P NMR study in the paramagnetic and antiferromagnetic phase. LiMnPO4 shows a strong anisotropy of the dipolar hyperfine coupling due to the strong local magnetic moments at the Mn site. The corresponding dipole tensor of the Li- and P-nuclei is fully determined by orientation and temperature dependent NMR experiments and compared to the calculated values from crystal structure data. Deviations of the experimentally determined values from the theoretical ones are discussed in terms of Mn disorder which could have an impact on the mobility of the Li ions. The disorder is corroborated by diffuse x-ray diffraction experiments which indicate a shift of the heavy elements in the lattice, namely the Mn atoms. Furthermore, the spin arrangement in the relative strong field of 7.0494 T in the antiferromagnetic state is understood by the NMR measurements. In order to obtain parameters of the Li ion diffusion in LiMnPO4 measurements of the spin lattice relaxation rate were performed. Due to the strong dipolar coupling between the Li-nuclei and the magnetic moments at the Mn site it is difficult to extract parameters which can characterize the diffusive behavior of the Li ions. The second section reports on the AC/DC susceptibility and NMR/NQR studies on Li deficit samples labeled as Li0.9FeAs. LiFeAs belongs to the family of the superconducting Pnictides which are discovered in 2008 by H. Hosono et al. In recent studies the stoichiometric compound reveals triplet superconductivity below Tc ∼ 18 K which demands ferromagnetic coupling of the electrons in the Cooper pairs. In Li0.9FeAs the Li deficit acts like hole doping which suppresses the superconductivity. Then ferromagnetism can arise which is very interesting because of the vicinity to the triplet superconductivity. With the microscopic methods NMR/NQR on the Li and As nuclei, it was investigated where the ferromagnetism can be located in Li0.9FeAs. Recent susceptibility, ESR and µSR studies reveal an internal field due to the ferromagnetism. In contrast, the internal field could not be used to perform zero field NMR measurements. Possible reasons for this discrepancy are discussed. In addition, the automatic insitu AC susceptibility technique by using the NMR radio frequency circuit has been tested by a reference compound Co2TiGa which shows itinerant ferromagnetism. Similar curves are observed for Li0.9FeAs which indicate the existence of itinerant magnetic moments in Li0.9FeAs. Furthermore, in order to determine the size of the dipolar contribution from the magnetic moments of the Fe the dipolar hyperfine coupling tensor was calculated from the crystal structure data. The comparison of the experimental and calculated hyperfine coupling elements reveals transferred hyperfine fields in LiFeAs.
8

Ibarra, Palos Alejandro. "Nouveaux composés d'insertion du lithium : spinelles dérivés de LiMn2O4, oxydes de manganèse et borates de fer amorphes ; étude fondamentale et applications électrochimiques." Université Joseph Fourier (Grenoble), 2002. http://www.theses.fr/2002GRE10006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kaibara, Patrícia Silvestre de Oliveira. "Preparação e caracterização de compósitos de polipirrol (LiMn2O2)/ fibra de carbono para catodos em baterias secundárias." Universidade Federal de São Carlos, 2003. https://repositorio.ufscar.br/handle/ufscar/6585.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Made available in DSpace on 2016-06-02T20:36:51Z (GMT). No. of bitstreams: 1 DissPSOK.pdf: 5538731 bytes, checksum: 1ef6531551d73cc045bce77007732864 (MD5) Previous issue date: 2003-08-19
Universidade Federal de Minas Gerais
Composites of polypyrrol (Ppy) and LiMn2O4 were synthesized chronoamperometrically at 0.8 V (vs. ECS) in 0.1 mol.L-1 LiClO4 /acetonitrile (2% H2O added) electrolyte containing 0.1 mol.L-1 of the pyrrol monomer, on carbon fiber (CF) substrates. The optimum concentration of the oxide in the electrolyte was found as 0.12 g.L-1. Both the previous ultrassonic dispersion of the oxide and the electrolyte mechanic stirring during the synthesis led to the best composite properties. For comparison, other composites were also prepared: Ppy/CF; Ppy(PSS)/CF and Ppy(PSS)/LiMn2O4/CF. Electrochemical stability tests were performed by cyclic voltammetry for all composites, in the electrosynthesis electrolyte without the monomer and water as well as in 0.1 mol.L-1 LiClO4 / propilene carbonate. The morphology, coupled with elemental analysis, and the electrical properties of all composites were obtained, respectively, by SEM/EDS and impedance spectroscopy. The discharge capacity obtained for the Ppy/LiMn2O4/CF composite was 80 mA.h.g-1, about 100% higher than the one for the Ppy/CF composite. The capacity value found for Ppy(PSS)/CF was similar, but the charge/discharge runs presented a slow profile to reach the maximum steady value, which is not interesting for cathode in rechargeable batteries. On the other hand, the Ppy(PSS)/LiMn2O4/CF composite showed the smaller capacity value. Therefore, among all the analyzed composites, the one containing Ppy and LiMn2O4 presented the best performance to be used as cathodes in lithium ion batteries.
Compósitos de polipirrol (Ppy) e LiMn2O4 foram sintetizados cronoamperometricamente a 0,8 V (vs. ECS) em solução de LiClO4 0,1 mol.L-1 / acetonitrila e 2% de H2O, contendo 0,1 mol.L-1 do monômero pirrol, em substratos de fibra de carbono (FC). Determinou-se que a concentração ótima de óxido no eletrólito de eletrossíntese foi de 0,12 g.L-1. Uma prévia agitação ultrassônica do óxido no eletrólito, somada à agitação mecânica do mesmo durante a eletrossíntese favoreceu a dispersão do óxido e conseqüentemente a qualidade do depósito. Outros compósitos foram eletrossintetizados para comparação: Ppy somente; Ppy e poliânion PSS (poliestirenossulfonato de sódio); e um último, contendo Li1,05Mn2O4 além dos dois polímeros. Testes de estabilidade eletroquímica foram realizados via sucessivos ciclos de voltametria cíclica para todos os filmes no eletrólito de eletrossíntese, na ausência do monômero e água, e também em LiClO4 0,1 mol.L-1 / carbonato de propileno. A caracterização morfológica dos compósitos foi realizada através da microscopia eletrônica de varredura, concomitantemente à análise de elementos através da espectroscopia de energia dispersiva; a caracterização elétrica foi realizada por espectroscopia de impedância eletroquímica. A capacidade de descarga obtida para o compósito contendo Ppy e Li1,05Mn2O4 foi 80 mA.h.g-1, cerca de 100 % maior que a do filme de Ppy somente. O valor da capacidade para o compósito contendo Ppy e PSS foi semelhante ao do primeiro, entretanto foram necessários o dobro do número de ciclos de carga/descarga para que se definisse um valor constante de capacidade não sendo, portanto, um comportamento interessante para catodos de baterias; já a capacidade obtida para o compósito contendo Ppy, Li1,05Mn2O4 e PSS foi inferior às anteriores, não havendo a estimada contribuição dos dois dopantes juntos na matriz polimérica. Sendo assim, o compósito Ppy/Li1,05Mn2O4/FC foi o que apresentou as melhores características para uma bateria de íons lítio, indicando que os sítios do óxido mantiveram-se acessíveis para a intercalação dos íons lítio e o polímero funcionou como material ativo e rede condutora para o óxido semicondutor.
10

Luchkin, Sergey Yurevich. "Local probing of Li+ diffusion and concentration in Li-ion battery materials by scanning probe microscopy." Doctoral thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/14825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Doutoramento em Ciência e Engenharia de Materiais
This thesis presents the results of Scanning Probe Microscopy (SPM) study of Li-ion battery active materials. The measurements have been performed on LiMn2O4 cathodes and graphite anodes extracted from commercial Li batteries at different states of charge and health. The study has been focused on measurements of Li spatial distribution and transport properties in the active electrode materials. Special attention has been paid to influence of fatigue caused by high C rate cycling on Li spatial distribution and local diffusion coefficient. Electrochemical Strain Microscopy (ESM) has been used to access Li transport properties at the nanoscale in LiMn2O4 cathodes. Kelvin Probe Force Microscopy (KPFM) has been used to examine Li spatial distribution in graphite anodes. ESM has been implemented and used in a single frequency mode out of the contact resonance for the first time. Signal-to-noise ratio analysis has been performed for a number of single- and multi-frequency modes used in ESM. The analysis allowed to establish criteria for a proper cantilever choice and an experimental setup for the optimized detection of surface displacements via lock-in amplifier. Transport properties of Li+ mobile ions in fresh and fatigued LiMn2O4 battery cathodes have been studied at the nanoscale via ESM using time-and voltage spectroscopies. Both Vegard and non-Vegard contributions to ESM signal have been identified in electrochemical hysteresis loops obtained on the fresh and fatigued samples. In fresh cathodes the Vegard contribution dominates the signal, while in fatigued samples different shape of hysteresis loops indicates additional contributions. Non-uniform spatial distribution of the electrochemical loop opening in LiMn2O4 particles studied in the fatigued samples indicates stronger variation of Li diffusion coefficients in fatigued samples’ as compared to the fresh one. Time spectroscopy measurements have revealed suppressed local Li diffusivity in fatigued samples by more than two orders of magnitude as compared to the fresh one. We attributed such reduction of the diffusion coefficient to the accumulation of point defects induced by high C-rate cycling and accompanied structural instability. This mechanism can be specifically important for high C-rate cycling. Li spatial distribution in fresh and fatigued graphite cathodes has been accessed via KPFM using a 2-pass amplitude modulation mode. Core-shell and mosaic surface potential structures have been observed on the fatigued and fresh anodes, respectively. The observed surface potential distributions have been attributed to the apparent Li concentration profiles in graphite. The core-shell potential distribution has been attributed to the remnant Li ions stacked in graphite particles causing irreversible capacity loss. The mosaic potential distribution has been attributed to inactive Li inside graphite at the starting stage of cycling. The results corroborate the “radial” model used to explain the specific capacity fading mechanism at high C rate cycling in Li-ion batteries.
Esta tese apresenta os resultados do estudo de Scanning Probe Microscopia (SPM) de materiais de baterias de ions de litio. As medidas foram executadas na cátodos de LiMn2O4 e ânodos de grafite extraidos de bateriais de litio comerciais em diferentes estados de carga e fadiga. O estudo concentrou-se na medição da distribuição de Li e propriedades de transporte dos materiais de eletrodo ativo. Especial atencao tem sido dada a influencia do ciclo de fadiga da elevada taxa C na distribuicao especial dos ions de Li e coeficiente de difusao. Microscopia de tensão eletroquímica (ESM) tem sido usada para acessar Li transporte propriedades em nanoescala em cátodos de LiMn2O4. Microscopia de força de sonda Kelvin (KPFM) tem sido usada para acessar a distribuição espacial de Li em anodos de grafite. ESM foi implementada e usada em um modo de única freqüência de ressonância o contato pela primeira vez. Análise de relação sinal-ruído foi feito para um número de monomodo e multimodo usados no ESM. A análise permite estabelecer critérios para um cantilever e uma instalação experimental para a detecção mais sensível de deslocamentos superficiais. Propriedades da mobilidade dos ions de lition em catodos de bateria LiMn2O4 frescos e fatigados foram estudados em nanoescala via ESM, espectroscopia de tempo e espectroscopia de tensão de transporte. Contribuições como sinal Vegard e non-Vegard ESM foram identificadas em ciclos de histerese eletroquímica obtidos em amostras frescas e fatigadas. Em cátodos frescos o sinal Vegard dominante, enquanto em amostras envelhecidas, a diferente ciclo de histerese indica contribuições adicionais. Distribuição espacial não-uniforme do ciclo aberto eletroquímico em partículas de LiMn2O4 foram estudadas nas amostras fatigadas indicando mais forte variação do coeficiente de difusão de Li das amostras fatigadas em microescala em comparação com a outra amostra. Medições de espectroscopia de tempo revelaram a ausencia de difusidade local em amostras fatigadas por mais de duas ordens de magnitude em comparação com a outra. Atribui-se tal redução do coeficiente de difusão o acúmulo de defeitos de ponto induzida pelo Ciclo de elevada taxa C e acompanhadas de instabilidade estrutural. Este mecanismo pode ser especialmente importante para ciclo de elevada taxa C. Distribuição espacial de Li em cátodos amostras fresca e fatigada grafite foi analisaa via KPFM no modo de modulação de amplitude 2-pass. Estruturas de superfícies potenciais core-shell e mosaico têm sido observadas em ânodos fatigados e frescos, respectivamente. As distribuições de superfícies potenciais observadas foram atribuídas para os perfis de concentração Li aparentes em grafite. Distribuição potencial core-shell tem sido atribuída para o ions remanescentes de Li empilhados em partículas de grafite, causando perda irreversível de capacidade. A distribuição de potencial de mosaico tem sido atribuída a Li inativo dentro do grafite na fase inicial do ciclo. Os resultados corroboram o modelo "radial" usado para explicar o mecanismo de desvanecimento de capacidade específica a alta taxa de C em baterias de íon-lítio.

Книги з теми "LiMn204":

1

Eriksson, Tom. Limn2O4 As a Li-Ion Battery Cathode: From Bulk to Electrolyte Interface (Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 651). Uppsala Universitet, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "LiMn204":

1

Villars, P., K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, V. Kuprysyuk, and I. Savysyuk. "LiMn2O4 lt." In Structure Types. Part 9: Space Groups (148) R-3 - (141) I41/amd, 845. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02702-4_617.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wu, Qi-Hui, A. Thißen, and W. Jaegermann. "Electronic Structure of LiMn2O4." In New Trends in Intercalation Compounds for Energy Storage, 585–90. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0389-6_53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stokłosa, Andrzej, and Stefan S. Kurek. "Lithium-Manganese Spinel – LiMn2O4." In Structure and Concentration of Point Defects in Selected Spinels and Simple Oxides, 217–31. First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003106166-17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Holze, Rudolf. "Ionic conductance of LiMnO4." In Electrochemistry, 1186. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Song, Xiaolan, Ying Zhang, Haibo Wang, Dongfeng Liu, and Minchao An. "Grains Growth Kinetics of Al Doped Nano-LiMn2O4." In Springer Proceedings in Energy, 263–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0158-2_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kushida, K., and K. Kuriyama. "Photo-quenching in small-polaronic conduction in LiMn2O4." In Springer Proceedings in Physics, 168–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_73.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Camacho-Lopez, M. A., L. Escobar-Alarcon, E. Haro-Poniatowski, and C. Julien. "Physico-Chemical Properties of LiMn2O4 Films Grown by Laser Ablation." In Materials for Lithium-Ion Batteries, 535–41. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4333-2_36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shi, Xi-Chang, Li-Wen Ma, Bai-Zhen Chen, Hui Xu, Xi-Yun Yang, and Kun Zhang. "Stability and Lithium Adsorption Property of LiMn2O4-LiSbO3Composite in Aqueous Medium." In Supplemental Proceedings, 367–73. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062142.ch44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jeong, In-Seong, Jong-Uk Kim, Gye-Choon Park, and Hal-Bon Gu. "Interfacial Reaction and Charge/Discharge Properties of LiMn2O4 with Organic Eletrolyte." In Novel Trends in Electroorganic Synthesis, 453–54. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-65924-2_136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Okada, Masaki, and Masaki Yoshio. "LiMn2O4 as a Large-Capacity Positive Material for Lithium-Ion Batteries." In Lithium-Ion Batteries, 1–9. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-34445-4_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "LiMn204":

1

PISZORA, P. "TEMPERATURE DEPENDENT STRUCTURAL STUDIES ON LiMn2O4." In Proceedings of the XIX Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702913_0028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Aliahmad, Nojan, Mangilal Agarwal, Sudhir Shrestha, and Kody Varahramyan. "Paper-Based Lithium Magnesium Oxide Battery." In ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Replacing of metal current collectors with flexible materials has great potentials of improving flexibility, weight, and applications of Li-ion batteries. This paper presents fabrication and experimental results of lithium magnesium oxide (LiMn2O4) battery using conductive paper current collectors. A thin layer of LiMn2O4 was coated on paper current collectors using air-spray method, and half-cell devices were fabricated. Experimental capacity of 130 mAh/g is reported. The porous structure of cellulous fibers in the current collector improves the adhesion of electrode materials on the substrate, which provides higher flexibility and lighter weight.
3

Wu, Chuan, Feng Wu, and Xuejie Huang. "Modification of Spinel LiMn2O4 Using an Electrochemical Method." In Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Basar, Khairul, Xianglian, Takashi Sakuma, Haruyuki Takahashi, Osami Abe, and Naoki Igawa. "Diffuse Neutron Scattering Calculation of Spinel Structure of LiMn2O4." In THE 10TH ASIAN INTERNATIONAL CONFERENCE ON FLUID MACHINERY. American Institute of Physics, 2010. http://dx.doi.org/10.1063/1.3462750.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wu, Chuan, Hong Li, Feng Wu, and Xuejie Huang. "Improve Cycling Performance of Spinel LiMn2O4 by Cation Doping." In Proceedings of the 7th Asian Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791979_0037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Esmaeili, Javad, and Hamid Jannesari. "Modeling the heat of mixing of LiMn2O4 pouch type battery." In 2016 Iranian Conference on Renewable Energy & Distributed Generation (ICREDG). IEEE, 2016. http://dx.doi.org/10.1109/icredg.2016.7875908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kalavathi, S., D. Kalaivani, T. R. Ravindran, and P. Ch Sahu. "X-ray and Raman spectroscopic studies on Ru substituted LiMn2O4." In NANOFORUM 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4918020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sharma, Rahul, Nihal, and Mamta Sharma. "LiMn2O4 spinel structure as cathode material for Li-ion batteries." In ADVANCES IN BASIC SCIENCE (ICABS 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5122361.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhou-Cheng Wang and Kwang-Bum Kim. "Preparation of nano-structured LiMn2O4 thin films by electrostatic spray deposition." In 2008 2nd IEEE International Nanoelectronics Conference. IEEE, 2008. http://dx.doi.org/10.1109/inec.2008.4585530.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu Yunjian, Li Xinhai, and Guo Huajun. "The performance of LiMn2O4/graphite battery after storing at high temperature." In 2008 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2008. http://dx.doi.org/10.1109/vppc.2008.4677562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "LiMn204":

1

Liu, Gao, Honghe Zheng, and Vincent S. Battaglia. Fabrication procedure for LiMn2O4/Graphite-based Lithium-ionRechargeable Pouch Cells. Office of Scientific and Technical Information (OSTI), April 2007. http://dx.doi.org/10.2172/909518.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lei, Jinglei, Lingjie Li, Robert Kostecki, Rolf Muller, and Frank McLarnon. Characterization of SEI layers on LiMn2O4 cathodes with in-situ spectroscopic ellipsometry. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/837416.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kostecki, Robert, Frederic Bonhomme, Laurent Servant, Francoise Argoul, and Frank McLarnon. Nanometer-scale electrochemical patterning of LiMn2O4 surfaces by an atomic force microscope operating in air. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/834263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії