Добірка наукової літератури з теми "Long duration stratospheric–"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Long duration stratospheric–".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Long duration stratospheric–"
Ovarlez, Joëlle, and Michèle Forichon. "Stratospheric Wind Velocity Determination from Long Duration Balloon Flights." Journal of Applied Meteorology 29, no. 10 (October 1990): 1068–71. http://dx.doi.org/10.1175/1520-0450(1990)029<1068:swvdfl>2.0.co;2.
Повний текст джерелаLeroux, Mathilde, and Vincent Noel. "Investigating long-term changes in polar stratospheric clouds above Antarctica during past decades: a temperature-based approach using spaceborne lidar detections." Atmospheric Chemistry and Physics 24, no. 10 (May 31, 2024): 6433–54. http://dx.doi.org/10.5194/acp-24-6433-2024.
Повний текст джерелаPeters, Dieter, Andrea Schneidereit, and Alexey Karpechko. "Enhanced Stratosphere/Troposphere Coupling During Extreme Warm Stratospheric Events with Strong Polar-Night Jet Oscillation." Atmosphere 9, no. 12 (November 29, 2018): 467. http://dx.doi.org/10.3390/atmos9120467.
Повний текст джерелаLiu, Sitong, Shuyu Zhou, Jinggang Miao, Hai Shang, Yuxuan Cui, and Ying Lu. "Autonomous Trajectory Planning Method for Stratospheric Airship Regional Station-Keeping Based on Deep Reinforcement Learning." Aerospace 11, no. 9 (September 13, 2024): 753. http://dx.doi.org/10.3390/aerospace11090753.
Повний текст джерелаde Bernardis, P., and S. Masi. "Precision CMB measurements with long-duration stratospheric balloons: activities in the Arctic." Proceedings of the International Astronomical Union 8, S288 (August 2012): 208–13. http://dx.doi.org/10.1017/s1743921312016894.
Повний текст джерелаOlschewski, Friedhelm, Christian Monte, Albert Adibekyan, Max Reiniger, Berndt Gutschwager, Joerg Hollandt, and Ralf Koppmann. "A large-area blackbody for in-flight calibration of an infrared interferometer deployed on board a long-duration balloon for stratospheric research." Atmospheric Measurement Techniques 11, no. 8 (August 14, 2018): 4757–62. http://dx.doi.org/10.5194/amt-11-4757-2018.
Повний текст джерелаIarocci, A., P. Benedetti, F. Caprara, A. Cardillo, F. Di Felice, G. Di Stefano, P. Drakøy, et al. "PEGASO: An ultra light long duration stratospheric payload for polar regions flights." Advances in Space Research 42, no. 10 (November 2008): 1633–40. http://dx.doi.org/10.1016/j.asr.2007.05.079.
Повний текст джерелаTockert, C. "Concept for an open-neck stratospheric balloon with long-duration flight capability." Advances in Space Research 13, no. 2 (February 1993): 119–22. http://dx.doi.org/10.1016/0273-1177(93)90284-i.
Повний текст джерелаAkita, Daisuke. "Feasibility study of a sea-anchored stratospheric balloon for long-duration flights." Advances in Space Research 50, no. 4 (August 2012): 508–15. http://dx.doi.org/10.1016/j.asr.2012.05.002.
Повний текст джерелаFesen, Robert, and Yorke Brown. "A method for establishing a long duration, stratospheric platform for astronomical research." Experimental Astronomy 39, no. 3 (May 23, 2015): 475–93. http://dx.doi.org/10.1007/s10686-015-9459-9.
Повний текст джерелаДисертації з теми "Long duration stratospheric–"
Keil, Michael. "The use of long duration balloon data in stratospheric analyses." Thesis, University of Reading, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269605.
Повний текст джерелаCarbone, Sullivan. "Analyse globale, régionale, et locale des mesures de vapeur d'eau dans la haute TTL pendant STRATÉOLE 2." Electronic Thesis or Diss., Reims, 2025. http://www.theses.fr/2025REIMS004.
Повний текст джерелаThe relative importance of the different mechanisms governing the abundance and long-term trend of stratospheric water vapour is still poorly quantified. The upper troposphere and tropical lower stratosphere (TTL) is the gateway to the stratosphere for all species. Processes such as the cold trap, waves and deep stratospheric convection (overshoot) are the essential ones that modulate the abundance of water vapor entering the stratosphere.The Stratéole 2 project, based on several long-duration balloon campaigns, will enable us to study these processes throughout the tropical belt, by providing a large, unprecedented database.In this thesis, in situ water vapor measurements made by the 5 Pico-STRAT Bi-Gaz instruments (GSMA/DT INSU) during the first two Stratéole 2 campaigns are analyzed to quantify the impact of waves and deep convection on the stratospheric water balance. A method based on the calculation of water vapour anomalies (X') is developed to highlight these signatures.By extracting the temperature perturbations (T') for each flight, taken from a Hovmöller diagram (longitude/time) along the balloon's trajectory, and correlating them with the water vapour anomalies, we highlight, particularly for the first and last flights of the campaign, the major role played by waves in water vapour modulation.For other flights, we obtain weaker correlations, or even anti-correlations. Considering the vertical water vapour gradient derived from satellite measurements, we show that these anti-correlations are due to vertical displacements of air masses under the influence of large/medium scale waves.The proportion of X' compatible with isentropic displacement of air masses due to waves, varies between 48% and 70% depending on the flight, confirming the major role that waves can play in our measurements.The role of deep convection on X' is also investigated. Firstly, using vertical profiles obtained when balloons depressurized above deep convective systems. No systematic signature is detected in these cases.Between December 12 and 15, 2021, two Pico-STRAT Bi Gaz instruments were able to take measurements in the vicinity of cyclone Rai. The measurements show irreversible processes and strong hydration of the lower stratosphere due to deep convection generated in the cyclone’s arms which is an unprecedented result by in situ measurements over these systems.Analysis of convective signatures using cloud top products (Himawari and GOES geostationary satellites) and back-trajectories by the HYSPLIT model, shows that 33 nights in our in situ dataset have X' consistent with hydration or dehydration by overshoots. one case was modelled by the mesoscale model meso-NH to confirm the convective origin of some remarkable signatures. The 3 nested grid simulation of the case of 28/01/2020 over Sumatra supports the hypothesis of stratospheric overshoots causing water vapour anomalies of around 0,6 ppmv.This study demonstrates the ability of the anomaly method employed to highlight wave signatures or signatures of deep convection in the equatorial belt. It highlights the importance of waves in the set of measurements, as well as some extreme convective cases (cyclone Rai), which will need to be studied in detail in the near future
Тези доповідей конференцій з теми "Long duration stratospheric–"
Heun, Matthew, Kerry Nock, and R. Schlaifer. "Latitudinal dispersion characteristics of very long duration stratospheric constant-altitude balloon trajectories." In International Balloon Technology Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3877.
Повний текст джерелаЗвіти організацій з теми "Long duration stratospheric–"
Taylor, S., J. Lever, K. Burgess, R. Stroud, D. Brownlee, L. Nittler, A. Bardyn, et al. Sampling interplanetary dust from Antarctic air. Engineer Research and Development Center (U.S.), February 2022. http://dx.doi.org/10.21079/11681/43345.
Повний текст джерела