Статті в журналах з теми "Long Fiber Composites (LFC)"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Long Fiber Composites (LFC).

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Long Fiber Composites (LFC)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Li, Ran, Huiping Lin, Piao Lan, Jie Gao, Yan Huang, Yueqin Wen, and Wenbin Yang. "Lightweight Cellulose/Carbon Fiber Composite Foam for Electromagnetic Interference (EMI) Shielding." Polymers 10, no. 12 (November 28, 2018): 1319. http://dx.doi.org/10.3390/polym10121319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lightweight electromagnetic interference shielding cellulose foam/carbon fiber composites were prepared by blending cellulose foam solution with carbon fibers and then freeze drying. Two kinds of carbon fiber (diameter of 7 μm) with different lengths were used, short carbon fibers (SCF, L/D = 100) and long carbon fibers (LCF, L/D = 300). It was observed that SCFs and LCFs built efficient network structures during the foaming process. Furthermore, the foaming process significantly increased the specific electromagnetic interference shielding effectiveness from 10 to 60 dB. In addition, cellulose/carbon fiber composite foams possessed good mechanical properties and low thermal conductivity of 0.021–0.046 W/(m·K).
2

Kim, Jung Soo, Jin Hoon Kim, Dae Young Lim, No Hyung Park, Youn Suk Lee, and Dong Hyun Kim. "Studies on the improvement of compatibility in reinforced polypropylene composites using polypropylene-g-anhydride itaconate." Journal of Thermoplastic Composite Materials 31, no. 9 (November 21, 2017): 1281–92. http://dx.doi.org/10.1177/0892705717738286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We prepared long carbon fiber (LCF)-reinforced thermoplastic composites using a new compatibilizer, anhydride itaconate-grafted polypropylene (PP-g-AI). For a good grafting ratio of anhydride itaconate (AI) onto polypropylene (PP), we found optimum mixing conditions such as mixing temperature, monomer content, and initiator type. The initiator, 2,5-dimethyl-2,5-di(tert-butyl peroxy)-hexane (Luperox 101), showed the best graft ratio. The optimum reaction temperature, initiator content, and monomer content were found to be approximately 190°C, 1 phr, and 5 wt%, respectively. We characterized the structure of PP-g-AI using Fourier transform infrared spectroscopy. The ultimate tensile strength of LCF/PP-g-AI/PP composites increased by approximately 15% as the PP-g-AI content increased up to 5 wt%, compared with that of the PP/LCF composites. The fractured surfaces of PP/PP-g-AI/LCF composites showed that PP-g-AI was effective in improving the interfacial adhesion between LCF and the PP matrix.
3

Panin, Sergey V., Lyudmila A. Kornienko, Vladislav O. Alexenko, Dmitry G. Buslovich, Svetlana A. Bochkareva, and Boris A. Lyukshin. "Increasing Wear Resistance of UHMWPE by Loading Enforcing Carbon Fibers: Effect of Irreversible and Elastic Deformation, Friction Heating, and Filler Size." Materials 13, no. 2 (January 11, 2020): 338. http://dx.doi.org/10.3390/ma13020338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of the study was to develop a design methodology for the UltraHigh Molecular Weight Polyethylene (UHMWPE)-based composites used in friction units. To achieve this, stress–strain analysis was done using computer simulation of the triboloading processes. In addition, the effects of carbon fiber size used as reinforcing fillers on formation of the subsurface layer structures at the tribological contacts as well as composite wear resistance were evaluated. A structural analysis of the friction surfaces and the subsurface layers of UHMWPE as well as the UHMWPE-based composites loaded with the carbon fibers of various (nano-, micro-, millimeter) sizes in a wide range of tribological loading conditions was performed. It was shown that, under the “moderate” tribological loading conditions (60 N, 0.3 m/s), the carbon nanofibers (with a loading degree up to 0.5 wt.%) were the most efficient filler. The latter acted as a solid lubricant. As a result, wear resistance increased by 2.7 times. Under the “heavy” test conditions (140 N, 0.5 m/s), the chopped carbon fibers with a length of 2 mm and the optimal loading degree of 10 wt.% were more efficient. The mechanism is underlined by perceiving the action of compressive and shear loads from the counterpart and protecting the tribological contact surface from intense wear. In doing so, wear resistance had doubled, and other mechanical properties had also improved. It was found that simultaneous loading of UHMWPE with Carbon Nano Fibers (CNF) as a solid lubricant and Long Carbon Fibers (LCF) as reinforcing carbon fibers, provided the prescribed mechanical and tribological properties in the entire investigated range of the “load–sliding speed” conditions of tribological loading.
4

SAKAI, Motoji. "Strengthening in Long-Fiber-Reinforced Composites." Journal of the Society of Materials Science, Japan 44, no. 496 (1995): 138–43. http://dx.doi.org/10.2472/jsms.44.138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lenci, Stefano, and Giovanni Menditto. "Weak interface in long fiber composites." International Journal of Solids and Structures 37, no. 31 (August 2000): 4239–60. http://dx.doi.org/10.1016/s0020-7683(99)00140-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Park, Myung-Kyu, and Si-Woo Park. "A study on the properties of the carbon long-fiber-reinforced thermoplastic composite material using LFT-D method." Journal of the Korea Academia-Industrial cooperation Society 17, no. 5 (May 31, 2016): 80–85. http://dx.doi.org/10.5762/kais.2016.17.5.80.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Poulios, Konstantinos, and Christian F. Niordson. "Homogenization of long fiber reinforced composites including fiber bending effects." Journal of the Mechanics and Physics of Solids 94 (September 2016): 433–52. http://dx.doi.org/10.1016/j.jmps.2016.04.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Duduković, M. P., J. L. Kardos, I. S. Yoon, and Y. B. Yang. "Autoclave processing of long fiber thermoplastic composites." Chemical Engineering Science 45, no. 8 (1990): 2519–26. http://dx.doi.org/10.1016/0009-2509(90)80137-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Masud, Arif, Zhe Zhang, and John Botsis. "Strength of composites with long-aligned fibers: fiber–fiber and fiber–crack interaction." Composites Part B: Engineering 29, no. 5 (September 1998): 577–88. http://dx.doi.org/10.1016/s1359-8368(98)00012-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schuster, J., R. Selzer, and K. Friedrich. "Characterization of Fiber Alignment and Fiber Volume Content of Long-fiber Reinforced Composites." Advanced Composites Letters 3, no. 1 (January 1994): 096369359400300. http://dx.doi.org/10.1177/096369359400300104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Scanning electron micrographs of long fiber reinforced thermoplastic composites were analyzed using an image processing system. The main objective of this study was to determine the alignment process which takes place during thermoforming of Long Discontinouos Fiber Composties (LDF™). The planar orientation factor and the standard deviation of the fiber cross section area were determined. Thus, an alignment process could be stated. In addition, the fiber volume fraction was calculated.
11

Ochi, Shinji. "Flexural Properties of Long Bamboo Fiber/ PLA Composites." Open Journal of Composite Materials 05, no. 03 (2015): 70–78. http://dx.doi.org/10.4236/ojcm.2015.53010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Kumar, K. S., V. Patel, A. Tyagi, N. Bhatnagar, and A. K. Ghosh. "Injection Molding of Long Fiber Reinforced Thermoplastic Composites." International Polymer Processing 24, no. 1 (March 2009): 17–22. http://dx.doi.org/10.3139/217.2143.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Chabert, Erwan, Jérôme Vial, Jean-Pierre Cauchois, Marius Mihaluta, and François Tournilhac. "Multiple welding of long fiber epoxy vitrimer composites." Soft Matter 12, no. 21 (2016): 4838–45. http://dx.doi.org/10.1039/c6sm00257a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Tseng, H. C., R. Y. Chang, and C. H. Hsu. "Numerical Investigations of Fiber Orientation Models for Injection Molded Long Fiber Composites." International Polymer Processing 33, no. 4 (August 10, 2018): 543–52. http://dx.doi.org/10.3139/217.3550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kuhn, Christoph, Enrico Koerner, and Olaf Taeger. "A simulative overview on fiber predictions models for discontinuous long fiber composites." Polymer Composites 41, no. 1 (July 29, 2019): 73–81. http://dx.doi.org/10.1002/pc.25346.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

SUGA, Hirofumi, Sayaka OKABE, and Nobutada OHN. "Stress concentrations near a fiber break in long fiber reinforced unidirectional composites." Proceedings of Conference of Tokai Branch 2004.53 (2004): 23–24. http://dx.doi.org/10.1299/jsmetokai.2004.53.23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Shayan Asenjan, M., Ali Reza Sabet, and M. Nekoomanesh. "Long fiber thermoplastic composites under high-velocity impact: Study of fiber length." Journal of Composite Materials 53, no. 3 (June 27, 2018): 353–60. http://dx.doi.org/10.1177/0021998318784639.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study experimentally investigates the high-velocity impact response of long glass fiber-reinforced polypropylenes with different fiber lengths. The study considers three long fiber thermoplastic composites, i.e. 5, 10, and 20 mm prepared via a combination of extrusion and pultrusion processes and a crosshead die. An internal mixer was used to obtain an isotropic compound. The dispersion quality of each compound was confirmed using burn off test. A gas gun with a spherical projectile was employed to conduct high-velocity impact tests at three velocities of 144, 205, and 240 m/s. Internal mixer operation resulted in extensive fiber length reduction for all three long fiber thermoplastic lengths. Results from mechanical tests (Tensile and Izod impact) revealed an increasing value with increase in long fiber thermoplastic length, i.e. fiber length. High-velocity impact results showed higher impact performance for 20 mm long fiber thermoplastic compound compared to 5 and 10 mm long fiber thermoplastic containing specimens. Rate of increase in energy absorption from neat polypropylene to 5 and 10 mm long fiber thermoplastic compounds is much higher than from 10 to 20 mm long fiber thermoplastics. High-velocity impact tests indicated that there may be a threshold value for fiber length beyond which the fiber length plays a lesser role. Scanning electron microscopic analysis showed more fiber breakage at the impact point at a higher impact velocity than the lower end of high-velocity impact.
18

Phelps, Jay H., Ahmed I. Abd El-Rahman, Vlastimil Kunc, and Charles L. Tucker. "A model for fiber length attrition in injection-molded long-fiber composites." Composites Part A: Applied Science and Manufacturing 51 (August 2013): 11–21. http://dx.doi.org/10.1016/j.compositesa.2013.04.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Tomita, Yoshiyuki, Kojiro Morioka, and Masayuki Iwasa. "Bending fatigue of long carbon fiber-reinforced epoxy composites." Materials Science and Engineering: A 319-321 (December 2001): 679–82. http://dx.doi.org/10.1016/s0921-5093(01)01017-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Tan, Hong-Sheng, Yuan-Zhang Yu, Li-Ping Li, Xue-Jing Liu, Zhe-Xing Tan, Yan-Yan Gong, and Ai-Xiang Li. "Mechanical Properties of Long Glass Fiber-Reinforced Polyolefin Composites." Polymer-Plastics Technology and Engineering 54, no. 13 (January 6, 2015): 1343–48. http://dx.doi.org/10.1080/03602559.2014.986810.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Hiscock, D. F., and D. M. Bigg. "Long-fiber-reinforced thermoplastic matrix composites by slurry deposition." Polymer Composites 10, no. 3 (June 1989): 145–49. http://dx.doi.org/10.1002/pc.750100302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Denault, J., T. Vu-Khanh, and B. Foster. "Tensile properties of injection molded long fiber thermoplastic composites." Polymer Composites 10, no. 5 (October 1989): 313–21. http://dx.doi.org/10.1002/pc.750100507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Singha, A. S., and Vijay Kumar Thakur. "Saccaharum Cilliare Fiber Reinforced Polymer Composites." E-Journal of Chemistry 5, no. 4 (2008): 782–91. http://dx.doi.org/10.1155/2008/941627.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Renewable resources such as natural fibers in the field of fiber reinforced materials with their new range of applications represent an important basis in order to fulfill the ecological objective of creating eco-friendly materials. In views of enormous advantages a study on green composites usingSaccaharum cilliarefiber as a reinforcing material and urea-formaldehyde (UF) as a novel matrix has been made. First of all urea-formaldehyde resin synthesized was reinforced withSaccaharum cilliarefiber. Reinforcement of the fiber was accomplished in three different forms particle (200 micron) reinforcement, short fiber (3 mm.) reinforcement and long fiber (6 mm) reinforcement. Present work reveals that mechanical properties such as: tensile strength, compressive strength and wear resistance of urea -formaldehyde resin (UF) increases to a significant extent when reinforced withSaccaharum cilliarefiber which is found in outsized amount in the Himalayan Region. These mechanical properties mainly depend upon the dimensions of the fiber used. Analysis of results shows that particle reinforcement is more effective as compared to short and long fiber reinforcement. Morphological and thermal studies of these composites have also been carried out.
24

Sharma, Bhisham N., Diwakar Naragani, Ba Nghiep Nguyen, Charles L. Tucker, and Michael D. Sangid. "Uncertainty quantification of fiber orientation distribution measurements for long-fiber-reinforced thermoplastic composites." Journal of Composite Materials 52, no. 13 (September 28, 2017): 1781–97. http://dx.doi.org/10.1177/0021998317733533.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present a detailed methodology for experimental measurement of fiber orientation distribution in injection-molded discontinuous fiber composites using the method of ellipses on two-dimensional cross sections. Best practices to avoid biases occurring during surface preparation and optical imaging of carbon-fiber-reinforced thermoplastics are discussed. A marker-based watershed transform routine for efficient image segmentation and the separation of touching fiber ellipses is developed. The sensitivity of the averaged orientation tensor to the image sample size is studied for the case of long-fiber thermoplastics. A Mori–Tanaka implementation of the Eshelby model is then employed to quantify the sensitivity of elastic stiffness predictions to biases in the fiber orientation distribution measurements.
25

Wei, Jinhua, Haoji Wang, Bin Lin, Tianyi Sui, Anying Wang, Feifei Zhao, and Sheng Fang. "Measurement and evaluation of fiber bundle surface of long fiber reinforced woven composites." Surface Topography: Metrology and Properties 7, no. 1 (January 28, 2019): 015003. http://dx.doi.org/10.1088/2051-672x/aaf6fd.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

HUFENBACH, WERNER, MAIK GUDE, SIRKO GELLER, and ANDRZEJ CZULAK. "Manufacture of natural fiber-reinforced polyurethane composites using the long fiber injection process." Polimery 58, no. 6 (June 2013): 473–75. http://dx.doi.org/10.14314/polimery.2013.473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Li, Li Ping, Hong Sheng Tan, Yu Fei Liu, Zhe Xing Tan, and Xue Jing Liu. "Preparation Process of Long Fiber Reinforced Impact Polypropylene Copolymer Composites." Applied Mechanics and Materials 527 (February 2014): 17–20. http://dx.doi.org/10.4028/www.scientific.net/amm.527.17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Composites of continuous glass fiber reinforced impact polypropylene copolymer (IPC) were prepared by using a cross-head impregnation mold by a self-designed die fixed on a single screw extruder, and were chopped into Long fiber/IPC pellets approximately 12 mm in length. The effect of preheat temperature and pulling speed on the mechanical properties of the composites were studied and micrographs of fracture surface of impact specimens for the composites were investigated by scanning electron microscope (SEM). Mechanical properties of the composites were best at 200 °C of the preheated temperature, for the better interfacial adhesion between glass and matrix resin, and that proved by the SEM. Meanwhile, mechanical properties of the composites decreasing with the increasing of pulling speed, for the impregnation effect degraded.
28

Knapp, Wolfgang, S. Clement, C. Franz, M. Oumarou, and J. Renard. "Laser-bonding of long fiber thermoplastic composites for structural assemblies." Physics Procedia 5 (2010): 163–71. http://dx.doi.org/10.1016/j.phpro.2010.08.041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Zhao, Ziwei, Na Zhang, Yunior Hoie, L. James Lee, and Jose M. Castro. "Properties and process ability of long fiber-reinforced polymeric composites." Polymer Composites 35, no. 4 (October 26, 2013): 655–64. http://dx.doi.org/10.1002/pc.22708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Tajvidi, Mehdi, Saeed Kazemi Najafi, and Nazanin Moteei. "Long-term water uptake behavior of natural fiber/polypropylene composites." Journal of Applied Polymer Science 99, no. 5 (2005): 2199–203. http://dx.doi.org/10.1002/app.21892.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Vaidya, U. K., K. K. Chawla, K. Balaji Thattaiparthasarthy, and A. Goel. "The process and microstructure modeling of long-fiber thermoplastic composites." JOM 60, no. 4 (April 2008): 43–49. http://dx.doi.org/10.1007/s11837-008-0048-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Santiuste, Carlos, Xavier Soldani, and Maria Henar Miguélez. "Machining FEM model of long fiber composites for aeronautical components." Composite Structures 92, no. 3 (February 2010): 691–98. http://dx.doi.org/10.1016/j.compstruct.2009.09.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Grandidier, J. C., G. Ferron, and M. Potier-Ferry. "Microbuckling and strength in long-fiber composites: theory and experiments." International Journal of Solids and Structures 29, no. 14-15 (1992): 1753–61. http://dx.doi.org/10.1016/0020-7683(92)90168-s.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Korniejenko, Kinga, Beata Figiela, Krzysztof Miernik, Celina Ziejewska, Joanna Marczyk, Marek Hebda, An Cheng, and Wei-Ting Lin. "Mechanical and Fracture Properties of Long Fiber Reinforced Geopolymer Composites." Materials 14, no. 18 (September 9, 2021): 5183. http://dx.doi.org/10.3390/ma14185183.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of the article is to analyze the structure and mechanical properties in terms of the cracking mechanics of geopolymer composites based on fly ash and river sand, as well as metakaolin and river sand with three types of reinforcement material: glass fiber, carbon fiber, and aramid fiber, in terms of their use in additive manufacturing. Geopolymer composites were reinforced with fibers in a volume ratio of 0.5%, 1.0%, and 2.0%. Subsequently, these samples were subjected to bending strength tests in accordance with the European standard EN 12390-3. The addition of fibers significantly improved the bending strength of all composites made of metakaolin and sand. The reinforcement with aramid fiber in the amount of 2.0% resulted in more than a 3-fold increase in strength compared to the reinforcement-free composites. An analysis of the morphology of the fibers was carried out on the basis of photos taken from an electron microscope. The correct addition of fibers changes the nature of the fracture from brittle to more ductile and reduces the number of cracks in the material.
35

Cruz-González, O. L., A. Ramírez-Torres, R. Rodríguez-Ramos, J. A. Otero, R. Penta, and F. Lebon. "Effective behavior of long and short fiber-reinforced viscoelastic composites." Applications in Engineering Science 6 (June 2021): 100037. http://dx.doi.org/10.1016/j.apples.2021.100037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Zbončák, Radek, Vlastimil Votrubec, and Martin Švec. "The Alternative Procedures of Fiber Volume Ratio Determination of Long-Fiber Carbon - Epoxy Composites." Manufacturing Technology 18, no. 1 (February 1, 2018): 160–64. http://dx.doi.org/10.21062/ujep/71.2018/a/1213-2489/mt/18/1/160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Jeon, Ji Ho, Chang Ki Yoon, Sung Ho Park, Woo Il Lee, and Seung Mo Kim. "Assessment of Long Fiber Spray-up Molding of Chopped Glass Fiber Reinforced Polydicyclopentadiene Composites." Fibers and Polymers 21, no. 5 (May 2020): 1134–41. http://dx.doi.org/10.1007/s12221-020-9676-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Venkatesh, T. A., and D. C. Dunand. "Tertiary compression creep of long-fiber composites: A model for fiber kinking and buckling." Metallurgical and Materials Transactions A 32, no. 1 (January 2001): 183–96. http://dx.doi.org/10.1007/s11661-998-0336-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Wang, Jianchuan, Chengzhen Geng, Feng Luo, Yanmei Liu, Ke Wang, Qiang Fu, and Bobing He. "Shear induced fiber orientation, fiber breakage and matrix molecular orientation in long glass fiber reinforced polypropylene composites." Materials Science and Engineering: A 528, no. 7-8 (March 2011): 3169–76. http://dx.doi.org/10.1016/j.msea.2010.12.081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Skourlis, T. P., C. Chassapis, and S. Manoochehri. "Fiber Orientation Morphological Layers in Injection Molded Long Fiber Reinforced Thermoplastics." Journal of Thermoplastic Composite Materials 10, no. 5 (September 1997): 453–75. http://dx.doi.org/10.1177/089270579701000503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Haldar, Amit Kumar, and S. Senthilvelan. "Notch Effect on Discontinuous Fiber Reinforced Thermoplastic Composites." Key Engineering Materials 471-472 (February 2011): 173–78. http://dx.doi.org/10.4028/www.scientific.net/kem.471-472.173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Increasing utilization of thermoplastic composites in the structural application necessitates understanding of damage tolerance characteristics. In this work, unreinforced, 20 % short, 20 % long glass fiber reinforced polypropylene were injection molded and considered. Test specimens with different notch sizes were tested under static as well as fatigue loading conditions. Under static load condition, short fiber reinforced and unreinforced test material exhibited notch strengthening effect; whereas long fiber reinforced material exhibited notch weakening effect. Failure morphology under fatigue condition exhibited the influence of notch size and length of reinforced fibers over performance. Significant difference between notched and unnotched specimens is observed at low cycle fatigue and very less difference in performance is observed at high cycle fatigue condition.
42

Sharma, Bhisham N., Seth A. Kijewski, Leonard S. Fifield, Yongsoon Shin, Charles L. Tucker, and Michael D. Sangid. "Reliability in the characterization of fiber length distributions of injection molded long carbon fiber composites." Polymer Composites 39, no. 12 (September 6, 2017): 4594–604. http://dx.doi.org/10.1002/pc.24571.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Yu, Yang-Lun, Xian-Ai Huang, and Wen-Ji Yu. "High performance of bamboo-based fiber composites from long bamboo fiber bundles and phenolic resins." Journal of Applied Polymer Science 131, no. 12 (January 27, 2014): n/a. http://dx.doi.org/10.1002/app.40371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Ranganathan, Nalini, Kristiina Oksman, Sanjay K. Nayak, and Mohini Sain. "Effect of long fiber thermoplastic extrusion process on fiber dispersion and mechanical properties of viscose fiber/polypropylene composites." Polymers for Advanced Technologies 27, no. 5 (December 28, 2015): 685–92. http://dx.doi.org/10.1002/pat.3742.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Hamzah, Norhazlin, En Yakub Md Taib, and Mimi Azlina Abu Bakar. "Tensile Properties of Untreated and Treated Long Kenaf Fiber/Polyester Composites." Advanced Materials Research 871 (December 2013): 179–83. http://dx.doi.org/10.4028/www.scientific.net/amr.871.179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The interest in using fibers as reinforcement in composites has increased in recent years due to its lightweight, combustible, non-toxic, non-abrasive, low cost and biodegradable properties. In this study, two difference types of long kenaf fiber (LKF) used in fiber-reinforced composites which are untreated and treated with 1% sodium hydroxide (NaOH). The volume fraction of LKF used are 20%, 25% and 30% prepared by cold pressed hand lay-up technique were investigated. A series of tensile tests were performed to evaluate the effect of their modulus and ultimate tensile strength (UTS). The morphological and structural changes of the fibers were investigated by using scanning electron microscopy (SEM). It has found that the treated long kenaf fiber (TLKF) shows the higher value of tensile strength compared to untreated long kenaf fiber (ULKF).
46

Guo, Jian Bing, Kai Zhou Zhang, Dao Hai Zhang, Bin Wu, Min He, and Shu Hao Qin. "Mechanical Properties and Morphology of Long Glass Fiber Reinforced PP Composites." Advanced Materials Research 652-654 (January 2013): 93–97. http://dx.doi.org/10.4028/www.scientific.net/amr.652-654.93.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The effects of polypropylene grafted with maleic anhydride (PP-g-MA) on the interfacial interaction of PP/GF composites were investigated by means of scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), and mechanical properties. The experimental results demonstrate that PP-g-MA could effectively improve interfacial interaction between the PP and LGF. Based on SEM, good interfacial adhesion between PP and LGF in PP/PP-g-MA/LGF(66.5/3.5/30) composites was observed. All results in this paper were consistent, and showed the good interaction between PP and LGF, which were proved by the mechanical properties of the composites.
47

Harnada, H., T. Sato, and Z. Maekawa. "Material Flow During Compression Moldings of Long Fiber Reinforced Thermoplastic Composites." International Polymer Processing 8, no. 3 (September 1993): 271–75. http://dx.doi.org/10.3139/217.930271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Chatzigeorgiou, George, Adil Benaarbia, and Fodil Meraghni. "Piezoelectric-piezomagnetic behaviour of coated long fiber composites accounting for eigenfields." Mechanics of Materials 138 (November 2019): 103157. http://dx.doi.org/10.1016/j.mechmat.2019.103157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Fernberg, Patrik, Greger Nilsson, and Roberts Joffe. "Piezoresistive Performance of Long-Fiber Composites with Carbon Nanotube Doped Matrix." Journal of Intelligent Material Systems and Structures 20, no. 9 (November 28, 2008): 1017–23. http://dx.doi.org/10.1177/1045389x08097387.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Kaliberov, Danila, and Uday Vaidya. "Pullout Performance of Common Construction Fasteners from Long Fiber Thermoplastic Composites." Polymers and Polymer Composites 23, no. 5 (June 2015): 297–304. http://dx.doi.org/10.1177/096739111502300503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії