Добірка наукової літератури з теми "Low-density polyethylene films"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Low-density polyethylene films".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Low-density polyethylene films"
Kaneko, Masashi, and Hisaya Sato. "Photosulfonation of Low-Density Polyethylene Films." Macromolecular Chemistry and Physics 205, no. 2 (January 2004): 173–78. http://dx.doi.org/10.1002/macp.200300033.
Повний текст джерелаSabetzadeh, Maryam, Rouhollah Bagheri, and Mahmood Masoomi. "Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films." Carbohydrate Polymers 119 (March 2015): 126–33. http://dx.doi.org/10.1016/j.carbpol.2014.11.038.
Повний текст джерелаOpacich, Michael L., and Laurence E. Dowd. "High molecular weight low density polyethylene films." Journal of Polymer Engineering 5, no. 2 (April 1, 1985): 159–72. http://dx.doi.org/10.1515/polyeng-1985-0205.
Повний текст джерелаInceoglu, Funda, and Yusuf Ziya Menceloglu. "Transparent low-density polyethylene/starch nanocomposite films." Journal of Applied Polymer Science 129, no. 4 (January 3, 2013): 1907–14. http://dx.doi.org/10.1002/app.38811.
Повний текст джерелаHo, Kam, Larry Kale, and Scott Montgomery. "Melt strength of linear low-density polyethylene/low-density polyethylene blends." Journal of Applied Polymer Science 85, no. 7 (June 3, 2002): 1408–18. http://dx.doi.org/10.1002/app.10677.
Повний текст джерелаRokbani, Hajer, France Daigle, and Abdellah Ajji. "Long- and short-term antibacterial properties of low-density polyethylene-based films coated with zinc oxide nanoparticles for potential use in food packaging." Journal of Plastic Film & Sheeting 35, no. 2 (January 2, 2019): 117–34. http://dx.doi.org/10.1177/8756087918822677.
Повний текст джерелаDrummond, Kate M., Jefferson L. Hopewell, and Robert A. Shanks. "Crystallization of low-density polyethylene- and linear low-density polyethylene-rich blends." Journal of Applied Polymer Science 78, no. 5 (2000): 1009–16. http://dx.doi.org/10.1002/1097-4628(20001031)78:5<1009::aid-app100>3.0.co;2-2.
Повний текст джерелаAlghdeir, Malek, Khaled Mayya, and Mohamed Dib. "Characterization of Nanosilica/Low-Density Polyethylene Nanocomposite Materials." Journal of Nanomaterials 2019 (March 20, 2019): 1–8. http://dx.doi.org/10.1155/2019/4184351.
Повний текст джерелаBriassoulis, D., A. Aristopoulou, M. Bonora, and I. Verlodt. "Degradation Characterisation of Agricultural Low-density Polyethylene Films." Biosystems Engineering 88, no. 2 (June 2004): 131–43. http://dx.doi.org/10.1016/j.biosystemseng.2004.02.010.
Повний текст джерелаRatanakamnuan, Usarat, and Duangdao Aht-Ong. "Photobiodegradation of low-density polyethylene/banana starch films." Journal of Applied Polymer Science 100, no. 4 (2006): 2725–36. http://dx.doi.org/10.1002/app.23048.
Повний текст джерелаДисертації з теми "Low-density polyethylene films"
Xu, Zhiqiang. "Space charge measurement and analysis in low density polyethylene films." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/69927/.
Повний текст джерелаGOMES, BRUNA MARIA DA CUNHA. "PRODUCTION AND CHARACTERIZATION OF LOW DENSITY POLYETHYLENE FILMS REINFORCED WITH TIO2 BASED NANOMATERIALS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=21691@1.
Повний текст джерелаMateriais plásticos são largamente utilizados em nosso dia-a-dia em embalagens, sacos e outros produtos. Este tipo de material é utilizado devido a suas propriedades como baixo custo, fácil processabilidade, baixa densidade, resistência a microorganismos e água, estabilidade química e durabilidade. Devido às duas últimas propriedades, os polímeros apresentam baixa degradabilidade, causando problemas ambientais. Como óxido de titânio (TiO2) tem se apresentado eficiente como fotocatalisador, reforçar plástico com partículas deste material tem sido uma nova maneira de decompor polímeros a céu aberto. Nanotubos de trititanato (TTNT) podem ser tratados para produzir nanomateriais à base de TiO2 com alta atividade fotocatalítica para a degradação de gases poluentes. Desta forma, o presente trabalho tem como objetivo produzir e caracterizar filmes de polietileno reforçados com quatro tipos de nanomateriais à base de TiO2: TTNT sem pós-tratamento (A1), TTNT pós-tratado termicamente a 550 graus Celsius (A5), TTNT pós-tratado com ácido (A11) e, como referência, partículas de óxido de titânio comercial fornecido pela Degussa (P-25). Os filmes foram expostos à luz UV em uma caixa fechada por 350 horas em temperatura ambiente. A degradação foi avaliada por meio da perda de peso do filme ao longo do tempo. Os filmes virgens e fotodegradados foram caracterizados por Difração de Raios-X (DRX), Calorimetria diferencial de Varredura (DSC), Termogravimetria (TGA) e Microscopia Eletrônica de Varredura (MEV). Os filmes com TTNT pós-tratado fotodegradaram mais do que os com TTNT não tratado, mas menos que os que continham TiO2. Este resultado foi parcialmente atribuído à dificuldade de dispersão dos nanomateriais.
Plastic materials are widely used in our daily lives in bags, food packaging and other products and applications. This type of material is used because of properties such as low-cost, easy processability, low density, resistance to water and microorganisms, and chemical stability and durability. Due to the last two properties, polymers show low biodegradability causing enviro nmental pollution. As titanium dioxide (TiO2) has been shown to be an efficient photocatalyst, the mixture of plastic with this material has been proven to be a new and useful way to decompose solid polymers in open air. Trititanate nanotubes (TTNT) can also be used as a route for developing TiO2-based nanomaterials with high photocatalytic activity for degradation of gas pollutants. Thus, the present research aims to produce degradable polyethylene polymer (PE) films composed with four types of TiO2-based nanomaterials: TTNT as synthesized (A1), TTNT with thermal post-treatment at 550 Celsius degrees (A5), TTNT with acid post-treatment (A11), and, as a reference, commercial TiO2 nanoparticles from Degussa Company (P25).The main characterization tool was the weight reduction measurement during the degradation process. The films were exposed to artificial UV light under ambient air for 350 hours. Virgin and degraded filmes where characterized by X-ray Diffraction, UV-Vis absorption, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy (SEM). Films with post-treated TTNT showed stronger degradation than films with non-treated loads, but weaker than films containing TiO2. This result was partially assigned to the poor dispersion of the nanomaterials.
Azahari, Baharin Bin. "An investigation into the relationship between processing, orientation and properties of low density polyethylene films." Thesis, London Metropolitan University, 1990. http://repository.londonmet.ac.uk/2992/.
Повний текст джерелаBermingham, Siobhan Clara. "The effect of processing parameters on the properties of blown films produced from blends of a low density and a butene based linear low density polyethylene." Thesis, Queen's University Belfast, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282120.
Повний текст джерелаMADDALA, PRANAY RAJ REDDY. "Investigation of Polymer packaging films behavior subjected to tension and tearing." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15002.
Повний текст джерелаYoo, SeungRan. "The effect of high pressure processing on the mass transfer of Irganox 1076 in low-density polyethylene films and in 95% ethanol as a food simulant." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1181749497.
Повний текст джерелаEuzébio, Junior Silvio Hendez. "Influência das ceras orgânicas nas propriedades de filmes tubulares de PEBD." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/186153.
Повний текст джерелаPolyolefins, especially polyethylenes (PE) are widely used polymeric materials for the production of tubular films, being one of the most widely used materials in the flexible packaging industry. Among the various industrial PE, low density polyethylene (LDPE) has unique rheological properties compared to linear and high density PE. The high viscosity and the numerous long branches found in this polymer influence the reduction of productivity when processed. Additives of the most varied compositions are added to the polyethylene during the tubular extrusion process in order to improve their properties. One of the most used additives to facilitate the flux of melt for film processing is synthetic waxes, the most used being oxidized polyethylene (CP). In the search for organic and / or natural source wax alternatives, the objective of this work is to evaluate the influence of the type and content of wax on the processability and final properties of tubular films of LDPE. Three types of waxes were used: CP (polyethylene wax), carnauba (CC) and glycerol monostearate (CM), and 4 formulations of LDPE / wax were processed in mass proportions of 99.5 / 0.5; 99/1; 98/2 and 96/4 m / m with the three types of wax and compared with LDPE without wax. The films were characterized by physical, optical, chemical, thermal, rheological and mechanical tests. Optical properties such as brightness and opacity are altered by the addition of waxes as an increase in the concentration of the waxes increases the degree of crystallinity of the films. Carnauba wax shows a yellowing in the films produced with higher concentrations. Results of this study showed that the use of synthetic wax, CP and natural carnauba, increase the productivity of the tubular film of LDPE, being the optimal content of 1% of wax, without having a significant influence on the thickness and width of the tubular film. The use of alternative flow agents of organic nature is feasible because they obtained similar and superior results to the standard in the films tested.
Gupta, Pankaj. "Processing-Structure-Property Studies of: I) Submicron Polymeric Fibers Produced By Electrospinning and II) Films Of Linear Low Density Polyethylenes As Influenced By The Short Chain Branch Length In Copolymers Of Ethylene/1-Butene, Ethylene/1-Hexene & Ethylene/1-Octene Synthesized By A Single Site Metallocene Catalyst." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/30090.
Повний текст джерелаPh. D.
Lozay, Quentin. "Conception et caractérisations de matériaux composites nanostructurés à hautes propriétés barrières. Etude films multinanocouches de PE et PA6 chargés de montmorillonite." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR012.
Повний текст джерелаPolymers are used in many fields such as packaging, automotive, etc. as they have good mechanical, thermal and barrier properties. Economic and environmental challenges are driving development towards more efficient and lighter materials. The aim of this thesis work was to develop multilayer composite films based on polyethylene (PE) and polyamide (PA6) with high gas and water barrier properties. A coextrusion process with multiplier elements made it possible to carry out 100 μm thick multilayers containing up to 2049 layers. Two series of PE-binder-PA6 films of different compositions were studied. Clays (organo-modified montmorillonites) were incorporated (at 0.5 and 5 wt%) into the alternating layers of PE and PA6. The structural, thermal and mechanical properties of these multilayers have been correlated with the transport properties. We observed confinement effects on nanostratification of films and crystallinity of polymers and the impact on barrier properties. We showed the complexity of the multinanolayer structures involving interphases as well as the complexity of the transfer mechanisms. The serial model for predicting permeability highlighted significant improvements in the gas barrier properties of confined PE layers but in water. The barrier effect on all of the multilayers was, however, limited due to the “on edge” orientation of the crystalline phases and structural defects. The confinement of nanofillers (at 1% v/v) in PA6 layers has made it possible to increase the barrier properties of multilayers
Steffl, Thomas. "Rheological and film blowing properties of various low density polyethylenes and their blends." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972028625.
Повний текст джерелаКниги з теми "Low-density polyethylene films"
Plastics, Shell. Production of film from low density polyethylene. London: Shell, 1985.
Знайти повний текст джерелаЧастини книг з теми "Low-density polyethylene films"
Poveda, Patricia Negrini Siqueira, Hamilton Magalhäes Viana, and Leonardo Gondim de Andrade Silva. "Behavior of Linear Low Density Polyethylene Films under UV Ageing for Agricultural Application." In Characterization of Minerals, Metals, and Materials 2015, 253–58. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093404.ch31.
Повний текст джерелаPoveda, Patricia Negrini Siqueira, Hamilton Magalhães Viana, and Leonardo Gondim de Andrade Silva. "Behavior of Linear Low Density Polyethylene Films under UV Ageing for Agricultural Application." In Characterization of Minerals, Metals, and Materials 2015, 253–58. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48191-3_31.
Повний текст джерелаNaciri, Jawad, Zhiqiang Hé, Roseann M. Costantino, Liangde Lu, George S. Hammond, and Richard G. Weiss. "Photophysical Approaches to Characterization of Guest Sites and Measurement of Diffusion Rates to and from Them in Unstretched and Stretched Low-Density Polyethylene Films." In Multidimensional Spectroscopy of Polymers, 425–45. Washington, DC: American Chemical Society, 1995. http://dx.doi.org/10.1021/bk-1995-0598.ch025.
Повний текст джерелаLaha, Soumita Dutta, Kingshuk Dutta, and Patit Paban Kundu. "Biodegradation of Low Density Polyethylene Films." In Handbook of Research on Microbial Tools for Environmental Waste Management, 282–318. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3540-9.ch014.
Повний текст джерелаHan, Chang Dae. "Tubular Film Blowing." In Rheology and Processing of Polymeric Materials: Volume 2: Polymer Processing. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195187830.003.0012.
Повний текст джерела"Biodegradable Polymer Films on Low Density Polyethylene, Modified Chitosan." In Key Technologies in Polymer Chemistry, 35–42. Apple Academic Press, 2015. http://dx.doi.org/10.1201/b18033-10.
Повний текст джерелаBazunova, M., and R. Akhmetkhanov. "Biodegradable Polymer Films on Low Density Polyethylene and Chitosan Basis: A Research Note." In Materials Behavior, 83–88. Apple Academic Press, 2015. http://dx.doi.org/10.1201/b18259-3.
Повний текст джерела"Biodegradable Polymer Films on Low Density Polyethylene and Chitosan Basis: A Research Note." In Materials Behavior, 103–8. Apple Academic Press, 2015. http://dx.doi.org/10.1201/b18259-9.
Повний текст джерелаLu, Jianjun, Baiyi Zhao, and Hung-Jue Sue. "Phase Structure Characterization and Processing-Structure-Property Relationships in Linear Low-Density Polyethylene Blown Films." In Metallocene Technology in Commercial Applications, 111–19. Elsevier, 1999. http://dx.doi.org/10.1016/b978-188420776-1.50016-8.
Повний текст джерелаEmekli, N. Y., K. Buyuktas, and A. Bascetincelik. "Changings of some physical properties of different low-density polyethylene films during the useful life." In Environmental Science and Information Application Technology, 147–50. CRC Press, 2015. http://dx.doi.org/10.1201/b18559-25.
Повний текст джерелаТези доповідей конференцій з теми "Low-density polyethylene films"
HU, BY CHEN, and JIAN-WEI YAN. "Synthesis and Characterization of Functionalized Graphene/Low Density Polyethylene Nanocomposite Films." In The 21st IAPRI World Conference on Packaging. Lancaster, PA: DEStech Publications, Inc., 2018. http://dx.doi.org/10.12783/iapri2018/24445.
Повний текст джерелаCheng, Zixia, Jinxing Shi, Ling Zhang, Yuanxiang Zhou, Zekai Lu, and Shaowei Guo. "Space Charge Behavior in AC Electrically Aged Low-Density Polyethylene Films." In 2018 IEEE 2nd International Electrical and Energy Conference (CIEEC). IEEE, 2018. http://dx.doi.org/10.1109/cieec.2018.8745824.
Повний текст джерелаRychkov, Andrey, Alexey Kuznetsov, Anna Gulyakova, and Dmitry Rychkov. "Electret Properties of Layered Structures Based on Low Density Polyethylene Films." In 2022 IEEE 4th International Conference on Dielectrics (ICD). IEEE, 2022. http://dx.doi.org/10.1109/icd53806.2022.9863559.
Повний текст джерелаKim, Ick-Chan, Egidio (Ed) Marotta, and Skip Fletcher. "Thermal Joint Conductance of Low Density Polyethylene and Polyster Polymeric Films: Experimental." In 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-760.
Повний текст джерелаCheng, Q., and K. Komvopoulos. "Nanomechanical Properties of Fluorocarbon Films Grafted Onto Plasma-Treated Low-Density Polyethylene Surfaces." In STLE/ASME 2008 International Joint Tribology Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ijtc2008-71224.
Повний текст джерелаRychkov, Andrey, Valery Stojharov, Alexey Kuznetsov, and Dmitry Rychkov. "The Influence of Recrystallization Regimes on Electret Charge Stability in Low-Density Polyethylene Films." In 2018 IEEE 2nd International Conference on Dielectrics (ICD). IEEE, 2018. http://dx.doi.org/10.1109/icd.2018.8468349.
Повний текст джерелаRychkov, Andrey, Valery Stojharov, Alexey Kuznetsov, and Dmitry Rychkov. "The Influence of Recrystallization Regimes on Electret Charge Stability in Low-Density Polyethylene Films." In 2018 IEEE 2nd International Conference on Dielectrics (ICD). IEEE, 2018. http://dx.doi.org/10.1109/icd.2018.8514638.
Повний текст джерелаXu, Z., L. Zhang, and G. Chen. "Measurement and analysis of electric potential decay in corona charged low-density polyethylene films." In 2007 IEEE International Conference on Solid Dielectrics. IEEE, 2007. http://dx.doi.org/10.1109/icsd.2007.4290849.
Повний текст джерелаPodzorova, M. "Effect of UV-Irradiation and Ozone Exposure on Thermal and Mechanical Properties of PLA/LDPE Films." In Modern Trends in Manufacturing Technologies and Equipment. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901755-14.
Повний текст джерелаBowman, Andrew, Michael Roth, William Lawrimore, and John Newman. "Graphene Confined Polymer Thin Films Subjected to Supersonic Impact." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-68457.
Повний текст джерелаЗвіти організацій з теми "Low-density polyethylene films"
Cameron, Arthur, Shimshon Ben-Yehoshua, and Rebecca Hernandez. Design and Function of Modified Atmosphere Packaging Systems for Fresh Produce: a Unified Approach for Optimizing Oxygen, Carbon Dioxide and Relative Humidity. United States Department of Agriculture, January 1996. http://dx.doi.org/10.32747/1996.7613019.bard.
Повний текст джерела