Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Low-density polyethylene films.

Статті в журналах з теми "Low-density polyethylene films"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Low-density polyethylene films".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kaneko, Masashi, and Hisaya Sato. "Photosulfonation of Low-Density Polyethylene Films." Macromolecular Chemistry and Physics 205, no. 2 (January 2004): 173–78. http://dx.doi.org/10.1002/macp.200300033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sabetzadeh, Maryam, Rouhollah Bagheri, and Mahmood Masoomi. "Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films." Carbohydrate Polymers 119 (March 2015): 126–33. http://dx.doi.org/10.1016/j.carbpol.2014.11.038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Opacich, Michael L., and Laurence E. Dowd. "High molecular weight low density polyethylene films." Journal of Polymer Engineering 5, no. 2 (April 1, 1985): 159–72. http://dx.doi.org/10.1515/polyeng-1985-0205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Inceoglu, Funda, and Yusuf Ziya Menceloglu. "Transparent low-density polyethylene/starch nanocomposite films." Journal of Applied Polymer Science 129, no. 4 (January 3, 2013): 1907–14. http://dx.doi.org/10.1002/app.38811.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ho, Kam, Larry Kale, and Scott Montgomery. "Melt strength of linear low-density polyethylene/low-density polyethylene blends." Journal of Applied Polymer Science 85, no. 7 (June 3, 2002): 1408–18. http://dx.doi.org/10.1002/app.10677.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rokbani, Hajer, France Daigle, and Abdellah Ajji. "Long- and short-term antibacterial properties of low-density polyethylene-based films coated with zinc oxide nanoparticles for potential use in food packaging." Journal of Plastic Film & Sheeting 35, no. 2 (January 2, 2019): 117–34. http://dx.doi.org/10.1177/8756087918822677.

Повний текст джерела
Анотація:
Concerns in food safety and the need for high-quality foods have increased the demand for extending the shelf life of packaged foods. Subsequently, promoting and investigating the development of antibacterial materials for food packaging has become inevitable. Zinc oxide nanoparticles have attracted attention lately owing to their multifunctional properties, especially antibacterial activity. For this study, antibacterial low-density polyethylene films were prepared by coating zinc oxide nanoparticles onto their surface. The low-density polyethylene film antibacterial activity was evaluated toward Gram-positive and Gram-negative bacteria. The scanning electron microscopy images showed that using anhydride-modified low-density polyethylene (LDPE-g-AM) resin permitted improved zinc oxide nanoparticle distribution on the low-density polyethylene film surface, reduced the agglomerate sizes, and reinforced the zinc oxide nanoparticle bonding to the low-density polyethylene film surface. We found that the coated low-density polyethylene films exhibited high antibacterial activity against both strains. The antibacterial tests also proved that the coated films retained their antibacterial efficiency toward Escherichia coli, even after eight months, with a reduction rate higher than 99.9%, whereas for Staphylococcus aureus the antibacterial properties for the linear low-density polyethylene (LLDPE) films decreased at eight months and improved for the LDPE-g-AM films. When the zinc oxide coated films were laminated with neat low-density polyethylene, only the LDPE-g-AM was still active against E. coli provided that the lamination thickness does not go beyond 8 µm. This research demonstrated that the coated low-density polyethylene films have excellent attributes when used as an active coating in the food packaging industry.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Drummond, Kate M., Jefferson L. Hopewell, and Robert A. Shanks. "Crystallization of low-density polyethylene- and linear low-density polyethylene-rich blends." Journal of Applied Polymer Science 78, no. 5 (2000): 1009–16. http://dx.doi.org/10.1002/1097-4628(20001031)78:5<1009::aid-app100>3.0.co;2-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Alghdeir, Malek, Khaled Mayya, and Mohamed Dib. "Characterization of Nanosilica/Low-Density Polyethylene Nanocomposite Materials." Journal of Nanomaterials 2019 (March 20, 2019): 1–8. http://dx.doi.org/10.1155/2019/4184351.

Повний текст джерела
Анотація:
Six ratios of nanosilica particles were employed to fabricate low-density polyethylene (LDPE) composites using melt mixing and hot molding methods. Several composite films with different ratios (0.5, 1, 2.5, 5, 7.5, and 10 wt%) of SiO2 were prepared. The obtained composite films were identified and characterized by Fourier-transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). At a specific mixing ratio, far infrared radiation transmittance was prohibited while the ultraviolet-visible transmittance is allowed; this will be explained in detail. Optical measurements show that the composite films prevent the transmission of IR radiation near 9 μm and allow UV-VIS transmission during sun-shining time. The mechanical behaviour of a nanosilica-reinforced LDPE composite was studied using tensile tests. The addition of 1 wt% nanosilica has successfully enhanced the mechanical properties of the LDPE material.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Briassoulis, D., A. Aristopoulou, M. Bonora, and I. Verlodt. "Degradation Characterisation of Agricultural Low-density Polyethylene Films." Biosystems Engineering 88, no. 2 (June 2004): 131–43. http://dx.doi.org/10.1016/j.biosystemseng.2004.02.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ratanakamnuan, Usarat, and Duangdao Aht-Ong. "Photobiodegradation of low-density polyethylene/banana starch films." Journal of Applied Polymer Science 100, no. 4 (2006): 2725–36. http://dx.doi.org/10.1002/app.23048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Torres, Apolonio Vargas, Paul Baruk Zamudio-Flores, René Salgado-Delgado, and Luís Arturo Bello-Pérez. "Biodegradation of low-density polyethylene-banana starch films." Journal of Applied Polymer Science 110, no. 6 (December 15, 2008): 3464–72. http://dx.doi.org/10.1002/app.28938.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Rana, S. K. "Crystallization of high-density polyethylene-linear low-density polyethylene blend." Journal of Applied Polymer Science 69, no. 13 (September 26, 1998): 2599–607. http://dx.doi.org/10.1002/(sici)1097-4628(19980926)69:13<2599::aid-app10>3.0.co;2-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Hossen Beg, Mohammad Dalour, Shaharuddin Kormin, Mohd Bijarimi, and Haydar U. Zaman. "Environmentally degradable sago starch filled low-density polyethylene." Journal of Polymer Engineering 35, no. 6 (August 1, 2015): 551–63. http://dx.doi.org/10.1515/polyeng-2014-0293.

Повний текст джерела
Анотація:
Abstract Degradable native low density polyethylene (LDPE) and modified LDPE films containing 5–30 wt% of sago starch, and LDPE with prodegradant additives in the form of a master batch (MB) in the amounts of 30% starch were prepared by twin screw extrusion followed by injection molding. Studies on their mechanical properties such as tensile strength and elongation at break and biodegradation were carried out by tensile test and exposure to hydrolysis, fungi environment as well as by natural weathering and burial in soil. The presence of high starch contents had an adverse effect on the tensile properties of the blend films. High starch content was also found to increase the rate of biodegradability of the films. The characteristic parameters of the environment were measured during the period of degradation and their influence on degradation of LDPE was discussed. Changes in weight, morphology, thermogravimetric analysis (TGA) and tensile properties of polymer samples were tested during the experiment performed.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Wang, Xuyun, Zhaobo Wang, and Xin Wang. "Preparation and characterization of linear low-density polyethylene/low-density polyethylene/TiO2 membranes." Journal of Applied Polymer Science 98, no. 1 (2005): 216–21. http://dx.doi.org/10.1002/app.22064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Shibayama, Mitsuhiro, Akira Izutani, Atsuhiro Ishikawa, Kyoji Tanaka, and Shunji Nomura. "Peeling of Iaminated films comprising high-density polyethylene and polypropylene/low-density polyethylene blends." Polymer 35, no. 2 (January 1994): 271–80. http://dx.doi.org/10.1016/0032-3861(94)90690-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Andersson, Thorbjörn, Berit Stålbom, and Bengt Wesslén. "Degradation of polyethylene during extrusion. II. Degradation of low-density polyethylene, linear low-density polyethylene, and high-density polyethylene in film extrusion." Journal of Applied Polymer Science 91, no. 3 (December 5, 2003): 1525–37. http://dx.doi.org/10.1002/app.13024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Andersson, Thorbjörn, Berit Stålbom, and Bengt Wesslén. "Degradation of polyethylene during extrusion. II. Degradation of low-density polyethylene, linear low-density polyethylene, and high-density polyethylene in film extrusion." Journal of Applied Polymer Science 92, no. 1 (February 3, 2004): 684–85. http://dx.doi.org/10.1002/app.20183.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Azlin-Hasim, Shafrina, Malco C. Cruz-Romero, Michael A. Morris, Enda Cummins, and Joseph P. Kerry. "Spray coating application for the development of nanocoated antimicrobial low-density polyethylene films to increase the shelf life of chicken breast fillets." Food Science and Technology International 24, no. 8 (July 25, 2018): 688–98. http://dx.doi.org/10.1177/1082013218789224.

Повний текст джерела
Анотація:
Antimicrobial coated films were produced by an innovative method that allowed surface modification of commercial low-density polyethylene films so that well-defined antimicrobial surfaces could be prepared. A Pluronic™ surfactant and a polystyrene-polyethylene oxide block copolymer were employed to develop modified materials. The Pluronic™ surfactant provided a more readily functionalised film surface, while block copolymer provided a reactive interface which was important in providing a route to silver nanoparticles that were well adhered to the surface. Antimicrobial films containing silver were manufactured using a spray coater and the amount of silver used for coating purposes varied by the concentration of the silver precursor (silver nitrate) or the number of silver coatings applied. Potential antimicrobial activity of manufactured silver-coated low-density polyethylene films was tested against Pseudomonas fluorescens, Staphylococcus aureus and microflora isolated from raw chicken. The microbiological and physicochemical quality of chicken breast fillets wrapped with silver-coated low-density polyethylene films followed by vacuum skin packaging was also assessed during storage. Antimicrobial activity of developed silver-coated low-density polyethylene films was dependent ( p < 0.05) upon the concentrations of silver precursor and the number of silver coatings used. Better antimicrobial activity against P. fluorescens, S. aureus and chicken microflora was observed when the concentration of silver precursor was 3% and the spray coating deposition of silver was repeated four times. Use of silver-coated low-density polyethylene films extended ( p < 0.05) shelf life of chicken breast fillets and enhanced ( p < 0.05) oxidative stability compared to control films. Results indicated that silver-coated low-density polyethylene films could potentially be used as antimicrobial packaging for food applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Sharma, Sakshi, Nupur Mathur, Anuradha Singh, and Maithili Agarwal. "Biodegradation of Low- and High-Density Polyethylene Films by Microbacterium Barkeri Sh20." Current World Environment 17, no. 1 (April 30, 2022): 245–54. http://dx.doi.org/10.12944/cwe.17.1.22.

Повний текст джерела
Анотація:
Polyethylene waste contamination is one of the most concerning environmental issues not only in India but also in world. Microbial degradation is one of the safest and environment friendly process to degrade polyethylene among other major types degradation methods such as thermo-oxidative degradation and photo-degradation. The present research focused on the isolation, enrichment, and characterization of polyethylene-utilizing bacteria, not screen as far for biodegradation, and evaluation of its degrading capacity on polyethylene. A bacterial strain (TN2) was isolated from a motor-oil contaminated soil. The biochemical characterization of the strain was based on an automated microbial identification system. Strain TN2 was identified through 16SrRNA gene sequencing, which shows strain was closely related to Microbacterium genus and identified as Microbacterium barkeri SH20 (Accession No. KY887791.1). To examine the degradation capacity of isolated strain, it was used for biodegradation studies on two types of polyethylene films i.e. LDPE as well as HDPE (low and high density polyethylene respectively) HDPE (high-density polyethylene) for 30 days. The film samples were analyzed after bacterial strain incubation based on the weight loss percentage and the Keto & Ester Carbonyl Index (via Fourier transform infrared spectroscopy- FTIR). The highest decrease in weight loss percentage was calculated of PE-S1 HDPE film samples i.e 0.985±0.23%, as weight loss represents a qualitative evaluation of biodegradation. FTIR studies shows changes IR peaks of C=O regions and Keto & Ester Carbonyl Index was found to decrease in HDPE films (PE-S1) compared to other two LDPE (PE-S2) and HDPE films (PE-S3) shows degradation of polyethylene. The research established that Microbacterium barkeri SH20 (TN2) is a novel bacterial strain that can degrade polyethylene films. Hence, it can be used in future biodegradation studies and field trails.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Patel, Rajen M., Teresa P. Karjala, Nilesh R. Savargaonkar, Philip Salibi, and Lizhi Liu. "Fundamentals of structure–property relationships in blown films of linear low density polyethylene/low density polyethylene blends." Journal of Plastic Film & Sheeting 35, no. 4 (April 18, 2019): 401–21. http://dx.doi.org/10.1177/8756087919844303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Lu, Jianjun, and Hung-Jue Sue. "Morphology and mechanical properties of blown films of a low-density polyethylene/linear low-density polyethylene blend." Journal of Polymer Science Part B: Polymer Physics 40, no. 6 (February 11, 2002): 507–18. http://dx.doi.org/10.1002/polb.10115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Hale, W. R., E. D. Crawford, K. K. Dohrer, and B. T. Duckworth. "Linear Low Density Polyethylene Resins for Breathable Microporous Films." International Nonwovens Journal os-11, no. 3 (September 2002): 1558925002OS—01. http://dx.doi.org/10.1177/1558925002os-01100308.

Повний текст джерела
Анотація:
The trade-off between breathability and strength properties has (grudgingly) been accepted by producers of microvoided film, such as for diaper backsheet. The key resin, additive, film fabrication, and film stretching parameters that impact moisture vapor transmission as well as the physical attributes of the film have been identified. The understanding of these complex interactions provided the basis for modification of the polyethylene (PE) molecular architecture that promotes both high MVTR and high-strength properties in microvoided films. This information has resulted in new polyethylene resins for the breathable film market.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Gupta, A. K., S. K. Rana, and B. L. Deopura. "Crystallization behavior of high-density polyethylene/linear low-density polyethylene blend." Journal of Applied Polymer Science 44, no. 4 (February 5, 1992): 719–26. http://dx.doi.org/10.1002/app.1992.070440418.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Gupta, A. K., S. K. Rana, and B. L. Deopura. "Crystallization kinetics of high-density polyethylene/linear low-density polyethylene blend." Journal of Applied Polymer Science 51, no. 2 (January 10, 1994): 231–39. http://dx.doi.org/10.1002/app.1994.070510204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Kale, Vivek, Kalpesh Jani, Satish Awate, R. Rangaprasad, and Yatish Vasudeo. "Blown Films from Linear Low Density Polyethylene Incorporating Biodegradable Additive." Polymers and Polymer Composites 11, no. 2 (February 2003): 141–44. http://dx.doi.org/10.1177/096739110301100208.

Повний текст джерела
Анотація:
Environmental concerns are now driving additive suppliers and polymer resin manufacturers to step up efforts to create innovative materials for the future. In the present work, a “biodegradable” additive/promoter was incorporated into a butene-based linear low density polyethylene (LLDPE) at different levels. The properties of the blown films derived therefrom were investigated. In the first step the “degradation additive/promoter” was converted into a 50% masterbatch in LLDPE. In the second step, this concentrate was let down at 5, 10, 15 and 20% level in a butene-based film grade LLDPE. The properties of the films were characterized. In the third step, the films were subjected to “real-time” degradation tests; using natural soil and under vermicompost conditions. Films subjected to degradation under vermicompost conditions have shown encouraging results. After 3 months, the films containing 15 and 20% additive were found to have disintegrated to a practically unusable form.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Murao, Satoshi, Takehiro Hosokawa, and Tsuyoshi Kajitani. "Ultrasonic Heating of Poly(ethylene terephthalate), Polypropylene, High-Density Polyethylene, and Low-Density Polyethylene Films." Applied Physics Express 5, no. 9 (August 9, 2012): 096601. http://dx.doi.org/10.1143/apex.5.096601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Sabetzadeh, Maryam, Rouhollah Bagheri, and Mahmood Masoomi. "Effect of nanoclay on the properties of low density polyethylene/linear low density polyethylene/thermoplastic starch blend films." Carbohydrate Polymers 141 (May 2016): 75–81. http://dx.doi.org/10.1016/j.carbpol.2015.12.057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Markovičová, L., V. Zatkalíková, T. Kojnoková, D. Gaňa, and T. Liptáková. "The physical – mechanical properties of low-density polyethylene films." IOP Conference Series: Materials Science and Engineering 726 (January 20, 2020): 012008. http://dx.doi.org/10.1088/1757-899x/726/1/012008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Dias, Marali Vilela, Hiasmyne Silva de Medeiros, Nilda de Fátima Ferreira Soares, Nathália Ramos de Melo, Soraia Vilela Borges, João de Deus Souza Carneiro, and Joesse Maria Teixeira de Assis Klug Pereira. "Development of low-density polyethylene films with lemon aroma." LWT - Food Science and Technology 50, no. 1 (January 2013): 167–71. http://dx.doi.org/10.1016/j.lwt.2012.06.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Salem, M. A., H. Farouk, and I. Kashif. "Physicochemical changes in UV- exposed low- density polyethylene films." Macromolecular Research 10, no. 3 (June 2002): 168–73. http://dx.doi.org/10.1007/bf03218267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Giesse, Ralf, and Marco-A. De Paoli. "Photo-degradable polymer films derived from low density polyethylene." Polymer Degradation and Stability 23, no. 2 (January 1989): 201–7. http://dx.doi.org/10.1016/0141-3910(89)90089-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Goddard, J. M., J. N. Talbert, and J. H. Hotchkiss. "Covalent Attachment of Lactase to Low-Density Polyethylene Films." Journal of Food Science 72, no. 1 (January 2007): E036—E041. http://dx.doi.org/10.1111/j.1750-3841.2006.00203.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Jeon, Keesu, and Ramanan Krishnamoorti. "Morphological Behavior of Thin Linear Low-Density Polyethylene Films." Macromolecules 41, no. 19 (October 14, 2008): 7131–40. http://dx.doi.org/10.1021/ma800652p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Raj, Baldev, A. Eugene Raj, K. R. Kumar, and Siddarramaiah. "Moisture-sorption characteristics of starch/low-density polyethylene films." Journal of Applied Polymer Science 84, no. 6 (February 27, 2002): 1193–202. http://dx.doi.org/10.1002/app.10417.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Allan, Jacqueline M., R. Larry Dooley, and Shalaby W. Shalaby. "Controlled gas-phase sulfonation of low-density polyethylene films." Journal of Applied Polymer Science 76, no. 13 (June 24, 2000): 1865–69. http://dx.doi.org/10.1002/(sici)1097-4628(20000624)76:13<1865::aid-app3>3.0.co;2-k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Briassoulis, D., and E. Schettini. "Analysis and Design of Low-density Polyethylene Greenhouse Films." Biosystems Engineering 84, no. 3 (March 2003): 303–14. http://dx.doi.org/10.1016/s1537-5110(02)00241-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Siročić, Anita Ptiček, Ana Rešček, Mario Ščetar, Ljerka Kratofil Krehula, and Zlata Hrnjak-Murgić. "Development of low density polyethylene nanocomposites films for packaging." Polymer Bulletin 71, no. 3 (December 21, 2013): 705–17. http://dx.doi.org/10.1007/s00289-013-1087-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Luyt, A. S., and M. J. Hato. "Thermal and mechanical properties of linear low-density polyethylene/low-density polyethylene/wax ternary blends." Journal of Applied Polymer Science 96, no. 5 (2005): 1748–55. http://dx.doi.org/10.1002/app.21642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Bernazzani, P., V. T. Bich, H. Phuong-Nguyen, A. Haine, C. Chapados, Lê H. Dao, and G. Delmas. "FTIR analysis of the phase content in low-density polyethylene." Canadian Journal of Chemistry 76, no. 11 (November 1, 1998): 1674–87. http://dx.doi.org/10.1139/v98-159.

Повний текст джерела
Анотація:
The phase content of a low-density polyethylene was studied by analysis of the CH2 rocking vibrations in non-oriented films prepared from the press (P-films) or from solution (S-films). Spectral simulations of the transmission spectra give the mass fractions of the orthorhombic phase αortho and of two noncrystalline phases (monoclinic-like and amorphous). The values of αortho (IR) are compared to αortho (i) where (i) stands for the X-ray diffraction, density, and DSC techniques. New results are obtained concerning the orthorhombic order and the change of phase content with aging. A two-phase analysis is justified for non-aged films containing a small amount of the monoclinic-like phase. The values of αortho (IR) are larger than αortho (i), the difference ranging between 0.12 and 0.43. The difference is a measure of the short-range order. αortho (IR) can reach 0.73 for the S-films. The stability of the short-range order phase is investigated. The sample is also analyzed using the trace of slow calorimetry. The difference between αortho by DSC and by slow calorimetry is a measure of strainable order. During aging, the variation in the phase content is large for the noncrystalline phases (in content and frequency) and small for the orthorhombic. The increase of the monoclinic-like phase during aging suggests that it is a precursor of the more stable orthorhombic organization. The quantification of two noncrystalline phases on fresh and aged films clarifies some ambiguity found in the literature about the monoclinic-like phase and the localization of bands in the rocking region for sample characterization. Analysis of other regions of the spectrum is needed to confirm the present results. Key words: low-density PE, phase content, FTIR, network phase, slow calorimetry.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Chandra, R. B. Jagadeesh, B. Shivamurthy, HM Vishwanatha, and M. Sathish kumar. "Tensile and thermal behaviour of linear low-density polyethylene nanocomposite films." IOP Conference Series: Materials Science and Engineering 1272, no. 1 (December 1, 2022): 012024. http://dx.doi.org/10.1088/1757-899x/1272/1/012024.

Повний текст джерела
Анотація:
In this work Graphene nanoplatelets (GNPs) filled with Linear low-density polyethylene (LLDPE), nanocomposite films designated as LLDPE+1%GNP and LLDPE+5% GNP were manufactured using LLDPE pristine granules, 1 wt. % GNPs-LLDPE, and 5wt. % GNPs-LLDPE masterbatch granules by the extrusion-blow molding process. It was found that the ductile behaviour of neat LLDPE film and nanocomposite films are anisotropic in the machine direction (MD) and transverse direction (TD). The tensile strength of neat LLDPE films in the MD and TD is 25.93 & 20MPa. LLDPE+1GNPs nanocomposite films showed higher tensile strength in the MD and TD 28.38 & 23MPa, and LLDPE+5GNPs nanocomposite films showed 24.36 & 23MPa respectively. The high concentration of GNPs in LLDPE acts as plasticizers increased the elongation, reduced the strength, and increased the rate of thermal degradation. The XRD results reveal additional peeks observed in LLDPE+5GNPs nanocomposite films infer the slight change in crystallinity as compared to neat LLDPE film. This is evident in the change of tensile behaviour of nanocomposite as compared to LLDPE.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Basfar, A. A., and K. M. Idriss Ali. "Natural weathering test for films of various formulations of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE)." Polymer Degradation and Stability 91, no. 3 (March 2006): 437–43. http://dx.doi.org/10.1016/j.polymdegradstab.2004.11.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ning, Wei, Jian Ping Deng, and Wan Tai Yang. "Surface Modification of Low-Density Polyethylene Films via Photografting Polymerization Technique." Advanced Materials Research 11-12 (February 2006): 437–40. http://dx.doi.org/10.4028/www.scientific.net/amr.11-12.437.

Повний текст джерела
Анотація:
Surface modification of low-density polyethylene (LDPE) films was carried out via a novel photografting polymerization technique with acrylamide (AAm) as the monomer. The photografting polymerization can be achieved via one-step method and two-step method. The photografting polymerization reactivity of AAm was examined with benzophenone (BP) as the photoinitiator and low-density polyethylene (LDPE) film as the substrate with “sandwich” assembly. Moreover, the occurrence and evolution of grafting polymerization of AAm on the substrate was demonstrated XPS analysis and SEM pictures.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Allan, Jacqueline M., R. Larry Dooley, and Shalaby W. Shalaby. "Surface phosphonylation of low-density polyethylene." Journal of Applied Polymer Science 76, no. 13 (June 24, 2000): 1870–75. http://dx.doi.org/10.1002/(sici)1097-4628(20000624)76:13<1870::aid-app4>3.0.co;2-v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Teh, J. W., Alfred Rudin, and Henry P. Schreiber. "Shear modification of low density polyethylene." Journal of Applied Polymer Science 30, no. 4 (April 1985): 1345–57. http://dx.doi.org/10.1002/app.1985.070300402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Choudhury, Arup, Sandeep Kumar, and Basudam Adhikari. "Recycled milk pouch and virgin low-density polyethylene/linear low-density polyethylene based coir fiber composites." Journal of Applied Polymer Science 106, no. 2 (2007): 775–85. http://dx.doi.org/10.1002/app.26522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Contat-Rodrigo, L., A. Ribes-Greus, and C. T. Imrie. "Thermal analysis of high-density polyethylene and low-density polyethylene with enhanced biodegradability." Journal of Applied Polymer Science 86, no. 3 (August 7, 2002): 764–72. http://dx.doi.org/10.1002/app.10974.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Gupta, A. K., S. K. Rana, and B. L. Deopura. "Mechanical properties and morphology of high-density polyethylene/linear low-density polyethylene blend." Journal of Applied Polymer Science 46, no. 1 (September 5, 1992): 99–108. http://dx.doi.org/10.1002/app.1992.070460110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Jussen, Daniel, Sandeep Sharma, James K. Carson, and Kim L. Pickering. "Preparation and tensile properties of guar gum hydrogel films." Polymers and Polymer Composites 28, no. 3 (August 7, 2019): 180–86. http://dx.doi.org/10.1177/0967391119867560.

Повний текст джерела
Анотація:
Guar gum hydrogels may be dried to form polymer films which have the potential for use as biodegradable alternatives to polymers such as low-density polyethylene. In this study, the tensile strength and tensile modulus of guar gel films having moisture contents ranging between 15% and 18% (wet basis) were measured at a strain rate of 1 mm min−1. Mean tensile strengths of the films ranged between 25 MPa and 40 MPa (dependent on composition) which is of similar magnitude to the tensile strength data for polyethylene and cellophane that are reported in the literature. The mean tensile modulus of the films (1.5–2.5 GPa) was higher than the tensile modulus values reported for low-density polyethylene but comparable to those for cellophane (3 GPa).
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Herald, Thomas J., Ersel Obuz, Wesley W. Twombly, and Kent D. Rausch. "Tensile Properties of Extruded Corn Protein Low-Density Polyethylene Films." Cereal Chemistry Journal 79, no. 2 (March 2002): 261–64. http://dx.doi.org/10.1094/cchem.2002.79.2.261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

y Palacián, José Miguel Boix. "Study of special birefringence in low density blown polyethylene films." Optik 115, no. 3 (2004): 97–108. http://dx.doi.org/10.1078/0030-4026-00328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії