Добірка наукової літератури з теми "Low temperature heat valorisation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Low temperature heat valorisation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Low temperature heat valorisation":

1

Buchin, Oliver, and Felix Ziegler. "Valorisation of low-temperature heat: Impact of the heat sink on performance and economics." Applied Thermal Engineering 50, no. 2 (February 2013): 1543–48. http://dx.doi.org/10.1016/j.applthermaleng.2011.10.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Laurenz, Eric, Gerrit Füldner, Lena Schnabel, and Gerhard Schmitz. "A Novel Approach for the Determination of Sorption Equilibria and Sorption Enthalpy Used for MOF Aluminium Fumarate with Water." Energies 13, no. 11 (June 11, 2020): 3003. http://dx.doi.org/10.3390/en13113003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Adsorption chillers offer an environmentally friendly solution for the valorisation of waste or solar heat for cooling demands. A recent application is high efficiency data centre cooling, where heat from CPUs is used to drive the process, providing cooling for auxiliary loads. The metal organic framework aluminium fumarate with water is potentially a suitable material pair for this low temperature driven application. A targeted heat exchanger design is a prerequisite for competitiveness, requiring, amongst other things, a sound understanding of adsorption equilibria and adsorption enthalpy. A novel method is employed for their determination based on small isothermal and isochoric state changes, applied with an apparatus developed initially for volume swing frequency response measurement, to samples with a binder-based adsorbent coating. The adsorption enthalpy is calculated through the Clausius–Clapeyron equation from the obtained slopes of the isotherm and isobar, while the absolute uptake is determined volumetrically. The isotherm confirms the step-like form known for aluminium fumarate, with a temperature dependent inflection point at p rel ≈ 0.25, 0.28 and 0.33 for 30 °C, 40 °C and 60 °C. The calculated differential enthalpy of adsorption is 2.90 ± 0.05 MJ/kg (52.2 ± 1.0 kJ/mol) on average, which is about 10–15% higher than expected by a simple Dubinin approximation.
3

Grocholski, Brent. "Recovering low-temperature heat." Science 370, no. 6514 (October 15, 2020): 305.2–305. http://dx.doi.org/10.1126/science.370.6514.305-b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vasiliev, L. L. "Low-temperature heat pipes." Journal of Heat Recovery Systems 5, no. 3 (January 1985): 203–16. http://dx.doi.org/10.1016/0198-7593(85)90078-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Beyermann, W. P., M. F. Hundley, J. D. Thompson, F. N. Diederich, and G. Grüner. "Low-temperature specific heat ofC60." Physical Review Letters 68, no. 13 (March 30, 1992): 2046–49. http://dx.doi.org/10.1103/physrevlett.68.2046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lasjaunias, J. C., M. Saint-Paul, O. Laborde, O. Thomas, J. P. Sénateur, and R. Madar. "Low-temperature specific heat ofMoSi2." Physical Review B 37, no. 17 (June 15, 1988): 10364–66. http://dx.doi.org/10.1103/physrevb.37.10364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Feng, Y. P., A. Jin, D. Finotello, K. A. Gillis, M. H. W. Chan, and J. E. Greedan. "Low-temperature specific heat ofLa1.85Sr0.15CuO4andLa2CuO4." Physical Review B 38, no. 10 (October 1, 1988): 7041–44. http://dx.doi.org/10.1103/physrevb.38.7041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Oeschler, N., S. Hartmann, A. P. Pikul, C. Krellner, C. Geibel, and F. Steglich. "Low-temperature specific heat of." Physica B: Condensed Matter 403, no. 5-9 (April 2008): 1254–56. http://dx.doi.org/10.1016/j.physb.2007.10.119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tokiwa, Y., F. Ronning, V. Fritsch, R. Movshovich, J. D. Thompson, and J. L. Sarrao. "Low-temperature specific heat of." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 325–27. http://dx.doi.org/10.1016/j.jmmm.2006.10.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hamilton, J. J., E. L. Keatley, H. L. Ju, A. K. Raychaudhuri, V. N. Smolyaninova, and R. L. Greene. "Low-temperature specific heat ofLa0.67Ba0.33MnO3andLa0.8Ca0.2MnO3." Physical Review B 54, no. 21 (December 1, 1996): 14926–29. http://dx.doi.org/10.1103/physrevb.54.14926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Low temperature heat valorisation":

1

Idir, Anis. "Procédé thermochimique de production/stockage de froid pour le refroidissement et la valorisation de chaleur basse température de panneaux photovoltaïques." Thesis, Perpignan, 2022. http://www.theses.fr/2022PERP0016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La technologie photovoltaïque (PV) est l’une des techniques de production d’électricité renouvelable la plus utilisée. La conversion photoélectrique génère cependant dans les cellules solaires une importante quantité de chaleur, entrainant une significative hausse de leur température de fonctionnement qui impacte fortement le rendement de conversion. Lorsque les panneaux opèrent dans des zones à fort ensoleillement et des conditions climatiques arides, les températures de fonctionnement atteignent des températures de 80°C à 100°C impactant également leur durabilité. Ainsi l’objectif des travaux de thèse réalisés repose sur l’amélioration de la conversion énergétique solaire par, d’une part, une limitation la hausse de température de fonctionnement des modules PV par un refroidissement actif pour en accroitre leurs performances électriques et d’autre par la valorisation en froid de l’énergie thermique générée par un procédé thermique à sorption de gaz. Le but visé est de démontrer la faisabilité technique d’un tel couplage et d’en évaluer la pertinence énergétique. Ainsi, un procédé à sorption de gaz exploitant une solution saturée, permettant d’exploiter la chaleur basse température générée des panneaux PV et la valoriser en froid a été défini, conçu, expérimenté et analysé. Un modèle numérique de ce couplage a été développé et a permis d’évaluer les performances électriques d’une centrale solaire et frigorifique du procédé à sorption couplé thermiquement, dans des conditions réalistes de fonctionnement. Un tel couplage qui permet ainsi une cogénération électricité/froid, montre ainsi qu’il est possible d’améliorer de 10.5 % le gain énergétique global en comparaison de celui de panneaux PV standard, tout en entrainant une faible perte exergétique globale de 1.3 % lié à la conversion supplémentaire de la chaleur en froid
Photovoltaic technology (PV) is one of the most widely used renewable electricity generation techniques. However, the photoelectric conversion process generates a large amount of heat in the solar cells, causing a significant increase in their operating temperature, which has a significant impact on the conversion efficiency. When the panels operate in areas with high solar irradiation and arid climatic conditions, the operating temperatures can reach 80°C to 100°C, which also impacts their durability. Thus, the objective of this thesis work is to improve the global solar energy conversion by limiting the operating temperature increase of PV modules through an active cooling in order to increase their electrical performance and to valorize in cold the thermal energy generated by a gas sorption thermal process. The aim is to demonstrate the technical feasibility of such a coupling and to evaluate its energy relevance. A gas sorption process exploiting a saturated solution, allowing to exploit the low temperature heat extracted from the PV panels and to valorize it in cold has thus been defined, designed, experimented and analyzed. A simulation tool has been developed to evaluate under realistic operating conditions the electrical performance a PV solar power plant and cooling performance of the thermally coupled sorption process. Such a coupling, which allows for electricity/cooling cogeneration, shows that it is possible to improve the overall energy gain by 10.5 % compared to that of standard PV panels, while resulting in a small overall energy loss of 1.3 % due to the additional conversion of heat to cold
2

Segond, Guillaume. "Etudes des couplages thermohydrauliques en régime variable d'un système thermique avec stockage : application à la production d'eau chaude sanitaire à partir de la valorisation d'une source de chaleur basse température." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le travail présenté ici a pour objectifs d’étudier et d’optimiser les performances énergétiques d’un chauffe-eau thermodynamique couplé à un stockage par chaleur sensible. La ressource utilisée consiste en la récupération de chaleur sur l’air extrait d’un logement de type collectif. L’enjeu est de caractériser les conditions dans lesquelles le système est capable d’assurer les besoins avec des performances requises lorsque les conditions aux limites sont très fluctuantes. Sur le plan fonctionnel, le système doit être le plus simple possible du point de vue de sa configuration hydraulique et de sa stratégie de régulation.Pour cette étude, nous avons développé un modèle physico-corrélatif sur TRNSYS pour simuler et analyser les différents scenarios et les couplages thermohydrauliques entre les composants du système. En parallèle de cette démarche de modélisation, nous avons conçu et mis en œuvre un dispositif expérimental à l’échelle 1 à des fins de validation du modèle sur une large plage de conditions opératoires.L’analyse des résultats, notamment sur la nature des écoulements au sein du ballon de stockage, a mis en évidence l’influence majeure d’un certain nombre de paramètres sur les performances du système. En particulier, la robustesse des performances face à des fluctuations importantes des conditions aux limites peut être assurée grâce à une stratégie de régulation adaptée.Cette étude a finalement conduit à proposer un modèle réduit pour le dimensionnement du système qui prend en compte les paramètres le plus pertinents pour la stratégie de régulation
The work presented here aims to study and optimize the energy efficiency of a heat pump water heater coupled with a sensible heat storage. The resource used consists of heat recovery from exhaust air of a collective type of housing. The challenge is to characterize the conditions in which the system is capable of ensuring the needs with performance required when the boundary conditions are very volatile. Functionally, the system should be as simple as possible from the viewpoint of its hydraulic configuration and its control strategy.For this study, we developed a TRNSYS numerical model to simulate and analyze different scenarios and thermal hydraulic couplings between the system components. In parallel with this modeling approach, we designed and implemented an experimental set up with realistic scale to validate the model over a wide range of operating conditions.The analysis of the results, including the nature of flows within the storage tank, highlighted the major influence on a number of parameters on the system performance. In particular, the robust performance in the face of significant fluctuations of the boundary conditions can be ensured through appropriate control strategy.This study eventually led to propose a model for the design of the system that takes into account the most relevant parameters for the control strategy
3

Midtsjø, Alexander. "Power Production from Low Temperature Heat Sources." Thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

As part of the energy recovery part of the ROMA (Resource Optimization and recovery in the Materials industry) project, a laboratory prototype power production system is being built and completed in 2009. The laboratory prototype is based on a new technology for power production from low to medium temperature heat sources (the off gas from electrolysis cells in the aluminum industry) where CO2 is used as a working medium in a trans-critical Rankine cycle. The laboratory rig consists of the power cycle with a prototype expander as the core unit, an air loop to provide the heat, and an ethylene glycol loop to provide condensation of the working fluid in the power cycle. As a preparation to the assembling and instrumentation of the prototype rig, a simulation and an uncertainty analysis were conducted for the prototype rig in the autumn of 2008. This report focuses on the continuation of that work by an experimental investigation of the individual loops and the components of the prototype rig. The emphasis of this investigation has been put on the air loop and the expander unit of the power cycle. This is basically because these are of great importance to the performance of the power production prototype rig. The air loop was thoroughly tested, and from the investigations it was discovered that there was an unfavorable temperature distribution of the air going into the air-to-CO2 heat exchanger. This is the heat exchanger where heat is provided to the power cycle. The source for this temperature maldistribution was identified, and solutions were investigated to improve on the problem without results. The reduced performance of the air loop was incorporated in a new simulation of the power cycle in order to quantify the consequences for the optimization of the power cycle. The simulation was carried out for warm air temperature of 80 °C. The new calculations showed a reduction in maximum net work output of 27 % compared to the original simulation. The optimal conditions for the power cycle were also changed as a consequence of the reduced air loop performance. The investigation of the expander unit revealed that the expander isentropic efficiency was a strong function of the pressure difference across the expander, and a weak function of the expander inlet pressure. It also revealed that overall the isentropic efficiency was much less than the value of 80 % which was used in the original simulation. A new simulation of the power cycle was carried out where the expander isentropic efficiency was incorporated as a function of the pressure difference across the expander. This function was based on the data from the expander testing. The simulation showed a reduction in maximum net work output from 225 W to about 60 W, for warm air temperature of 80 °C. The new expander characteristics also affected the optimization of the power cycle. The simulation results and the results from the prototype investigation will be important in the optimization and control procedures of the assembled prototype power production system.

4

Pfaff, Michael. "Power Production from Low Temperature Heat Sources." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
SummaryThis Master Thesis is a conclusion on work done as part of the Resource Optimizationand recovery in the Materials industry project (Roma). This project is involved in thedevelopment of a new technology for power production from low temperature heat sourcesfor off gases from aluminum production cells. The technology is based on an transcriticalRankine cycle with CO2 as a working fluid, as the work recovery circuit. The center ofthe test facility is the expander, a prototype provided by Obrist Engineering . 81 testswere perfomed to investigate the behavoir of the expander cycle. Effect of three mainparameters were investigated:• Effect CO2 massflow rate• Effect of heat source temperature• Effect of CO2 condensation pressureFor each parameter combination, the high pressure side of the expander cycle was variedin order to find the maximum power output.This study clearly showed limitation of the turbine which cannot maintain large pressuredifference probably due to large internal leakages. As a result, turbine outlet is highlysuperheated. This superheat is lost energy for the power cycle, and is simply dumpedinto the heat sink. One possible improvement would be to include a recuperator thatrecovers superheat after the pump.The results also indicate that the fan of the air loop is too small: increasing the CO2 flowrate to limit superheat at turbine outlet leads to turbine inlet temperature reduction.Last, for large CO2 mass flow rate (3.5 kgmin) which is required for proper operation ofthe turbine, the power generated is too large for the generator installed on the loop. Itstemperature reached 120 °C for some conditions. A new solution should be seeked.Based on experimental results, a mode of the power cycle was implemented in Pro/IIand simulations were run in order to find an improved design. The main goal is to beable to run the cycle at high CO2 mass flow rate: 3.5 kgmin. It was found that the airloop fan should be able to deliver up to 1 260 m3h . The new generator or braking systemshould be able to absorb up to 297 W.
5

Maalouf, Samer. "Étude et conception d'un système thermodynamique producteur du travail mécanique à partir d'une source chaude à 120°C." Thesis, Paris, ENMP, 2013. http://www.theses.fr/2013ENMP0074/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les fumées à basse température (<120-150 °C) sortant des procédés industriels pourraient être récupérées pour la production d'électricité et constituent un moyen efficace de réduction de la consommation d'énergie primaire et des émissions de dioxyde de carbone. Cependant, des barrières techniques tels que la faible efficacité de conversion, la nécessité d'une grande zone de transfert de chaleur, et la présence de substances chimiques corrosives liées à une forte teneur en humidité lors du fonctionnement en environnement sévère entravent leur application plus large. Cette thèse porte particulièrement sur les secteurs industriels les plus énergivores rencontrant actuellement des difficultés à récupérer l'énergie des sources de chaleur à basse température dans des environnements hostiles. Des cycles thermodynamiques existants basés sur le Cycle de Rankine Organique (ORC) sont adaptés et optimisés pour ce niveau de température. Deux méthodes de récupération de chaleur classiques sont étudiées plus particulièrement : les déshumidifications à contact direct et indirect. Des méthodes de conception optimisées pour les échangeurs de chaleur sont élaborées et validées expérimentalement. Pour la déshumidification à contact indirect, des matériaux à revêtement anticorrosifs sont proposés et testés. Pour la déshumidification à contact direct, les effets du type et de la géométrie des garnissages sur les performances hydrauliques sont étudiés. Des cycles thermodynamiques innovants basés sur la technologie de déshydratation liquide sont proposés. Un cycle de régénération amélioré (IRC) est développé. Comparé aux technologies de récupération de chaleur classiques, l'IRC proposé améliore à la fois la puissance nette et le taux de détente de la turbine en prévenant par ailleurs les problèmes de corrosion
Low-temperature waste-gas heat sources (< 120-150°C) exiting several industrial processes could be recovered for electricity production and constitute an effective mean to reduce primary energy consumption and carbon dioxide emissions. However, technical barriers such as low conversion efficiency, large needed heat transfer area, and the presence of chemically corrosive substances associated with high moisture content when operating in harsh environment impede their wider application. This thesis focuses on particularly energy-hungry industrial sectors characterized by presently unsolved challenges in terms of environmentally hostile low-temperature heat sources. Existing thermodynamic cycles based on Organic Rankine Cycle (ORC) are adapted and optimized for this temperature level. Two conventional heat recovery methods are studied more particularly: indirect and direct contact dehumidification. Optimized design methods for heat exchangers are elaborated and experimentally validated. For the indirect contact dehumidification, advanced anti-corrosion coated materials are proposed and laboratory tested. For the direct contact dehumidification, the effects of packing material and geometry on the corresponding hydraulic performances are underlined. Innovative thermodynamic cycles based on the liquid desiccant technology are investigated. An improved regeneration cycle (IRC) is developed. Compared to the conventional heat recovery technologies, the proposed “IRC” improves both net power and turbine expansion ratio besides preventing faced corrosions problems
6

Dahn, Douglas Charles. "Low temperature specific heat of LixNbS2 intercalation compounds." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25563.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis describes a study of the low temperature specific heat of LiⅹNbS₂, where x is between 0 and 1. Samples were prepared by intercalating lithium into niobium disulfide in electrochemical cells. Structural data obtained by x-ray diffraction are presented. These, together with electrochemical measurements, show that staged phases exist for some values of x. The electronic specific heat of LiⅹNbS₂, is consistent with complete charge transfer from the intercalated lithium to the bands of the NbS2 host. The lattice specific heat also shows large changes as a function of x. A discussion of the data in terms of continuum elasticity theory suggests that intercalation produces large changes in the shear elastic constant C₄₄ . A brief discussion of superconductivity in LiⅹNbS₂, is also included.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
7

Farrokhpanah, Sonia. "Design of heat integrated low temperature distillation systems." Thesis, University of Manchester, 2009. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:228854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work addresses the challenges in design of heat integrated low-temperature separation processes. A novel, systematic and robust methodology is developed, which contributes to the design practice of heat-integrated separation sequence and the refrigeration system in the context of low-temperature separation processes. Moreover, the methodology exploits the interactions between the separation and refrigeration systems systematically in an integrated design context. The synthesis and optimisation of heat-integrated separation processes is complex due to the large number of design options. In this thesis, task representation is applied to the separation system to accommodate both simple and complex distillation columns. The stream conditioning processes are simulated and their associated costs are included in the overall cost of the process. Important design variables in separation systems, such as the separation sequence, type and operating conditions of the separation units (e.g. the operating pressure, feed quality and condenser type) are optimised. Various refrigeration provision strategies, such as expansion of a process stream, pure and mixed multistage refrigeration systems and cascades of multistage refrigeration cycles, are considered in the present work. A novel approach based on refrigeration system database is proposed, which overcomes the complexities and challenges of synthesis and optimisation of refrigeration systems in the context of low-temperature separation processes. The methodology optimises the key design variables in the refrigeration system, including the refrigerant composition, the number of compression stages, the refrigeration and rejection temperature levels, cascading strategy and the partition temperature in multistage cascaded refrigeration systems. The present approach has selected a matrix based approach for assessing the heat integration potentials of separation and refrigeration systems in the screening procedure. Non-isothermal streams are not considered isothermal and stream splitting and heat exchangers in series are taken into account. Moreover, heat integration of reboiler and condenser of a distillation column through an open loop heat pump system can be considered in this work. This work combines an enhanced simulated annealing algorithm with MILP optimisation method and develops a framework for simultaneously optimising different degrees of freedom in the heat integrated separation and refrigeration processes. Case studies extend the approach to the design of heat integrated separation sequences in above ambient temperature processes. The robustness of the developed framework is further demonstrated when it is utilised to design the LNG and ethylene plant fractionation trains.
8

Deng, Guangnan. "Embedded heat speaders in low temperature cofired ceramic substrates." FIU Digital Commons, 2002. http://digitalcommons.fiu.edu/etd/2770.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new heat spreader that operates on a principle similar to heat pipes has been developed in Low Temperature Cofired Ceramic (LTCC) substrate. The heat spreader use sintered metal powder as the wick structure and water as the working fluid. Key topics related to the fabrication of embedded heat spreaders in LTCC substrate were studied. The conventional LTCC procedure has been improved to suit the requirement of heat spreader. A novel sintered porous silver powder has been developed to provide high capillary pressure and permeability for the wick structure. The maximum mass transport rate of the wick was about 0.692 (g/min) at wick height of 4.5cm. The thermal performance test demonstrated that the prototype heat spreader could work properly at power density of more than 70 W/cm2 without any sign of dry out occur. The successful fabrication of the prototype integrated heat spreader provides concept validation of using advanced two-phase heat management system to greatly improve the effective thermal conductivity of LTCC substrate.
9

Ploskic, Adnan. "Technical solutions for low-temperature heat emission in buildings." Doctoral thesis, KTH, Strömnings- och klimatteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-133221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The European Union is planning to greatly decrease energy consumption during the coming decades. The ultimate goal is to create sustainable communities that are energy neutral. One way of achieving this challenging goal may be to use efficient hydronic (water-based) heating systems supported by heat pumps. The main objective of the research reported in this work was to improve the thermal performance of wall-mounted hydronic space heaters (radiators). By improving the thermal efficiency of the radiators, their operating temperatures can be lowered without decreasing their thermal outputs. This would significantly improve efficiency of the heat pumps, and thereby most probably also reduce the emissions of greenhouse gases. Thus, by improving the efficiency of radiators, energy sustainability of our society would also increase. The objective was also to investigate how much the temperature of the supply water to the radiators could be lowered without decreasing human thermal comfort. Both numerical and analytical modeling was used to map and improve the thermal efficiency of the analyzed radiator system. Analyses have shown that it is possible to cover space heat losses at low outdoor temperatures with the proposed heating-ventilation systems using low-temperature supplies. The proposed systems were able to give the same heat output as conventional radiator systems but at considerably lower supply water temperature. Accordingly, the heat pump efficiency in the proposed systems was in the same proportion higher than in conventional radiator systems. The human thermal comfort could also be maintained at acceptable level at low-temperature supplies with the proposed systems. In order to avoid possible draught discomfort in spaces served by these systems, it was suggested to direct the pre-heated ventilation air towards cold glazed areas. By doing so the draught discomfort could be efficiently neutralized.     Results presented in this work clearly highlight the advantage of forced convection and high temperature gradients inside and alongside radiators - especially for low-temperature supplies. Thus by a proper combination of incoming air supply and existing radiators a significant decrease in supply water temperature could be achieved without decreasing the thermal output from the system. This was confirmed in several studies in this work. It was also shown that existing radiator systems could successfully be combined with efficient air heaters. This also allowed a considerable reduction in supply water temperature without lowering the heat output of the systems. Thus, by employing the proposed methods, a significant improvement of thermal efficiency of existing radiator systems could be accomplished. A wider use of such combined systems in our society would reduce the distribution heat losses from district heating networks, improve heat pump efficiency and thereby most probably also lower carbon dioxide emissions.

QC 20131029

10

Toal, B. R. H. "The application of heat pumps to low temperature drying." Thesis, University of Ulster, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Low temperature heat valorisation":

1

Ackermann, Robert A. Cryogenic regenerative heat exchangers. New York: Plenum Press, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Coccia, Gianluca, Giovanni Di Nicola, and Alejandro Hidalgo. Parabolic Trough Collector Prototypes for Low-Temperature Process Heat. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27084-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Toal, Bernard Robert Hugh. The application of heat pumps to low temperature drying. [S.l: The Author], 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Barron, Randall F. Cryogenic heat transfer. Philadelphia, PA: Taylor and Francis, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

O'Rourke, Gareth. The cryogenic heat treatment of tool steels. Dublin: University College Dublin, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Verkin, B. I. Teploobmen pri kipenii kriogennykh zhidkosteĭ. Kiev: Nauk. dumka, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Meeting, Materials Research Society. High temperature radiator materials for applications in the low earth orbital environment. Cleveland, Ohio: [National Aeronautics and Space Administration], Lewis Research Center, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yen, Yin-Chao. Sensible heat flux measurements near a cold surface. [Hanover, N.H.]: U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yen, Yin-Chao. On the temperature distribution near a cold surface. [Hanover, N.H.]: U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yen, Yin-Chao. On the temperature distribution near a cold surface. [Hanover, N.H.]: U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Low temperature heat valorisation":

1

Collings, E. W. "Low-Temperature Specific Heat." In Applied Superconductivity, Metallurgy, and Physics of Titanium Alloys, 307–33. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2095-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Denlinger, David L., Karl H. Joplin, Cheng-Ping Chen, and Richard E. Lee. "Cold Shock and Heat Shock." In Insects at Low Temperature, 131–48. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-0190-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vasiliev, L. L., D. A. Mishkinis, A. A. Antukh, A. G. Kulakov, and L. L. Vasiliev. "Multisalt-Carbon Portable Resorption Heat Pump." In Low Temperature and Cryogenic Refrigeration, 387–400. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0099-4_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vasiliev, L. L., and A. G. Kulakov. "Heat Pipe Applications in Sorption Refrigerators." In Low Temperature and Cryogenic Refrigeration, 401–14. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0099-4_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wu, Wei, Xianting Li, and Tian You. "Low Evaporation Temperature Absorption Heat Pump." In Absorption Heating Technologies, 75–108. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0470-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Esquinazi, P., M. Scherl, J. Li, and F. Pobell. "Low-Temperature Heat Release in Polymers." In Springer Series in Solid-State Sciences, 287–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9_113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zheng, Qiu-Yun, Xin-Rong Zhang, and Shuang Han. "Sludge Treatment by Low-Temperature Heat." In Lecture Notes in Energy, 293–306. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26950-4_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fisher, R. A., S. E. Lacy, C. Marcenat, J. A. Olsen, N. E. Phillips, Z. Fisk, A. L. Giorgi, J. L. Smith, and G. R. Stewart. "Low-Temperature Specific Heat of UBe13." In Theoretical and Experimental Aspects of Valence Fluctuations and Heavy Fermions, 345–48. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-0947-5_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Leontiev, A. I., and I. V. Derevich. "Numerical Simulation of Heat and Mass Transfer in Heat Pump Working on Supercritical R-744." In Low Temperature and Cryogenic Refrigeration, 165–80. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0099-4_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Smirnov, H. F. "Heat Pipe Technology for Refrigeration and Cooling." In Low Temperature and Cryogenic Refrigeration, 349–72. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0099-4_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Low temperature heat valorisation":

1

Choi, H., J. P. Davis, J. Pollanen, N. Mulders, and W. P. Halperin. "Specific Heat of Disordered 3He." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354683.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hori, J., A. Katai, Y. Tange, A. Furukawa, Y. Fujii, T. Ohtani, and M. Harada. "Specific Heat of Chalcogenide Superconductor TlV6S8." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354867.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bourgeois, O., F. Ong, S. E. Skipetrov, and J. Chaussy. "Specific Heat Measurements of Mesoscopic Loops." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354916.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tien, Chang-Lin, and A. J. Stretton. "HEAT TRANSFER IN LOW-TEMPERATURE INSULATION." In Archives of Heat Transfer. Washington: Hemisphere, 1988. http://dx.doi.org/10.1615/ichmt.1988.20thaht.380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tien, Chang-Lin, and A. J. Stretton. "HEAT TRANSFER IN LOW-TEMPERATURE INSULATION." In Archives of Heat Transfer. Connecticut: Begellhouse, 1988. http://dx.doi.org/10.1615/ichmt.1988.aht.380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Umeyama, N., S. I. Ikeda, I. Nagai, Y. Tanaka, Y. Yoshida, and N. Shirakawa. "Specific Heat of Layered Ruthenates Sr2Ru1−xZrxO4." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Takeya, H., M. El Massalami, R. E. Rapp, K. Hirata, K. Yamaura, K. Yamada, and K. Togano. "Heat Capacity Measurement on Li2Pd3B and Li2Pt3B." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354868.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Boyd, S. T. P., A. R. Chatto, R. A. M. Lee, R. V. Duncan та D. L. Goodstein. "Effect of Inhomogeneous Heat Flow on the Enhancement of Heat Capacity in Helium-II by Counterflow near Tλ". У LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tien, Chang-Lin, and A. J. Stretton. "Heat Transfer in Low-Temperature Insulation." In International Symposium on Heat and Mass Transfer in Refrigeration and Cryogenics. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ichmt.1986.intsymphmtinrefcryo.20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Katagiri, M., M. Maeda, K. Shinn, T. Tsurutani, Y. Fujii, and K. Hatanaka. "Heat Transfer Properties of Liquid 3He below 1K." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2354624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Low temperature heat valorisation":

1

Anderson, James H. Jr, and Benjamin W. Dambly. Low Temperature Heat Source Utilization Current and Advanced Technology. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/860859.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Johnson, R. K. Measured Performance of a Low Temperature Air Source Heat Pump. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1260317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Thekdi, Arvind, Sachin Nimbalkar, Senthil Sundaramoorthy, Kristina Armstrong, Anthony Taylor, Jack Gritton, Thomas Wenning, and Joe Cresko. Technology Assessment on Low-Temperature Waste Heat Recovery in Industry. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1819547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xinguo, Li. Improving Water Loop Heat Pump Performance by Using Low Temperature Geothermal Fluid. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/895959.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hays, Lance G. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1183048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rao, Vivek, Marc-Olivier Delchini, Mohammad Bani Ahmad, and Prashant Jain. High Performance Computing to Enable Next-Generation Low-Temperature Waste Heat Recovery. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1649390.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Eastman, Alan D. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1164240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fuller, Robert L. Final Report. Conversion of Low Temperature Waste Heat Utilizing Hermetic Organic Rankine Cycle. Office of Scientific and Technical Information (OSTI), April 2005. http://dx.doi.org/10.2172/838860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wiczynski, T. A., and T. A. Marolewski. Development of high temperature liquid lubricants for low-heat rejection heavy duty diesel engines. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/140583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cho, Y. I., and H. G. Lorsch. Development of advanced low-temperature heat transfer fluids for district heating and cooling, final report. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/10107172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії