Добірка наукової літератури з теми "Luminous Atmospheres"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Luminous Atmospheres".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Luminous Atmospheres"
Shaviv, Nir J. "Extremely Luminous Atmospheres." International Astronomical Union Colloquium 169 (1999): 155–58. http://dx.doi.org/10.1017/s025292110007192x.
Повний текст джерелаde Jager, Cornells, Joost Carpay, Alex de Koter, Hans Nieuwenhuijzen, and Erik Schellekens. "Atmospheric dynamics of luminous stars." International Astronomical Union Colloquium 113 (1989): 211–20. http://dx.doi.org/10.1017/s0252921100004474.
Повний текст джерелаIping, Rosina C., George Sonneborn, and Derck L. Massa. "FUSE observations of Luminous Blue Variables." Symposium - International Astronomical Union 212 (2003): 208–9. http://dx.doi.org/10.1017/s0074180900212059.
Повний текст джерелаForman, W., C. Jones, A. Bogdan, R. Kraft, E. Churazov, S. Randall, M. Sun, E. O’Sullivan, J. Vrtilek, and P. Nulsen. "Supermassive Black Hole feedback in early type galaxies." Proceedings of the International Astronomical Union 15, S359 (March 2020): 119–25. http://dx.doi.org/10.1017/s1743921320004081.
Повний текст джерелаMalik, Matej, Daniel Kitzmann, João M. Mendonça, Simon L. Grimm, Gabriel-Dominique Marleau, Esther F. Linder, Shang-Min Tsai, and Kevin Heng. "Self-luminous and Irradiated Exoplanetary Atmospheres Explored withHELIOS." Astronomical Journal 157, no. 5 (April 11, 2019): 170. http://dx.doi.org/10.3847/1538-3881/ab1084.
Повний текст джерелаHöfner, S., S. Bladh, B. Aringer, and K. Eriksson. "Dynamic atmospheres and winds of cool luminous giants." Astronomy & Astrophysics 657 (January 2022): A109. http://dx.doi.org/10.1051/0004-6361/202141224.
Повний текст джерелаHöfner, S., S. Bladh, B. Aringer, and R. Ahuja. "Dynamic atmospheres and winds of cool luminous giants." Astronomy & Astrophysics 594 (October 2016): A108. http://dx.doi.org/10.1051/0004-6361/201628424.
Повний текст джерелаChakrabarty, Aritra, Sujan Sengupta, and Mark S. Marley. "Polarization of Rotationally Oblate Self-luminous Exoplanets with Anisotropic Atmospheres." Astrophysical Journal 927, no. 1 (March 1, 2022): 51. http://dx.doi.org/10.3847/1538-4357/ac4d33.
Повний текст джерелаDorfl, Ernst A., Michael U. Feuchtinger, and Alfred Gautschy. "Nonlinear Pulsations of Luminous Blue Variables." International Astronomical Union Colloquium 176 (2000): 109–12. http://dx.doi.org/10.1017/s0252921100057262.
Повний текст джерелаLinsky, Jeffrey L. "What is the essential physics of mass loss from late-type stars?" Symposium - International Astronomical Union 122 (1987): 271–87. http://dx.doi.org/10.1017/s007418090015658x.
Повний текст джерелаДисертації з теми "Luminous Atmospheres"
Atié, Michèle. "Perception des ambiances lumineuses d'architectures remarquables : analyse des impressions en situation réelle et à travers des photographies omnidirectionnelles dans un casque immersif." Electronic Thesis or Diss., Ecole centrale de Nantes, 2024. http://www.theses.fr/2024ECDN0047.
Повний текст джерелаThis thesis is at the crossroads of the fields of luminous atmospheres, architectural pedagogy, perception and immersion. It focuses on the design and implementation of a new experimental methodology for evaluating the ability of HDR stereoscopic omnidirectional static photographs, projected in an immersive Head-Mounted Display (HMD), to faithfully reproducesubjective impressions of luminous atmospheres experienced in reference architectural places. Specific consideration is given to the impact of tone mapping operators (TMOs). Our methodology involves several steps: designing a grid for analyzing the luminous atmospheres of iconic places based on expert judgement; implementing in situ data collection to assess luminous atmospheres (questionnaire, light measurements, HDR omnidirectional photographic recordings), and implementinga method for assessing luminous atmospheres in an HMD. The results provide knowledge about the characteristics of the in situ luminous atmospheres of seven iconic buildings and the perceptual fidelity of each luminous atmosphere’s impression in the HMD, depending on the TMOs. The findings also highlight the relationship between the impressions selected by the experts and those assessed in situ and in the HMD. This knowledge is useful for future pedagogical applications in architecture
Romand, Frédéric. "Simulation de la signature infrarouge des phénomènes lumineux transitoires en moyenne atmosphère." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS091/document.
Повний текст джерелаEven if it hasn’t been observed yet, the existence of emissions in the middle and far infrared following a sprite is suspected and could be related to vibrational excitation of CO2. In atmospheric sciences, the chemical composition can be retrieved through different remote sensing methods. For the Defense, natural infrared emissions could cause false alarms through airborne and spaceborne optronic detection systems. That is why it is necessary to characterize the infrared emissions of sprites. To do so, a plasma-vibrational kinetic model has been developed and coupled to an atmospheric radiative transfer model. This model allows evaluating the energetic and chemical effects following the electrical perturbation caused by the propagation of streamers, main constituent elements of sprites. The evaluated signatures could be detectable for an observer situated in the stratosphere or in space. Otherwise, the effects of the uncertainties on the principal parameters of the model have been quantified through a sensitivity analysis. Finally, this work allowed defining instrumental specifications for the future mission HALESIS (High Altitude Luminous Events Studied by Infrared Spectro-imagery), which will record hyperspectral infrared images of sprites and other middle atmosphere luminous events
Romand, Frédéric. "Simulation de la signature infrarouge des phénomènes lumineux transitoires en moyenne atmosphère." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS091.
Повний текст джерелаEven if it hasn’t been observed yet, the existence of emissions in the middle and far infrared following a sprite is suspected and could be related to vibrational excitation of CO2. In atmospheric sciences, the chemical composition can be retrieved through different remote sensing methods. For the Defense, natural infrared emissions could cause false alarms through airborne and spaceborne optronic detection systems. That is why it is necessary to characterize the infrared emissions of sprites. To do so, a plasma-vibrational kinetic model has been developed and coupled to an atmospheric radiative transfer model. This model allows evaluating the energetic and chemical effects following the electrical perturbation caused by the propagation of streamers, main constituent elements of sprites. The evaluated signatures could be detectable for an observer situated in the stratosphere or in space. Otherwise, the effects of the uncertainties on the principal parameters of the model have been quantified through a sensitivity analysis. Finally, this work allowed defining instrumental specifications for the future mission HALESIS (High Altitude Luminous Events Studied by Infrared Spectro-imagery), which will record hyperspectral infrared images of sprites and other middle atmosphere luminous events
Bailey, Matthew A. "Investigating Characteristics of Lightning-Induced Transient Luminous Events Over South America." DigitalCommons@USU, 2010. http://digitalcommons.usu.edu/etd/667.
Повний текст джерелаKamogawa, Masashi. "Study of earthquake related electromagnetic and luminous phenomena in the atmosphere = Jishin ni kanrensuru taiki denji hakkō genshō no kenkyū /." Electronic version of summary, 2000. http://www.wul.waseda.ac.jp/gakui/gaiyo/2945.pdf.
Повний текст джерелаLacour, Thomas. "Influence du statut azoté et du cycle lumineux diurne sur le métabolisme lipidique d'Isochrysis sp. (Haptophyceae)." Phd thesis, Aix-Marseille Université, 2010. http://tel.archives-ouvertes.fr/tel-00852596.
Повний текст джерелаAmorim, Miguel David Santos. "Environmental analytical chemistry: development and comparison of simple chemiluminescent and bioluminescent methods to analyze air particulate samples." Master's thesis, 2016. http://hdl.handle.net/10451/35885.
Повний текст джерелаThe harmful effects of atmospheric pollution’s particulate matter on the human organism have been proven and studied since a long time ago. Innumerous methods have been developed through time to test the composition of air particulate matter and its effect on the human body. A lot of reliable complex methods exist, but there seems to be a need for a simple, affordable, sensitive and accurate method that most laboratories could use to test their own air samples. Two simple methods were developed to analyze particulate matter samples in two highly polluted Italian cities – Quiliano and Vado Ligure, both from the region of Liguria – one chemiluminescent and one bioluminescent method. The chemiluminescent method was based on the reaction between luminol and peroxidase in the presence of oxidizing solution, producing an amount of light directly proportional to the amount of oxidizing compound in the sample. So luminol/enhancer and peroxidase solutions were added to the samples and the light emission was measured using a luminometer. The ability to determine samples’ toxicity is related with the major toxic effect of particulate matter being oxidative stress. By comparing the samples’ luminescence kinetics over time and their maximum signals to previously analyzed heavy metals’ samples we were able to identify the samples’ main compound and quantity’s order of magnitude. On the other hand, the bioluminescent method used naturally luminescent UCIBO bacteria – genetically modified Vibrio fischeri – to evaluate the toxic effect of the samples in living organisms. This way, highly luminescent bacteria were added directly to the samples and their pattern of luminescence signal was compared to healthy colonies, being the difference in luminescence maximum signal a direct proportion of the samples’ toxicity over bacteria. Both methods proved simple and fast to execute, affordable and sensitive. The bioluminescent method showed better accuracy than the chemiluminescent one (12.13% versus 21.50% mean standard deviation), even though both methods developed need improvements to ensure higher accuracy and become more reliable. A direct relation between both methods results was not possible to establish as while the chemiluminescent method focuses more on the amounts of oxidizing material in the samples, the bioluminescent one assesses their toxicity. A sample may have higher values of oxidizing components, giving higher values with the chemical method, and produce less toxic effects than another with lower amount of oxidizing materials, not displaying so high results with the biological method as the second sample. We concluded that both methods can and should be used together, in order to obtain more valuable and complete information about the air pollution samples.
Os efeitos nefastos da poluição atmosférica no corpo humano estão demonstrados e têm vindo a ser estudados há vários anos. Inúmeros métodos têm sido desenvolvidos para testar a composição das partículas aéreas e o seu efeito no corpo humano. Existem uma série de métodos complexos fiáveis, mas parece haver uma necessidade de um método que seja simples de executar, de baixo custo, preciso e sensível, que a maioria dos laboratórios possa utilizar para testar as suas amostras de partículas atmosféricas. Dois métodos simples para testar a poluição atmosférica de duas cidades italianas altamente poluídas – Quiliano e Vado Ligure, da região da Ligúria – foram desenvolvidos. Um método quimioluminescente e um bioluminescente. O método quimioluminescente baseou-se na reacção entre o luminol e a peroxidase, na presença de substâncias oxidantes, produzindo uma quantidade de luz directamente proporcional à quantidade de composto oxidante da amostra. Assim, soluções de luminol/intensificador e peroxidase foram adicionadas às amostras de poluição atmosférica, sendo a luz produzida medida através de um luminómetro. A capacidade para determinar o potencial tóxico das amostras deste método prende-se com o principal mecanismo de toxicidade da poluição atmosférica, o stress oxidativo. Ao comparar as cinéticas de luminescência das amostras e os seus picos de sinal com as de soluções padrão de metais pesados analisadas previamente foi possível identificar os principais componentes das amostras e a ordem de grandeza da sua quantidade. Por outro lado, o método bioluminescente utilizou bactérias UCIBO – Vibrio fischeri geneticamente modificadas – naturalmente luminescentes de forma a avaliar o efeito tóxico das amostras em organismos vivos. Assim sendo, bactérias altamente luminescentes foram adicionadas directamente às amostras de poluição aérea e o seu padrão de sinal foi comparado com o de colónias saudáveis, sendo a diferença entre os picos de ambos uma proporção directa da toxicidade exercida pelas amostras nas bactérias. Ambos os métodos se demonstraram fáceis e rápidos de executar, baratos e sensíveis. O método bioluminescente mostrou-se mais preciso que o quimioluminescente (12.13% versus 21.50% de desvio padrão médio), apesar de ambos os métodos necessitarem de melhorar a sua precisão para se tornarem mais fiáveis. Não foi possível estabelecer uma relação directa entre os resultados dos métodos, pois ao passo que o método quimioluminescente se foca mais na composição qualitativa e quantitativa das amostras, o bioluminescente avalia mais os efeitos tóxicos da amostra nos organismos. Uma determinada amostra pode possuir níveis mais altos de compostos oxidantes que uma segunda, produzindo resultados maiores com o método químico, mas ter efeitos tóxicos menos pronunciados, obtendo valores mais baixos de toxicidade com o métodos biológico. Concluímos que ambos os métodos podem e devem ser utilizados em conjunto, de forma a proporcionar uma melhor e mais completa informação sobre as amostras de poluição atmosférica.
Книги з теми "Luminous Atmospheres"
Kaufman, Donald. Color and light: Luminous atmospheres for painted rooms. New York: Clarkson Potter, 1999.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Model atmosphere analysis of selected luminous B stars. Princeton, NJ: Princeton University, Dept. of Astrophysical Sciences ; [Washington, DC, 1994.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Model atmosphere analysis of selected luminous B stars. Princeton, NJ: Princeton University, Dept. of Astrophysical Sciences ; [Washington, DC, 1994.
Знайти повний текст джерелаCenter, Goddard Space Flight, ed. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AIGaAs laser. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1994.
Знайти повний текст джерелаBychkov, Vladimir. Natural and artificial Ball Lightning in the Earth’s atmosphere. LCC MAKS Press, 2021. http://dx.doi.org/10.29003/m2009.978-5-317-06572-0.
Повний текст джерелаMurray, John. Experimental Researches: On the Light and Luminous Matter of the Glow-Worm, the Luminosity of the Sea, the Phenomena of the Chameleon, the Ascent of the Spider into the Atmosphere, and the Torpidity of the Tortoise. Cambridge University Press, 2013.
Знайти повний текст джерелаЧастини книг з теми "Luminous Atmospheres"
Appenzeller, I. "The Role of Radiation Pressure in LBV Atmospheres." In Physics of Luminous Blue Variables, 195–204. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1031-7_23.
Повний текст джерелаKudritzki, R. P., A. Gabler, H. G. Groth, A. W. A. Pauldrach, and J. Puls. "Model Atmospheres and Quantitative Spectroscopy of Luminous Blue Stars." In Physics of Luminous Blue Variables, 67–82. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1031-7_8.
Повний текст джерелаde Groot, Mart, and Henny J. G. L. M. Lamers. "Observed evolutionary changes in the visual magnitude of the luminous blue variable P Cygni." In The Atmospheres of Early-Type Stars, 121. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55256-1_289.
Повний текст джерелаTsuji, T. "CO Molecule in Transition Region between Chromosphere and Cool Stellar Wind: A New Probe on the Outer Atmospheres of Cool Luminous Stars." In Circumstellar Matter, 377–78. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3887-8_92.
Повний текст джерелаde Jager, Cornelis, Joost Carpay, Alex de Koter, Hans Nieuwenhuijzen, and Erik Schellekens. "Atmospheric Dynamics of Luminous Stars." In Physics of Luminous Blue Variables, 211–20. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1031-7_25.
Повний текст джерелаLeitherer, Claus, David C. Abbott, and Werner Schmutz. "Changes in the Atmospheric Structure of LBV’s During Eruptions." In Physics of Luminous Blue Variables, 109–16. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1031-7_12.
Повний текст джерелаLeitherer, Claus, Werner Schmutz, David C. Abbott, Ana V. Torres-Dodgen, Wolf-Rainer Hamann, and Ulf Wessolowski. "Atmospheric Models for LBV’s at Minimum and Maximum States." In Physics of Luminous Blue Variables, 285–86. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1031-7_43.
Повний текст джерелаBychkov, Vladimir L. "Long-Lived Luminous Formations (LLO), Ball Lightning (BL), and Their Researches." In Springer Atmospheric Sciences, 1–30. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07861-3_1.
Повний текст джерелаNieuwenhuijzen, Hans, and Cornelis de Jager. "Atmospheric Parameters and Accelerations in the Outer Parts of Luminous Hot Stars." In Physics of Luminous Blue Variables, 287–88. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1031-7_44.
Повний текст джерелаDupree, A. K. "New Clues to Atmospheric Heating Processes in Luminous Cool Stars." In Mechanisms of Chromospheric and Coronal Heating, 185–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87455-0_39.
Повний текст джерелаТези доповідей конференцій з теми "Luminous Atmospheres"
Atié, Michèle, Céline Drozd, Toinon Vigier, and Daniel Siret. "Luminous Atmospheres 360: Comparing VR HMDs and UHD Screens for Reproducing Architectural Daylight Atmospheres." In 2025 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), 1420–21. IEEE, 2025. https://doi.org/10.1109/vrw66409.2025.00356.
Повний текст джерелаKhatami, Reza, and Yiannis A. Levendis. "Soot Volume Fractions in Volatile Matter Envelope Flames of Bituminous Coal Particles in Air and Oxy-Fuel Combustion." In ASME 2013 Power Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/power2013-98163.
Повний текст джерелаBorisov, Boris D., Yurii Gridnev, and Vladimir V. Belov. "Observation of self-luminous objects through scattering media." In Fifth International Symposium on Atmospheric and Ocean Optics, edited by Vladimir E. Zuev and Gennadii G. Matvienko. SPIE, 1999. http://dx.doi.org/10.1117/12.337024.
Повний текст джерелаsun, kelin, Jingchuan Yang, Bing Zhang, Bo Li, Kaibin Liu, and Chen Li. "Reducing transmitter’s luminous surface with integrated LED arrays for deep-sea wireless optical communication." In Atmospheric and Environmental Optics, edited by Liang Xu, Jianguo Liu, and Jian Gao. SPIE, 2023. http://dx.doi.org/10.1117/12.2646071.
Повний текст джерелаKozak, L. V., A. Odzimek, A. E. Volvach, V. M. Ivchenko, P. M. Kozak, and V. P. Lapchuk. "Observation and analysis of transient luminous events in the Earth's atmosphere." In 2014 24th International Crimean Conference "Microwave & Telecommunication Technology" (CriMiCo). IEEE, 2014. http://dx.doi.org/10.1109/crmico.2014.6959773.
Повний текст джерелаLukin, Vladimir P., Nina N. Botugina, Oleg N. Emaleev, and Peter A. Konyaev. "Experimental studies of the correlation of wave-front aberrations of a point coherent source and an extended luminous object." In XXIII International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, edited by Oleg A. Romanovskii. SPIE, 2017. http://dx.doi.org/10.1117/12.2283001.
Повний текст джерелаArnal, Etienne, Cedric Anthierens, and Eric Bideaux. "Consideration of glare from daylight in the control of the luminous atmosphere in buildings." In 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, 2011. http://dx.doi.org/10.1109/aim.2011.6027070.
Повний текст джерелаSosnin, Eduard A., Evgenii K. Baksht, Vladimir S. Kuznetsov, Victor A. Panarin, Dmitrii S. Pechenitsyn, Victor S. Skakun, and Victor F. Tarasenko. "Apokamp discharge as a laboratory analogue of the transient luminous events of middle atmosphere." In XIV International Conference on Pulsed Lasers and Laser Applications (AMPL-2019), edited by Anton V. Klimkin, Victor F. Tarasenko, and Maxim V. Trigub. SPIE, 2019. http://dx.doi.org/10.1117/12.2541527.
Повний текст джерелаMaryeva, O., V. Gvaramadze, A. Kniazev, and L. Berdnikov. "Wray 15-906 low mass Luminous Blue Variable on a pre-supernova stage." In ASTRONOMY AT THE EPOCH OF MULTIMESSENGER STUDIES. Proceedings of the VAK-2021 conference, Aug 23–28, 2021. Crossref, 2022. http://dx.doi.org/10.51194/vak2021.2022.1.1.059.
Повний текст джерелаNishita, Tomoyuki, Yasuhiro Miyawaki, and Eihachiro Nakamae. "A shading model for atmospheric scattering considering luminous intensity distribution of light sources." In the 14th annual conference. New York, New York, USA: ACM Press, 1987. http://dx.doi.org/10.1145/37401.37437.
Повний текст джерела