Добірка наукової літератури з теми "Machine Learning Informé"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Machine Learning Informé".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Machine Learning Informé"
Shoureshi, R., D. Swedes, and R. Evans. "Learning Control for Autonomous Machines." Robotica 9, no. 2 (April 1991): 165–70. http://dx.doi.org/10.1017/s0263574700010201.
Повний текст джерелаPateras, Joseph, Pratip Rana, and Preetam Ghosh. "A Taxonomic Survey of Physics-Informed Machine Learning." Applied Sciences 13, no. 12 (June 7, 2023): 6892. http://dx.doi.org/10.3390/app13126892.
Повний текст джерелаMinasny, Budiman, Toshiyuki Bandai, Teamrat A. Ghezzehei, Yin-Chung Huang, Yuxin Ma, Alex B. McBratney, Wartini Ng, et al. "Soil Science-Informed Machine Learning." Geoderma 452 (December 2024): 117094. http://dx.doi.org/10.1016/j.geoderma.2024.117094.
Повний текст джерелаXypakis, Emmanouil, Valeria deTurris, Fabrizio Gala, Giancarlo Ruocco, and Marco Leonetti. "Physics-informed machine learning for microscopy." EPJ Web of Conferences 266 (2022): 04007. http://dx.doi.org/10.1051/epjconf/202226604007.
Повний текст джерелаZhao, Hefei, Yinglun Zhan, Joshua Nduwamungu, Yuzhen Zhou, Changmou Xu, and Zheng Xu. "Machine learning-driven Raman spectroscopy for rapidly detecting type, adulteration, and oxidation of edible oils." INFORM International News on Fats, Oils, and Related Materials 31, no. 4 (April 1, 2020): 12–15. http://dx.doi.org/10.21748/inform.04.2020.12.
Повний текст джерелаSerre, Thomas. "Deep Learning: The Good, the Bad, and the Ugly." Annual Review of Vision Science 5, no. 1 (September 15, 2019): 399–426. http://dx.doi.org/10.1146/annurev-vision-091718-014951.
Повний текст джерелаArundel, Samantha T., Gaurav Sinha, Wenwen Li, David P. Martin, Kevin G. McKeehan, and Philip T. Thiem. "Historical maps inform landform cognition in machine learning." Abstracts of the ICA 6 (August 11, 2023): 1–2. http://dx.doi.org/10.5194/ica-abs-6-10-2023.
Повний текст джерелаKarimpouli, Sadegh, and Pejman Tahmasebi. "Physics informed machine learning: Seismic wave equation." Geoscience Frontiers 11, no. 6 (November 2020): 1993–2001. http://dx.doi.org/10.1016/j.gsf.2020.07.007.
Повний текст джерелаZhang, Xi. "Application of Machine Learning in Stock Price Analysis." Highlights in Science, Engineering and Technology 107 (August 15, 2024): 143–49. http://dx.doi.org/10.54097/tjhsx998.
Повний текст джерелаLiu, Yang, Ruo Jia, Jieping Ye, and Xiaobo Qu. "How machine learning informs ride-hailing services: A survey." Communications in Transportation Research 2 (December 2022): 100075. http://dx.doi.org/10.1016/j.commtr.2022.100075.
Повний текст джерелаДисертації з теми "Machine Learning Informé"
Guimbaud, Jean-Baptiste. "Enhancing Environmental Risk Scores with Informed Machine Learning and Explainable AI." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10188.
Повний текст джерелаFrom conception onward, environmental factors such as air quality or dietary habits can significantly impact the risk of developing various chronic diseases. Within the epidemiological literature, indicators known as Environmental Risk Scores (ERSs) are used not only to identify individuals at risk but also to study the relationships between environmental factors and health. A limit of most ERSs is that they are expressed as linear combinations of a limited number of factors. This doctoral thesis aims to develop ERS indicators able to investigate nonlinear relationships and interactions across a broad range of exposures while discovering actionable factors to guide preventive measures and interventions, both in adults and children. To achieve this aim, we leverage the predictive abilities of non-parametric machine learning methods, combined with recent Explainable AI tools and existing domain knowledge. In the first part of this thesis, we compute machine learning-based environmental risk scores for mental, cardiometabolic, and respiratory general health for children. On top of identifying nonlinear relationships and exposure-exposure interactions, we identified new predictors of disease in childhood. The scores could explain a significant proportion of variance and their performances were stable across different cohorts. In the second part, we propose SEANN, a new approach integrating expert knowledge in the form of Pooled Effect Sizes (PESs) into the training of deep neural networks for the computation of extit{informed environmental risk scores}. SEANN aims to compute more robust ERSs, generalizable to a broader population, and able to capture exposure relationships that are closer to evidence known from the literature. We experimentally illustrate the approach's benefits using synthetic data, showing improved prediction generalizability in noisy contexts (i.e., observational settings) and improved reliability of interpretation using Explainable Artificial Intelligence (XAI) methods compared to an agnostic neural network. In the last part of this thesis, we propose a concrete application for SEANN using data from a cohort of Spanish adults. Compared to an agnostic neural network-based ERS, the score obtained with SEANN effectively captures relationships more in line with the literature-based associations without deteriorating the predictive performances. Moreover, exposures with poor literature coverage significantly differ from those obtained with the agnostic baseline method with more plausible directions of associations.In conclusion, our risk scores demonstrate substantial potential for the data-driven discovery of unknown nonlinear environmental health relationships by leveraging existing knowledge about well-known relationships. Beyond their utility in epidemiological research, our risk indicators are able to capture holistic individual-level non-hereditary risk associations that can inform practitioners about actionable factors in high-risk individuals. As in the post-genetic era, personalized medicine prevention will focus more and more on modifiable factors, we believe that such approaches will be instrumental in shaping future healthcare paradigms
Mack, Jonas. "Physics Informed Machine Learning of Nonlinear Partial Differential Equations." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441275.
Повний текст джерелаLeung, Jason W. "Application of machine learning : automated trading informed by event driven data." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105982.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 61-65).
Models of stock price prediction have traditionally used technical indicators alone to generate trading signals. In this paper, we build trading strategies by applying machine-learning techniques to both technical analysis indicators and market sentiment data. The resulting prediction models can be employed as an artificial trader used to trade on any given stock exchange. The performance of the model is evaluated using the S&P 500 index.
by Jason W. Leung.
M. Eng.
Wu, Jinlong. "Predictive Turbulence Modeling with Bayesian Inference and Physics-Informed Machine Learning." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85129.
Повний текст джерелаPh. D.
Reynolds-Averaged Navier–Stokes (RANS) simulations are widely used for engineering design and analysis involving turbulent flows. In RANS simulations, the Reynolds stress needs closure models and the existing models have large model-form uncertainties. Therefore, the RANS simulations are known to be unreliable in many flows of engineering relevance, including flows with three-dimensional structures, swirl, pressure gradients, or curvature. This lack of accuracy in complex flows has diminished the utility of RANS simulations as a predictive tool for engineering design, analysis, optimization, and reliability assessments. Recently, data-driven methods have emerged as a promising alternative to develop the model of Reynolds stress for RANS simulations. In this dissertation I explore two physics-informed, data-driven frameworks to improve RANS modeled Reynolds stresses. First, a Bayesian inference framework is proposed to quantify and reduce the model-form uncertainty of RANS modeled Reynolds stress by leveraging online sparse measurement data with empirical prior knowledge. Second, a machine-learning-assisted framework is proposed to utilize offline high fidelity simulation databases. Numerical results show that the data-driven RANS models have better prediction of Reynolds stress and other quantities of interest for several canonical flows. Two metrics are also presented for an a priori assessment of the prediction confidence for the machine-learning-assisted RANS model. The proposed data-driven methods are also applicable to the computational study of other physical systems whose governing equations have some unresolved physics to be modeled.
Reichert, Nils. "CORRELATION BETWEEN COMPUTER RECOGNIZED FACIAL EMOTIONS AND INFORMED EMOTIONS DURING A CASINO COMPUTER GAME." Thesis, Fredericton: University of New Brunswick, 2012. http://hdl.handle.net/1882/44596.
Повний текст джерелаWang, Jianxun. "Physics-Informed, Data-Driven Framework for Model-Form Uncertainty Estimation and Reduction in RANS Simulations." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77035.
Повний текст джерелаPh. D.
Cedergren, Linnéa. "Physics-informed Neural Networks for Biopharma Applications." Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-185423.
Повний текст джерелаEmerson, Guy Edward Toh. "Functional distributional semantics : learning linguistically informed representations from a precisely annotated corpus." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284882.
Повний текст джерелаGiuliani, Luca. "Extending the Moving Targets Method for Injecting Constraints in Machine Learning." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23885/.
Повний текст джерелаAugustin, Lefèvre. "Méthodes d'apprentissage appliquées à la séparation de sources mono-canal." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00764546.
Повний текст джерелаКниги з теми "Machine Learning Informé"
Interpretable Machine Learning for the Analysis, Design, Assessment, and Informed Decision Making for Civil Infrastructure. Elsevier Science & Technology, 2023.
Знайти повний текст джерелаMadhu, G., Sandeep Kautish, A. Govardhan, and Avinash Sharma, eds. Emerging Computational Approaches in Telehealth and Telemedicine: A Look at The Post-COVID-19 Landscape. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150792721220101.
Повний текст джерелаSmith, Gary, and Jay Cordes. The 9 Pitfalls of Data Science. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198844396.001.0001.
Повний текст джерелаAnderson, Raymond A. Credit Intelligence & Modelling. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844194.001.0001.
Повний текст джерелаEl-Nasr, Magy Seif, Alessandro Canossa, Truong-Huy D. Nguyen, and Anders Drachen. Game Data Science. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192897879.001.0001.
Повний текст джерелаDowd, Cate. Digital Journalism, Drones, and Automation. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190655860.001.0001.
Повний текст джерелаOulasvirta, Antti, Per Ola Kristensson, Xiaojun Bi, and Andrew Howes, eds. Computational Interaction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198799603.001.0001.
Повний текст джерелаGiudici, Paolo, and Giulio Mignola. Big Data & Advanced Analytics per il Risk Management. AIFIRM, 2022. http://dx.doi.org/10.47473/2016ppa00035.
Повний текст джерелаDobson, James E. Critical Digital Humanities. University of Illinois Press, 2019. http://dx.doi.org/10.5622/illinois/9780252042270.001.0001.
Повний текст джерелаЧастини книг з теми "Machine Learning Informé"
Neuer, Marcus J. "Physics-Informed Learning." In Machine Learning for Engineers, 173–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2024. http://dx.doi.org/10.1007/978-3-662-69995-9_6.
Повний текст джерелаBraga-Neto, Ulisses. "Physics-Informed Machine Learning." In Fundamentals of Pattern Recognition and Machine Learning, 293–324. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-60950-3_12.
Повний текст джерелаWang, Sifan, and Paris Perdikaris. "Adaptive Training Strategies for Physics-Informed Neural Networks." In Knowledge-Guided Machine Learning, 133–60. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003143376-6.
Повний текст джерелаSimm, Jaak, Adam Arany, Edward De Brouwer, and Yves Moreau. "Expressive Graph Informer Networks." In Machine Learning, Optimization, and Data Science, 198–212. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95470-3_15.
Повний текст джерелаAfroze, Lameya, Silke Merkelbach, Sebastian von Enzberg, and Roman Dumitrescu. "Domain Knowledge Injection Guidance for Predictive Maintenance." In Machine Learning for Cyber-Physical Systems, 75–87. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-47062-2_8.
Повний текст джерелаSun, Alexander Y., Hongkyu Yoon, Chung-Yan Shih, and Zhi Zhong. "Applications of Physics-Informed Scientific Machine Learning in Subsurface Science: A Survey." In Knowledge-Guided Machine Learning, 111–32. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003143376-5.
Повний текст джерелаDani, Harsh, Jundong Li, and Huan Liu. "Sentiment Informed Cyberbullying Detection in Social Media." In Machine Learning and Knowledge Discovery in Databases, 52–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71249-9_4.
Повний текст джерелаMumtaz, Zahid. "Machine Learning-Based Approach for Exploring the Household Survey Data." In Informal Social Protection and Poverty, 141–200. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6474-9_7.
Повний текст джерелаCross, Elizabeth J., S. J. Gibson, M. R. Jones, D. J. Pitchforth, S. Zhang, and T. J. Rogers. "Physics-Informed Machine Learning for Structural Health Monitoring." In Structural Integrity, 347–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81716-9_17.
Повний текст джерелаSudarshan, Viswanath P., K. Pavan Kumar Reddy, Mohana Singh, Jayavardhana Gubbi, and Arpan Pal. "Uncertainty-Informed Bayesian PET Image Reconstruction Using a Deep Image Prior." In Machine Learning for Medical Image Reconstruction, 145–55. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17247-2_15.
Повний текст джерелаТези доповідей конференцій з теми "Machine Learning Informé"
Oneto, Luca, Nicolò Navarin, Alessio Micheli, Luca Pasa, Claudio Gallicchio, Davide Bacciu, and Davide Anguita. "Informed Machine Learning for Complex Data." In ESANN 2024, 1–10. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-1.
Повний текст джерелаOneto, Luca, Davide Anguita, and Sandro Ridella. "Informed Machine Learning: Excess Risk and Generalization." In ESANN 2024, 11–16. Louvain-la-Neuve (Belgium): Ciaco - i6doc.com, 2024. http://dx.doi.org/10.14428/esann/2024.es2024-20.
Повний текст джерелаFarlessyost, William, and Shweta Singh. "Improving Mechanistic Model Accuracy with Machine Learning Informed Physics." In Foundations of Computer-Aided Process Design, 275–82. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.121371.
Повний текст джерелаZhu, Shijie, Hao Li, Yejie Jiang, and Yingjun Deng. "Inner Defect Detection via Physics-Informed Machine Learning." In 2024 6th International Conference on System Reliability and Safety Engineering (SRSE), 212–16. IEEE, 2024. https://doi.org/10.1109/srse63568.2024.10772527.
Повний текст джерелаYu, Yue, Jiageng Tong, Jinhui Xia, Jinya Su, and Shihua Li. "PMSM System Identification by Knowledge-informed Machine Learning." In 2024 IEEE 22nd International Conference on Industrial Informatics (INDIN), 1–6. IEEE, 2024. https://doi.org/10.1109/indin58382.2024.10774223.
Повний текст джерелаZhang, Tianren, Yuanbin Wang, Ruizhe Dong, Wenhu Wang, Zhongxue Yang, and Mingzhu Zhu. "Informed Machine Learning for Real-time Grinding Force Prediction." In 2024 30th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/m2vip62491.2024.10746047.
Повний текст джерелаSurner, Martin, and Abdelmajid Khelil. "CIML-R: Causally Informed Machine Learning Based on Feature Relevance." In 2024 11th IEEE Swiss Conference on Data Science (SDS), 68–75. IEEE, 2024. http://dx.doi.org/10.1109/sds60720.2024.00018.
Повний текст джерелаFilipovic, Lado, Tobias Reiter, Julius Piso, and Roman Kostal. "Equipment-Informed Machine Learning-Assisted Feature-Scale Plasma Etching Model." In 2024 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/sispad62626.2024.10733099.
Повний текст джерелаIto, Rikuto, Yasuhiro Oikawa, and Kenji Ishikawa. "Tomographic Reconstruction of Sound Field From Optical Projections Using Physics-Informed Neural Networks." In 2024 IEEE 34th International Workshop on Machine Learning for Signal Processing (MLSP), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/mlsp58920.2024.10734743.
Повний текст джерелаWade, Daniel, Hieu Ngo, Frances Love, Jeremy Partain, Andrew Wilson, Matthew Statham, and Perumal Shanthakumaran. "Measurement of Vibration Transfer Functions to Inform Machine Learning Based HUMS Diagnostics." In Vertical Flight Society 72nd Annual Forum & Technology Display, 1–14. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11479.
Повний текст джерелаЗвіти організацій з теми "Machine Learning Informé"
Martinez, Carianne, Jessica Jones, Drew Levin, Nathaniel Trask, and Patrick Finley. Physics-Informed Machine Learning for Epidemiological Models. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1706217.
Повний текст джерелаMcDermott, Jason, Song Feng, Christine Chang, Darren Schmidt, and Vincent Danna. Structural- and Functional-Informed Machine Learning for Protein Function Prediction. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1988630.
Повний текст джерелаGuthrie, George Drake Jr, and Hari S. Viswanathan. Science-informed Machine Learning to Increase Recovery Efficiency in Unconventional Reservoirs. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1614818.
Повний текст джерелаWang, Jianxun, Jinlong Wu, Julia Ling, Gianluca Iaccarino, and Heng Xiao. Physics-Informed Machine Learning for Predictive Turbulence Modeling: Towards a Complete Framework. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1562229.
Повний текст джерелаBailey Bond, Robert, Pu Ren, James Fong, Hao Sun, and Jerome F. Hajjar. Physics-informed Machine Learning Framework for Seismic Fragility Analysis of Steel Structures. Northeastern University, August 2024. http://dx.doi.org/10.17760/d20680141.
Повний текст джерелаMueller, Juliane. Machine Learning to Enable Efficient Uncertainty Quantification, Data Assimilation, and Informed Data Acquisition. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1769743.
Повний текст джерелаAthon, Matthew, Danielle Ciesielski, Jordan Corbey, Shenyang Hu, Ethan King, Yulan Li, Jacqueline Royer, Panagiotis Stinis, Robert Surbella, and Scott Swenson. Visualizing Uranium Crystallization from Melt: Experiment-Informed Phase Field Modeling and Machine Learning. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2338176.
Повний текст джерелаUllrich, Paul, Tapio Schneider, and Da Yang. Physics-Informed Machine Learning from Observations for Clouds, Convection, and Precipitation Parameterizations and Analysis. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769762.
Повний текст джерелаGhanshyam, Pilania, Kenneth James McClellan, Christopher Richard Stanek, and Blas P. Uberuaga. Physics-Informed Machine Learning for Discovery and Optimization of Materials: A Case Study of Scintillators. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1463529.
Повний текст джерелаBao, Jie, Chao Wang, Zhijie Xu, and Brian J. Koeppel. Physics-Informed Machine Learning with Application to Solid Oxide Fuel Cell System Modeling and Optimization. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569289.
Повний текст джерела