Добірка наукової літератури з теми "Masseter muscle Physiology"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Masseter muscle Physiology".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Пов'язані теми наукових робіт:

Статті в журналах з теми "Masseter muscle Physiology":

1
Cairns, Brian E., James W. Hu, Lars Arendt-Nielsen, Barry J. Sessle, and Peter Svensson. "Sex-Related Differences in Human Pain and Rat Afferent Discharge Evoked by Injection of Glutamate Into the Masseter Muscle." Journal of Neurophysiology 86, no. 2 (August 2001): 782–91. http://dx.doi.org/10.1152/jn.2001.86.2.782.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Animal studies have suggested that tissue injury–related increased levels of glutamate may be involved in peripheral nociceptive mechanisms in deep craniofacial tissues. Indeed, injection of glutamate (0.1–1 M, 10 μl) into the temporomandibular region evokes reflex jaw muscle responses through activation of peripheral excitatory amino acid receptors. It has recently been found that this glutamate-evoked reflex muscle activity is significantly greater in female than male rats. However, it is not known whether peripheral administration of glutamate, in the same concentrations that evoke jaw muscle activity in rats, causes pain in humans or activates deep craniofacial nociceptive afferents. Therefore we examined whether injection of glutamate into the masseter muscle induces pain in male and female volunteers and, since masseter afferent recordings were not feasible in humans, whether glutamate excites putative nociceptive afferents supplying the masseter muscle of male and female rats. Injection of glutamate (0.5 M or 1.0 M, 0.2 ml) into the masseter muscle of both men and women caused significantly higher levels of peak pain, duration of pain, and overall pain than injection of isotonic saline (0.2 ml). In addition, glutamate-evoked peak and overall muscle pain in women was significantly greater than in men. In rats of both sexes, glutamate (10 μl, 0.5 M) evoked activity in a subpopulation of masseter muscle afferents ( n = 36) that projected to the subnucleus caudalis, an important relay of noxious input from the craniofacial region. The largest responses to glutamate were recorded in muscle afferents with the slowest conduction velocities (2.5–5 m/s). Further, glutamate-evoked masseter muscle afferent activity was significantly greater in female than in male rats. These results indicate that glutamate injection into the masseter muscle evokes pain responses that are greater in women than men and that one possible mechanism for this difference may be a greater sensitivity to glutamate of masseter muscle afferents in females. These sex-related differences in acute experimental masseter muscle pain are particularly interesting given the higher prevalence of many chronic muscle pain conditions in women.
2
Rončević, Radmilo. "Masseter muscle hypertrophy." Journal of Maxillofacial Surgery 14 (January 1986): 344–48. http://dx.doi.org/10.1016/s0301-0503(86)80322-8.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Eriksson, Per-Olof, Gill S. Butler-Browne, and Lars-Eric Thornell. "Immunohistochemical characterization of human masseter muscle spindles." Muscle & Nerve 17, no. 1 (January 1994): 31–41. http://dx.doi.org/10.1002/mus.880170105.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Hakim, Akhlaq W., Xudong Dong та Brian E. Cairns. "TNFα Mechanically Sensitizes Masseter Muscle Nociceptors by Increasing Prostaglandin E2 Levels". Journal of Neurophysiology 105, № 1 (січень 2011): 154–61. http://dx.doi.org/10.1152/jn.00730.2010.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
TNFα induces mechanical sensitization of rat masseter muscle nociceptors, which takes 2–3 h to manifest and is mediated through activation of P55 and P75 receptors. This study was undertaken to determine whether TNFα induces nociceptor mechanical sensitization through the release of other algogenic substances such as glutamate, prostaglandin E2 (PGE2), and/or nerve growth factor (NGF), which have been shown to induce mechanical sensitization of muscle nociceptors. Masseter muscle homogenate levels of PGE2 and NGF were measured 3 h after injection of TNFα (1 μg) or vehicle control using commercially available kits. Interstitial glutamate concentration was measured after injection of TNFα or vehicle control using a glutamate-selective biosensor probe. Diclofenac, a cycloxygenase inhibitor that blocks the synthesis of PGE2, d-2-amino-5-phophonovaleric acid (APV), a competitive N-methyl-d-aspartate (NMDA) receptor antagonist, and a tyrosine kinase A (TrkA) receptor antibody, which blocks NGF-induced masseter muscle nociceptor sensitization, were used to assess the contribution of PGE2, glutamate, and NGF to TNFα-induced nociceptor sensitization. PGE2 and glutamate concentrations were significantly elevated 3 h after TNFα injection into the masseter muscle. Injection of diclofenac partially reversed the TNFα-induced decreases in the mechanical threshold (MT) of masseter muscle nociceptors, whereas vehicle control, APV, and TrkA antibody did not significantly alter nociceptor MT. These results suggest that TNFα-induced mechanical sensitization of masseter muscle nociceptors is mediated in part by increased PGE2 levels. The findings of this study support the hypothesis that TNFα induces a delayed mechanical sensitization of masseter muscle nociceptors indirectly by the release of PGE2.
5
Ishii, Hisayoshi, Takeharu Niioka, Hidekazu Watanabe, and Hiroshi Izumi. "Inhibitory effects of excess sympathetic activity on parasympathetic vasodilation in the rat masseter muscle." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 293, no. 2 (August 2007): R729—R736. http://dx.doi.org/10.1152/ajpregu.00866.2006.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The present study was designed to examine the effect of sympathetic tonic activity on parasympathetic vasodilation evoked by the trigeminal-mediated reflex in the masseter muscle in urethane-anesthetized rats. Sectioning of the superior cervical sympathetic trunk (CST) ipsilaterally increased the basal level of blood flow in the masseter muscle (MBF). Electrical stimulation of the peripheral cut end of the CST for 2 min using 2-ms pulses ipsilaterally decreased in a dependent manner the intensity (0.5–10 V) and frequency (0.1–5 Hz) of the MBF. The CST stimulation for 2 min at <0.5 Hz with 5 V using 2-ms pulses seems to be comparable with the spontaneous activity in the CST fibers innervating the masseter vasculature, because this stimulation restored the basal level of the MBF to the presectioned values. Parasympathetic vasodilation evoked by electrical stimulation of the central cut end of the lingual nerve in the masseter muscle was markedly reduced by CST stimulation for 2 min with 5 V using 2-ms pulses in a frequency-dependent manner (0.5–5 Hz). Intravenous administration of phentolamine significantly reduced the vasoconstriction induced by CST stimulation in a dose-dependent manner (0.1–1 mg/kg), but pretreatment with either phentolamine or propranolol failed to affect the sympathetic inhibition of the parasympathetic vasodilation. Our results suggest that 1) excess sympathetic activity inhibits parasympathetic vasodilation in the masseter muscle, and 2) α- and β-adrenoceptors do not contribute to sympathetic inhibition of parasympathetic vasodilation, and thus some other types of receptors must be involved in this response.
6
Scutter, Sheila D., and Kemal S. Türker. "Muscle Spindle Afferent Input to Motoneurons in Human Masseter." Journal of Neurophysiology 82, no. 1 (July 1999): 505–7. http://dx.doi.org/10.1152/jn.1999.82.1.505.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The H-reflex response in large and small single motor units in human deep anterior masseter was studied to investigate the distribution of muscle spindle afferents onto masseter motoneurons. We found that only the larger units displayed H-reflex responses. This indicates preferential distribution of muscle spindle input onto large motoneurons or a skewed distribution of tonic presynaptic inhibitory mechanisms.
7
Rousseff, Rossen T., Adnan J. Khuraibet, Asmahan F. Al-Shubaili, and Plamen Tzvetanov. "Stimulated jitter in the masseter muscle: Normative values." Muscle & Nerve 35, no. 2 (September 2006): 243–45. http://dx.doi.org/10.1002/mus.20651.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Hollowell, D. E., P. R. Bhandary, A. W. Funsten, and P. M. Suratt. "Respiratory-related recruitment of the masseter: response to hypercapnia and loading." Journal of Applied Physiology 70, no. 6 (June 1991): 2508–13. http://dx.doi.org/10.1152/jappl.1991.70.6.2508.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
To test the hypothesis that a muscle that closes the jaw, the masseter, can be recruited by ventilatory stimuli, we studied the electromyographic activation of the masseter and genioglossus in seven normal awake males who were exposed in random order to progressive hyperoxic hypercapnia, inspiratory threshold loading (-40 cmH2O), and combined hypercapnia and loading. With hypercapnia, the masseter was generally recruited after the genioglossus had been activated. Once recruited, activation of both muscles increased linearly with increasing CO2. Combined hypercapnia and loading produced more activation than either stimulus alone. These data indicate that the masseter is activated by ventilatory stimuli that activate the genioglossus. Earlier recruitment of the genioglossus suggests that activation of the masseter serves to stabilize the mandible and allow the genioglossus to function as a more efficient dilator of the upper airway.
9
Rispoli, Daniel Zeni, Paulo M. Camargo, José L. Pires, Vinicius R. Fonseca, Karina K. Mandelli, and Marcela A. C. Pereira. "Benign masseter muscle hypertrophy." Brazilian Journal of Otorhinolaryngology 74, no. 5 (September 2008): 790–93. http://dx.doi.org/10.1016/s1808-8694(15)31393-8.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Ishii, Hisayoshi, Takeharu Niioka, Emi Sudo, and Hiroshi Izumi. "Evidence for parasympathetic vasodilator fibres in the rat masseter muscle." Journal of Physiology 569, no. 2 (November 2005): 617–29. http://dx.doi.org/10.1113/jphysiol.2005.087643.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Masseter muscle Physiology":

1
Watkinson, A. C. "Biofeedback and masseter muscle activity." Electronic Thesis or Dissertation, University of Bristol, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356247.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Lam, Ernest W. N. "Human masseter muscle studies by magnetic resonance." Thesis/Dissertation, University of British Columbia, 1991. http://hdl.handle.net/2429/30005.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The human masseter muscle is a structurally complex jaw elevator with the capability of generating high, multidirectional forces. The invasiveness of current anatomical and physiological methods has, however, limited both the number and scope of studies of human masseter muscle structure and function. Therefore the aim of this work was to apply in vivo magnetic resonance (MR) techniques to elucidate the three-dimensional internal architecture of the human masseter muscle and its metabolic response to exercise in order to gain a better understanding of the jaw muscles in health and disease. In the first of these experiments, five adult subjects were selected and examined using cephalometric radiography, magnetic resonance imaging (MRI) and three-dimensional rotational and reconstructive computer graphics to describe the organization of tendon planes within the masseter muscle. Planar quadrilaterals representing putative tendon planes were fitted to the surfaces of the three-dimensional muscle reconstructions, and these were related to the mid-sagittal plane in the coronal and axial views. To confirm whether putative planes disclosed by MRI represented true anatomic entities, a fresh human cadaver head was imaged by MRI and then cryosectioned at millimetre intervals. Planar sections through the reconstructed muscle generated from the cadaver cryosections were correlated with the actual MR images in the same planes. Tendon plane angulation appeared to be related to ramal length and lower face height measured cephalometrically. In the axial view, the tendon planes appeared roughly to follow the angulations of the zygomatic arch and the lateral face of the mandibular ramus. Our results suggest that the angulation of tendon planes, and possibly pennation angles are different depending on the viewing angle, and infer that muscle fibres inserting on either side of a central tendon may need to develop different tensile forces if translation is to occur directly along the tendon axis. In the second, 31P magnetic resonance spectroscopy (MRS) was utilized to examine the masseter muscles of six adult males at rest and performing stereotyped isometric clenching exercises. 31P MR spectra were acquired from three locations within the muscle using a 2cm by 3cm, single-turn, copper receiver coil. The spectra were quantified on the basis of relative peak area and position. The organic phosphate (Pi) to creatine phosphate (PCr) ratio (Pi/PCr), which has been shown to be proportional to free ADP concentration and hence, the metabolic activity, as well as the normalized Pi concentration ([Pi]) and pH, were calculated for each site and exercise. The mean resting Pi/PCr ratio and [Pi] were greater for the deep part of the muscle than for the superficial and intermediate parts. These differences were significant to p<0.01. The mean pH however, was similar in all parts of the muscle at rest. During exercise, a significant increase in mean Pi/PCr was found in the superficial and intermediate parts of the muscle. Both these differences were significant to p<0.05. An accompanying decrease in mean pH was observed in all parts of the muscle during exercise. In the superficial part of the muscle, this decrease was significant to the p<0.05 level, and in the deep part, the decrease was significant to the p<0.001 level. No significant differences were found for these parameters between left and right molar clenching. These results suggest that metabolic activity may be monitored in the masseter muscle using 31P MR spectroscopy and that task-dependent and regional variations in metabolic activity may be demonstrated both at rest and during exercise. They are promising enough to encourage future studies of muscle metabolism in subjects with jaw muscle disorders. These experiments demonstrate the novel application of magnetic resonance techniques for studying craniomandibular morphology and function non-invasively. Collectively, they reveal the anatomical and functional heterogeneity which exist in the human masseter muscle.
Medicine, Faculty of
Biochemistry and Molecular Biology, Department of
Graduate
3
McMillan, Anne Sinclair. "Human masseter motor unit behaviour." Thesis/Dissertation, University of British Columbia, 1989. http://hdl.handle.net/2429/30673.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
There is a dearth of knowledge on the functional organization of the anatomically complex human masseter muscle. Limited physiological studies suggest a functional organization which may differ significantly from human limb muscles. The present studies aimed to examine the putative relationship between structure and function in the human masseter muscle as a basis for understanding function and dysfunction in human jaw muscles. In the first experiment single motor unit (SMU) activity was recorded from pairs of recording sites distributed throughout the masseter muscle. In each case SMU activity at a chosen location was used as a reference to search for synchronized SMU activity at another selected site. The locations of the needle tips were estimated in 3-dimensions (3-D) by means of an optical system, then transferred to 3-D reconstructions derived from Magnetic Resonance images. This approach permitted calculation of the linear distances between verified muscle recording sites. The mean separation of the sites from which synchronous SMU activity could be recorded was 8.8±3.4mm. The putative territories had a preferred orientation in the antero-posterior axis. Motor unit territories were larger than described previously, and appeared to be related to anatomical compartments. The second experiment involved recording activity from stereotactically mapped masseter SMUs. In each case, the lowest sustainable firing frequency (LSFF) was reached by slow increases and decreases in voluntary firing rate, followed by sustained firing at the lowest possible rate. Pulse-discrimination and digital sampling of consecutive inter-spike intervals (ISIs) were then used to measure LSFF for 2-6 separate occlusal and postural tasks to which each unit contributed. There were significant differences between mean ISIs for the tasks performed by most units, which suggests descending drive to masseter units is highly task-dependent. There were also regional differences in unit task specificities. In the third paradigm, reflex SMU activity was recorded from units in the masseter muscle and the inferior head of the lateral pterygoid muscle. Bipolar electrodes fixed to the gingiva near the maxillary canine delivered single pulses of 1ms duration at sub-noxious levels of intensity. At constrained firing frequencies (10, 15Hz), pulses were injected sequentially, with increasing delays, after preselected spikes. More profound inhibition occurred in units firing at 10 than 15Hz. There were significant differences in masseter inhibitory responses when the unit task varied. Reflex inhibition in masseter and lateral pterygoid SMUs is highly frequency-dependent, and also task-dependent in masseter units. The fourth study involved recording activity from SMUs in the masseter muscle. A midline load cell was fixed to the incisor teeth and aligned either perpendicular (P) or 30 degrees anterior (A) to the occlusal plane, without altering jaw position. A rigid spike-triggered averaging (STA) paradigm was used to extract the contribution of individual SMUs to the overall force at load cell orientations P and A. Spikes preceded or followed by an interval of less than 100ms were rejected prior to averaging. At background bite forces from 0.06-8N, the isometric forces apparently developed by individual units varied randomly with load cell orientations, (P range 36.2±19.6mN; A range 38.2±28.4mN). All units could be fired slowly with varying degrees of muscle coactivation, in some instances without contact on the load cell. The use of STA as a method for determining SMU tension in the masseter muscle appears to be task-dependent and in the presence of coactivation may be inappropriate. The findings collectively indicate the heterogeneous nature of SMU behaviour in the human masseter muscle which is consistent with internal muscle compartments based on anatomical features and functional behaviour. There thus appear to be both physiological and anatomical substrates for differential motor control of selected regions of the human masseter muscle.
Dentistry, Faculty of
Graduate
4
Bajramaj, Ermira. "Microdialysis in the human masseter muscle- Methodological aspects." Student thesis, Malmö högskola, Odontologiska fakulteten (OD), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-19896.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Introduktion: Mikrodialys används för att studera metabola förändringar i olika vävnader. Vid mikrodialys sätts en kateter i muskeln vilket inducerar en traumafas, som kan påverka frisläpp av substanser. En 120 minuters stabiliseringstid har föreslagits så att metabola förändringar p.g.a. traumat ska normaliseras och ej påverka resultatet. En lång stabiliseringstid leder dock till att dessa studier är tidskrävande och därför även dyra och svårgenomförda. Syfte: Att undersöka och fastställa lämplig stabiliseringsperiod för mikrodialys av serotonin och glutamat i massetermuskeln hos friska individer samt hos patienter med myofascial TMD. Material och metod: Intramuskulär mikrodialys utfördes och dialysat samlades in på 15 friska kontroller samt 15 patienter med myofascial TMD för analys av serotonin och glutamat. För att tillåta vävnaden återhämta sig från traumafasen utvärderades en 120-minuters stabiliseringsperiod, där de första 20 minuterna utgjorde ursprunglig baseline och de sista 20 minuterna stabiliserad baseline. Resultat: Ingen signifikant förändring av serotonin och glutamat observerades över tid för kontroll-gruppen (P>0,05). För TMD-gruppen sågs däremot såg en signifikant sänkning av serotoninhalten over tid (P<0,001) följt av en signifikant ökning mellan tidpunkten T100-120 och T120-140 (P<0,001). För glutamat sågs en reduktion vid tidpunkten T20-40 jämför med det ursprungliga baselinevärdet (P<0,05). Konklusion: Resultaten antyder att 20 minuters stabiliseringsperiod är tillräcklig för friska individer vid mikrodialys av serotonin och glutamat i masseter muskeln. Hos patienter med myofacial TMD är glutamat-nivåerna stabiliserade efter 40 minuter. Serotonin nivåerna är däremot inte stabiliserade efter 120 minuter, vilket tyder på en spontan ökning av intramuskulär serotonin 2 timmar efter införandet av katetern.
Introduction: Microdialysis is a technique used to study metabolic changes in tissues. When performing microdialysis, a catheter is inserted into the muscle inducing a trauma phase, which may affect the release of substances. A 2-hour stabilization period has been suggested to allow tissues to recover from metabolic changes following the trauma. A long stabilization period however, makes these studies time-consuming and thus expensive.Aim: To investigate the necessary stabilization period for microdialysis of serotonin and glutamate in the masseter muscle in healthy subjects and in patients with myofascial TMD.Material and Methods: Intramuscular microdialysis was carried out in 15 patients with myofascial TMD and 15 healthy controls to collect serotonin and glutamate. To allow the tissue to recover following the probe insertion, a 120-min stabilization period was evaluated where the first 20 min served as the zero baseline and the last 20 min as the stabilized baseline. Results: No significant alterations of serotonin or glutamate were observed over the 2-hour period for the controls (P>0.05). For the TMD group, a significant decrease of serotonin was observed over time (P<0.001) followed by a significant increase between T100-120 and T120-140 (P<0.001). For glutamate, a significant reduction was observed at T20-40 compared with the zero baseline (P<0.05). Conclusion: A 20-min stabilization period is sufficient for healthy subjects for microdialysis of serotonin and glutamate in the masseter muscle. In patients with myofascial TMD, glutamate levels are stabilized after 40 minutes. Serotonin levels are not stabilized after 2 hours indicating a spontaneous increase of serotonin.
5
Whitlock, T. L. "Muscle physiology instrumentation." Electronic Thesis or Dissertation, University of Bath, 1990. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236467.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Zanbil, Angela. "Age Related Differences in Muscle Fiber Composition and Capillary Supply of the Human Masseter Muscle." Student thesis, Umeå universitet, Tandläkarutbildning, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-97851.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of the study was to test the hypothesis that aging causes changes in fiber composition and vascular supply in the human masseter muscle that contribute to impaired jaw function in elderly. The myosin heavy chain (MyHC) composition and capillary supply of muscle fibers in functionally different parts of the masseter muscle of six elderly and six young subjects (mean age 74 and 22 years) were analyzed with immunohistochemical and morphological methods. The mean muscle fiber area in the old masseter was decreased by 27% compared to the young subjects (1100 vs. 1507 m2, p=0.038). Smaller mean fiber area was observed for all fibers containing only slow MyHCI or fast MyHCII isoforms, but not for fibers co-expressing slow and fast MyHCs. There were no significant differences in the numbers of capillaries around fiber (CAF 1.85 vs. 1.92). When CAF was related to individual fiber area, capillaries around fiber area (CAFA), the capillary supply was significantly higher in elderly (CAFA 1.10 vs. 1.65, p=0.004). This was reflected by a higher capillary density in the old masseter (CD 574 vs. 794, cap/mm2, p=0.002). The loss of muscle mass without any reduction in capillary supply, suggests that the capillary network in the human masseter muscle is rather stable against degradation during aging. This finding is in contrast to previous findings in human limbs, where aging has been reported to decrease both fiber size and capillary network in muscles. We conclude that the ageing process might have different impact on jaw and limb muscles.
7
Guidon, Geneviève. "Incidence de la distance interocclusale sue l'activité électromyographique du masseter." Bordeaux 2, 1988. http://www.theses.fr/1988BOR20069.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Borini, Cyntia Bicalho. "Analise eletromiografica de musculos mastigatorios : variabilidade e influencia da ansiedade." PublishedVersion, [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/290901.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Orientador: Fausto Berzin
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-08-12T18:58:58Z (GMT). No. of bitstreams: 1 Borini_CyntiaBicalho_D.pdf: 684876 bytes, checksum: 0aec71096f81bf77bf3f9165ae00a545 (MD5) Previous issue date: 2008
Resumo: O objetivo deste trabalho foi avaliar a variabilidade interdias e intradias dos valores dos registros eletromiográficos, da parte superficial do músculo masseter e parte anterior do músculo temporal e a relação destes registros com o fator emocional, ansiedade, em três dias distintos de coleta. Foram selecionadas 16 voluntárias livres da presença de sinais e sintomas de disfunção temporomandibular, diagnosticadas de acordo com o Critério de Diagnóstico para Pesquisa das Disfunções Tmporomandibulares (RDC/TMD). Medidas cefalométricas em telerradiografias em norma lateral foram utilizadas para classificá-los de acordo com a relação de bases ósseas maxilo-mandibular em Classe I e II e com relação às dimensões verticais da face em tipo facial distinto, mesofacial e dolicofacial. Para a mensuração da ansiedade, foi utilizado o Inventário de Ansiedade Traço-Estado (IDATE). O exame eletromiográfico foi realizado utilizando o eletromiógrafo Myosystem Br1â de 12 canais, com 12 bites de resolução e ganho de até 50 vezes, freqüência de amostragem de 4.000 Hz, com eletrodos bipolares passivos acoplados a um pré-amplificador com ganho fixo de 20 vezes. Durante este foram realizadas as atividades de mastigação bilateral simultânea, mastigação habitual e contração voluntária em máxima intercuspidação em três dias distintos com intervalo de uma semana entre eles e três repetições em cada dia. Os sinais eletromiográficos foram processados, normalizados e em seguida, foram calculadas as variáveis instante máximo (Imax) e tempo de ativação (ON) para a análise da atividade elétrica dos músculos avaliados durante as tarefas por uma rotina do software Matlab versão 5.3. Como resultado, houve uma variabilidade entre a comparação das médias da variável ON da parte superficial do músculo masseter direito na atividade de mastigação habitual em diferentes dias de coleta (p=0,02). Durante a mastigação bilateral simultânea houve uma variabilidade entre a comparação das médias da variável ON da parte anterior do músculo temporal direito nas diversas repetições (p=0,03). Dada a variabilidade apresentada por estes músculos, existe a necessidade de se avaliar os registros eletromiográficos tanto na mastigação habitual quanto na mastigação bilateral simultânea da parte superficial do músculo masseter e parte anterior do músculo temporal em mais de uma sessão e mais de uma repetição no mesmo dia. Em relação à ansiedade, os resultados mostraram uma associação inversa entre a variável tempo de ativação e os níveis de ansiedade-traço durante as duas atividades e uma associação direta entre a variável instante máximo e os níveis de ansiedade-traço durantes as duas atividades. Apenas a parte anterior do músculo temporal apresentou, durante a mastigação habitual, uma relação direta entre a variável instante máximo com a ansiedade-estado e, durante a mastigação bilateral simultânea, a variável tempo de ativação foi que mostrou uma relação inversa para o mesmo músculo. Conclui-se que a ansiedade-traço e estado podem influenciar em registros eletromiográficos mesmo em situações não experimentais.
Abstract: The aim of this study was to evaluate the interday and intraday variability in the values of electromyographic recordings of the superficial part of the masseter muscle and anterior part of the temporal muscle. Besides, it also purposed to verify the relationship of these recordings with the emotional factors, anxiety, at three different days of data collection. Sixteen volunteers, free of signs and symptoms of temporomandibular desorder, according to the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) were selected. Cephalometric measurements in lateral teleradiographs were used to classify the subjects into Class I and II, according to the relationship of maxillo-mandibular bone bases and regarding considering the vertical dimensions of the face into distinct mesofacial and dolicofacial types. To measure anxiety, the State-Trait Anxiety Inventory (STAI) was used. The electromyographic exam was carried out with Myosystem Br 1â electromyograph of 12 channels, with a resolution of 12 bites and gain up to 50 times, sampling frequency of 4000 Hz, bipolar passive electrodes coupled to a pre-amplifier with 20 times gain. The tasks of simultaneous bilateral chewing, habitual chewing and voluntary contraction in maximum intercuspidation were performed, at three different days, with interval of one week among them, and three repetitions on each day. The electromyographic signals were processed and normalized, and then the electrical activity of assessed muscles during the tasks were calculated through the instant maximum (Imax) and the time of activation (ON) the software Matlab version 5.3. As results, there was a variability between the comparison of the average of variable ON of the right masseter muscle in the habitual chewing on the various days of collection (p=0.02). While evaluating simultaneous bilateral chewing variability between the comparison of the average of variable ON of the anterior part of the right temporal muscle in the various repetitions (p=0.03). Given the variability shown by these muscles, there is a need to evaluate the electromyographic records both in habitual chewing and in the simultaneous bilateral chewing of these muscles in more than one session and more than one repetition. Regarding to anxiety, the results showed a reverse association between the variable activation time and the levels of trait-anxiety during the two tasks, and a direct association between the variable Imax and the levels of trait-anxiety during the two tasks. Only the anterior part of the temporal muscle during habitual chewing presented a direct relationship between the variable Imax and state-anxiety; and during simultaneous bilateral chewing the variable ON showed a reverse relationship for the same muscle. Thus it was concluded that the trait and state anxiety can influence electromyographic records, even in non-experimental situations.
Doutorado
Anatomia
Doutor em Biologia Buco-Dental
9
Wang, Mianwei. "Peripheral mechanisms of masseter muscle nociceptor sensitization by Nerve Growth Factor (NGF)." Electronic Thesis or Dissertation, University of British Columbia, 2001. http://hdl.handle.net/2429/19002.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Myofascial temporomandibular disorders (TMD) are common chronic craniofacial conditions that are characterized by pain in the masseter muscle. It has been suggested that nerve growth factor (NGF) may contribute to muscle sensitization in TMD-like pain based on various animal and human studies. Injection of NGF into the masseter muscle of healthy human subjects is not painful but does induce a localized, quick onset (~1 hour) and long lasting mechanical sensitization. It is not known how NGF causes this sensitization. NGF binds to the p75 receptor as well as the tyrosine kinase receptor A (TrkA), both of which are expressed on nociceptive neurons and may increase excitability and neuron sensitization. NGF is also reported to enhance NMDA receptor function on ganglion excitatory synaptic transmission. I hypothesized that human NGF mechanically sensitizes masseter muscle nociceptors by increasing the sensitivity of peripheral NMDA receptors. Co-expression of the NR2B subunit of the NMDA receptor with P75 and TrkA NGF receptors by trigeminal ganglia neurons that innervate the masseter muscle was investigated immunohistochemically. Nociceptor activity was recorded extracellularly from the trigeminal ganglion of anaesthetized female rats. Nociceptor mechanical threshold was assessed before and every 30 minutes for 3 hours after injection of human NGF (25 µg/ml, 10 µl), and in subsequent experiments NGF with TrkA or P75 receptor antibodies. Glutamate (1 M, 10 µl), a NMDA receptor agonist, was injected at the end of each experiment. Approximately 85% of NR2B positive masseter ganglion neurons co-expressed P75 or TrkA receptors, suggesting the potential for interaction. When compared with the vehicle control, it was found that injection of NGF into the masseter muscle did not evoke significant nociceptor discharge but did significantly reduce nociceptor mechanical threshold. There was no effect of NGF on glutamate-evoked nociceptor discharge or glutamate-induced mechanical sensitization. Additional experiments indicated that NGF-induced mechanical sensitization could be partially attenuated by co-administration of TrkA receptor antibodies, but not P75 receptor antibodies. These findings indicate that human NGF-induced sensitization of masseter nociceptors results, in part, from activation of TrkA receptors but does not appear to be mediated through enhanced peripheral NMDA receptor activity.
10
Hakim, Akhlaq Waheed. "Tumor necrosis factor alpha and non-inflammatory sensitization of masseter muscle nociceptors." Electronic Thesis or Dissertation, University of British Columbia, 2005. http://hdl.handle.net/2429/34182.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Behavioral evidence in rats indicates that injection of tumor necrosis factor alpha (TNFalpha into skeletal muscle results in a prolonged mechanical sensitization without gross inflammation. The present series of studies were conducted to test the idea that injection of TNFalpha causes mechanical sensitization of skeletal muscle through a peripheral mechanism that involves lowering of the mechanical threshold (MT) of muscle nociceptors without inflammation. In- vivo extracellular electrophysiological recording was used to assess the effect of TNFalpha (1 or 0.1microgram) and other drugs on the excitability and MT of masseter muscle nociceptors. Expression of TNFR1 (P55) and TNFR2 (P75) receptors by the masseter muscle and trigeminal ganglion neurons that innervate that muscle was determined by Western blot and immunohistochemical methodologies, respectively. The Evans blue dye technique and thermal camera recordings were used to assess inflammation in muscle tissues. Enzyme-linked immunoassays and glutamate biosensor probes were used to measure muscle concentrations of prostaglandin (PG) E2 and nerve growth factor, and glutamate, respectively. Intramuscular injection of 1mg TNFalpha did not excite nociceptors, but did significantly decrease MT compared to vehicle control. There was no evidence of gross inflammation 3 hours after injection of TNFalpha. Co-injection of TNFalpha with P55 or P75 receptor antibodies attenuated TNFalpha-induced mechanical sensitization. P55 and P75 receptors were expressed by 29% and 62% of masseter nociceptors, respectively. PGE2 and glutamate concentrations were significantly changed 3 hours after TNFalpha injection into the masseter muscle. Injection of diclofenac, a cycloxygenase inhibitor that attenuates prostaglandin synthesis, partially reversed the TNFalpha-induced decreases in the MT of masseter muscle nociceptors, while vehicle control, DL-2-amino-5-phophonovaleric acid, a competitive NMDA receptor antagonist, and a tyrosine kinase A receptor antibody, which blocks NGF-induced masseter muscle nociceptor sensitization, did not significantly alter nociceptor MT. These findings indicate that TNFalpha-induced mechanical sensitization of masseter nociceptors is mediated, in part, by increased PGE2 levels through activation of peripheral P55 and P75 receptors. Over all, these results suggest that injection of TNFalpha into skeletal muscle could be used as a model of myofascial trigger points to study the peripheral pain mechanisms of masticatory muscle pain.

Книги з теми "Masseter muscle Physiology":

1
Monteiro, Andre Antonio. Blood flow change in human masseter muscle elicited by voluntary isometric contraction. Stockholm: Karolinska Institutet, 1990.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Imai, Shoichi, Iwao Ohtsuki, and Makoto Endo, eds. Muscle Physiology and Biochemistry. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5543-8.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Matthews, Gary G. Cellular physiology of nerve & muscle. Palo Alto: Blackwell Scientific Publications, 1986.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Matthews, Gary G. Cellular physiology of nerve and muscle. 3rd ed. Malden, MA: Blackwell Science, 1998.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Matthews, Gary G. Cellular physiology of nerve and muscle. 4th ed. Malden, MA: Blackwell Science, 2003.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Matthews, Gary G. Cellular physiology of nerve and muscle. 2nd ed. Boston: Blackwell Scientific Publications, 1991.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Matthews, Gary G. Cellular Physiology of Nerve and Muscle. Malden, MA USA: Blackwell Publishing Ltd., 2002. http://dx.doi.org/10.1002/9781118687864.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Jones, D. A. Skeletal muscle in health and disease: A textbook of muscle physiology. Manchester: Manchester University Press, 1990.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Jones, D. A. Skeletal muscle in health and disease: A textbook of muscle physiology. Manchester: Manchester University Press, 1990.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Squire, John. Muscle: Design, diversity, and disease. Menlo Park, Calif: Benjamin/Cummings, 1986.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Masseter muscle Physiology":

1
Narayan, Ravi Kant. "Masseter Muscle." In Encyclopedia of Animal Cognition and Behavior, 1–4. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-47829-6_1476-1.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Obwegeser, Hugo L. "Masseter Muscle Hypertrophy and Bony Surplus." In Mandibular Growth Anomalies, 425–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04534-3_24.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Rüegg, J. C. "Muscle." In Human Physiology, 62–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73831-9_4.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Harvey, A. L., and I. G. Marshall. "Muscle." In Avian Physiology, 74–86. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4862-0_3.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Rüegg, J. C. "Smooth Muscle." In Comprehensive Human Physiology, 895–910. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-60946-6_45.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Bagshaw, Clive R. "Gross anatomy and physiology." In Muscle Contraction, 4–20. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-6839-5_2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Eriksson, Per-Olof, and Lars-Eric Thornell. "Heterogeneous intrafusal fibre composition of the human masseter muscle: Morphological and enzyme-histochemical characteristics." In The Muscle Spindle, 95–100. London: Palgrave Macmillan UK, 1985. http://dx.doi.org/10.1007/978-1-349-07695-6_13.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Siegel, G. "Vascular Smooth Muscle." In Comprehensive Human Physiology, 1941–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-60946-6_97.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Bowman, W. C. "Physiology of the Neuromuscular Junction." In Muscle Relaxants, 117–27. Tokyo: Springer Japan, 1995. http://dx.doi.org/10.1007/978-4-431-66896-1_16.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Bassingthwaighte, James B., Larry S. Liebovitch, and Bruce J. West. "Fractals in Nerve and Muscle." In Fractal Physiology, 210–35. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4614-7572-9_9.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Masseter muscle Physiology":

1
Knox, G. "Effect of microgravity on rat masseter muscle." In Life Sciences and Space Medicine Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1048.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Jirakittayakorn, Nantawachara, and Yodchanan Wongsawat. "An EMG instrument designed for bruxism detection on masseter muscle." In 2014 7th Biomedical Engineering International Conference (BMEiCON). IEEE, 2014. http://dx.doi.org/10.1109/bmeicon.2014.7017403.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Yang, Yang, Kelvin Weng Chiong Foong, Sim Heng Ong, Masakazu Yagi, and Kenji Takada. "An image-based method for quantification of masseter muscle deformation." In 2012 5th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2012. http://dx.doi.org/10.1109/bmei.2012.6513000.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Ng, H. P., K. W. C. Foong, S. H. Ong, J. Liu, P. S. Goh, and W. L. Nowinski. "A Study on Shape Determinative Slices for the Masseter Muscle." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353612.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Majeed, Tahir, Ketut Fundana, Marcel Lüthi, Jörg Beinemann, and Philippe Cattin. "A shape prior-based MRF model for 3D masseter muscle segmentation." In SPIE Medical Imaging, edited by David R. Haynor and Sébastien Ourselin. SPIE, 2012. http://dx.doi.org/10.1117/12.910925.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Zhang, Yungeng, Yuru Pei, Haifang Qin, Yuke Guo, Gengyu Ma, Tianmin Xu, and Hongbin Zha. "Masseter Muscle Segmentation from Cone-Beam CT Images using Generative Adversarial Network." In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI). IEEE, 2019. http://dx.doi.org/10.1109/isbi.2019.8759426.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Ruhland, J. L., D. C. Jeutter, J. J. Ackmann, H. W. Hoge, and R. W. Jodat. "Acquisition and analysis of electromyograms of the human masseter muscle (bruxism detection)." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.94783.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Anggawati, Susi, Bambang Purwanto, and Sutji Kuswarini. "Decreased Triglyceride and Protein Levels in Diabetic Rat Muscle Following Physical Exercise." In Surabaya International Physiology Seminar. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0007341004870490.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Xu, Yang, Jie Tian, and Xupei Huang. "Troponin in cardiac muscle movement: Physiology and Pathophysiology." In Annual International Conference on Advanced Research: Physiology. Global Science & Technology Forum (GSTF), 2014. http://dx.doi.org/10.5176/2382-607x_arp14.35.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Ika Putri, Yuannita, Andre Triadi Desnantyo, and Lilik Herawati. "Non-Invasive Method on Slow-Twitch Quadriceps Muscle Fibers Dominate a High Level of Fitness." In Surabaya International Physiology Seminar. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0007335301820185.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Masseter muscle Physiology":

1
Wagner, Mark. The physiology and biochemistry of isolated skeletal muscle mitochondria : a comparative study. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.5842.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
McMahon, Chris. Physiology of ejaculation. BJUI Knowledge, October 2019. http://dx.doi.org/10.18591/bjuik.0456.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Lilly, John H. Pneumatic Muscle Actuator Control. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada420339.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Westerlind, Kim. Muscle Contraction Arrests Tumor Growth. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada572645.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Forger, Daniel. Modeling the Physiology of Circadian Timekeeping. Fort Belvoir, VA: Defense Technical Information Center, August 2011. http://dx.doi.org/10.21236/ada564079.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Chan, Lewis, and Thomas King. Physiology of micturition and bladder controls. BJUI Knowledge, October 2019. http://dx.doi.org/10.18591/bjuik.0034.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Hoover, W. H., and T. K. Miller. Rumen digestive physiology and microbial ecology. West Virginia University Agricultural Experiment Station, January 1992. http://dx.doi.org/10.33915/agnic.708t.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Walters, Thomas. Engineered Skeletal Muscle for Craniofacial Reconstruction. Fort Belvoir, VA: Defense Technical Information Center, November 2011. http://dx.doi.org/10.21236/ada601864.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Davis, Michael S. Muscle Adaptations Permitting Fatigue-Resistant Exercise. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada614692.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Hosseini Khezri, S.A., Zakharova A. The Investigation of Back Muscle and Abdominal Muscle Endurance in Soccer Players 10-12 Years Old. Povolzhskaya State Academy of Physical Culture of Sports and Tourism, September 2017. http://dx.doi.org/10.14526/03_2017_228.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії

Будь ласка, вимкніть ваш блокувальник реклами

Adblock logo Adblock logo Adblock logo

"Grafiati" – це незалежний сервіс, що забезпечує унікальну якість оформлення бібліографічних посилань. Ви можете користуватися нашим сайтом безоплатно, дозволивши показ реклами, або оформити передплату.

Передплатити