Зміст
Добірка наукової літератури з теми "Matériaux poreux – Homogénéisation (équations différentielles)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Matériaux poreux – Homogénéisation (équations différentielles)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Дисертації з теми "Matériaux poreux – Homogénéisation (équations différentielles)"
Richard, Christine. "Comportement macroscopique d'un matériau poreux en écoulement plastique." Paris 6, 1986. http://www.theses.fr/1986PA066249.
Повний текст джерелаOndami, Bienvenu. "Sur quelques problèmes d'homogénéisation des écoulements en milieux poreux." Pau, 2001. http://www.theses.fr/2001PAUU3002.
Повний текст джерелаFadili, Ali. "Écoulements diphasiques en réservoirs pétroliers hétérogènes : homogénéisation stochastique." Toulouse, INPT, 2001. http://www.theses.fr/2001INPT017H.
Повний текст джерелаBensmina, Halima. "Calcul numérique à partir de la géométrie et des propriétés microscopiques de grandeurs effectives d'un milieu poreux : tortuosité, perméabilité, dispersion." Besançon, 2002. http://www.theses.fr/2002BESA2006.
Повний текст джерелаEne, Ioana-Andreea. "Etude de quelques problèmes d'écoulement dans les milieux poreux." Metz, 1995. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1995/Ene.Ioana_Andreea.SMZ9553.pdf.
Повний текст джерелаThe aim of this thesis is the study of two problems of flow through porous media. In the first and the second chapter we study in the general framework of the homogenization method the flow of a viscous fluid through an elastic thin porous media. After the proof of the convergence of the homogenization process by using the two-scale convergence method it is possible to take the limit as the second small parameter (who caracterize the thickness of the solid part) tends to zero. We obtain a viscoelastic media with fading memory. We consider the two classical cases, when we have a Stokes flow in the fluid part and when we have a Navier-Stokes flow in the fluid part. In the third chapter we study a double porosity model in a double periodicity media. From a mechanical point of view this model represents a fracturated porous media. From a mathematical point of view we study a Neumann problem with double periodicity. We prove existence and unicity for such a problem and using the three-scale convergence method we obtain the homogenized equation and the homogenized coefficients. The result we obtain is a Darcy law at the macroscale and this show us that, at least in the steady case, both the double periodicity model and the double porosity model are the same
Mesnier, Raphaël. "Étude des liens entre la texture et les propriétés de diffusion de molécules modèles dans des milieux poreux bimodaux." Phd thesis, Toulouse, INPT, 2008. http://oatao.univ-toulouse.fr/7773/1/mesnier.pdf.
Повний текст джерелаAbballe, Thomas. "Simulation multi-échelle et homogénéisation des matériaux cimentaires." Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00627899.
Повний текст джерелаHenon, Joseph. "Elaboration de matériaux poreux géopolymères à porosité multi-échelle et contrôlée." Limoges, 2012. https://aurore.unilim.fr/theses/nxfile/default/2e0cd75e-4baa-4db6-980a-67278d007105/blobholder:0/2012LIMO4019.pdf.
Повний текст джерелаThis work is focused on the preparation, the characterization, and the control of the porosity in geopolymer foams, synthesized from the mixing of metakaolin, a alkali silicate solution, alkali hydroxide, and silica fume as the pore forming agent. This mixture results in a foam in which hydrogen gas is produced continuously in an evolutive viscous gel. The control of porosity, in consideration of the very high value of pH, requires the establishment of an equilibrium between the kinetics of polycondensation reactions (hardening) and the kinetics of gassing. The influence of different parameters is studied through the characterization of the obtained porous network. The thermal conductivity of the homogeneous samples is measured with a fluxmeter and also with a hot wire method. The values obtained are then discussed in relation to the microstructure and relevant analytical models of the literature. An inverse numerical approach is used to find the thermal conductivity value of the skeleton of the foam λs. In fact, it is difficult to prepare a material with a low pore volume fraction from the same composition. A finite element calculation, coupled with a homogenization method, is applied on Representative Volume Elements constructed in relation with the experimental data. The value of λs is then calculated between 0. 98 and 1. 12 W. M-1. K-1. The foams have pore volume fractions values between 65 and 85% corresponding to thermal conductivity values between 0. 12 and 0. 35 W. M-1. K-1, yielding a good material for thermal insulation
Amaziane, Brahim. "Application des techniques d'homogénéisation aux écoulements diphasiques incompressibles en milieu poreux." Lyon 1, 1988. http://www.theses.fr/1988LYO10030.
Повний текст джерелаBourgeat, Alain Roger Paul. "Application de l'homogénéisation périodique à des problèmes issus de la mécanique des solides et de la mécanique des fluides." Lyon 1, 1985. http://www.theses.fr/1985LYO19048.
Повний текст джерела