Добірка наукової літератури з теми "Mathematical Logic and Formal Languages"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mathematical Logic and Formal Languages".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Mathematical Logic and Formal Languages"
Gopal, Тadepalli. "Learning Computational Logic through Geometric Reasoning." Innovative STEM Education 5, no. 1 (July 24, 2023): 7–12. http://dx.doi.org/10.55630/stem.2023.0501.
Повний текст джерелаPark, Sewon. "Continuous Abstract Data Types for Verified Computation." Bulletin of Symbolic Logic 27, no. 4 (December 2021): 531. http://dx.doi.org/10.1017/bsl.2021.51.
Повний текст джерелаMoschovakis, Yiannis N. "The formal language of recursion." Journal of Symbolic Logic 54, no. 4 (December 1989): 1216–52. http://dx.doi.org/10.1017/s0022481200041086.
Повний текст джерелаGelsema, Tjalling. "The Logic of Aggregated Data." Acta Cybernetica 24, no. 2 (November 3, 2019): 211–48. http://dx.doi.org/10.14232/actacyb.24.2.2019.4.
Повний текст джерелаKutsak, Nina Yu, and Vladislav V. Podymov. "Formal Verification of Three-Valued Digital Waveforms." Modeling and Analysis of Information Systems 26, no. 3 (September 28, 2019): 332–50. http://dx.doi.org/10.18255/1818-1015-2019-3-332-350.
Повний текст джерелаVanderveken, Daniel. "Towards a Formal Pragmatics of Discourse." International Review of Pragmatics 5, no. 1 (2013): 34–69. http://dx.doi.org/10.1163/18773109-13050102.
Повний текст джерелаKanamori, Akihiro. "The Empty Set, The Singleton, and the Ordered Pair." Bulletin of Symbolic Logic 9, no. 3 (September 2003): 273–98. http://dx.doi.org/10.2178/bsl/1058448674.
Повний текст джерелаLADYMAN, JAMES, ØYSTEIN LINNEBO, and RICHARD PETTIGREW. "IDENTITY AND DISCERNIBILITY IN PHILOSOPHY AND LOGIC." Review of Symbolic Logic 5, no. 1 (November 17, 2011): 162–86. http://dx.doi.org/10.1017/s1755020311000281.
Повний текст джерелаKuzmin, Egor V. "LTL-Specification of Counter Machines." Modeling and Analysis of Information Systems 28, no. 1 (March 24, 2021): 104–19. http://dx.doi.org/10.18255/1818-1015-2021-1-104-119.
Повний текст джерелаRABE, FLORIAN. "A logical framework combining model and proof theory." Mathematical Structures in Computer Science 23, no. 5 (March 1, 2013): 945–1001. http://dx.doi.org/10.1017/s0960129512000424.
Повний текст джерелаДисертації з теми "Mathematical Logic and Formal Languages"
Almeida, João Marcos de 1974. "Logics of Formal Inconsistency." Phd thesis, Instituições portuguesas -- UTL-Universidade Técnica de Lisboa -- IST-Instituto Superior Técnico -- -Departamento de Matemática, 2005. http://dited.bn.pt:80/29635.
Повний текст джерелаToninho, Bernardo Parente Coutinho Fernandes. "A Logic and tool for local reasoning about security protocols." Master's thesis, FCT - UNL, 2009. http://hdl.handle.net/10362/2307.
Повний текст джерелаThis thesis tackles the problem of developing a formal logic and associated model-checking techniques to verify security properties, and its integration in the Spatial Logic Model Checker(SLMC) tool. In the areas of distributed system design and analysis, there exists a substantial amount of work related to the verification of correctness properties of systems, in which the work aimed at the verification of security properties mostly relies on precise yet informal methods of reasoning. This work follows a line of research that applies formal methodologies to the verification of security properties in distributed systems, using formal tools originally developed for the study of concurrent and distributed systems in general. Over the years, several authors have proposed spatial logics for local and compositional reasoning about algebraic models of distributed systems known as process calculi. In this work, we present a simplification of a process calculus known as the Applied - calculus, introduced by Abadi and Fournet, designed for the study of security protocols. We then develop a spatial logic for this calculus, extended with knowledge modalities, aimed at reasoning about security protocols using the concept of local knowledge of processes. Furthermore, we conclude that the extensions are sound and complete regarding their intended semantics and that they preserve decidability, under reasonable assumptions. We also present a model-checking algorithm and the proof of its completeness for a large class of processes. Finally, we present an OCaml implementation of the algorithm, integrated in the Spatial Logic Model Checker tool, developed by Hugo Vieira and Luis Caires, thus producing the first tool for security protocol analysis that employs spatial logics.
Reis, Teofilo de Souza. "Conectivos flexíveis : uma abordagem categorial às semânticas de traduções possíveis." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278896.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas
Made available in DSpace on 2018-08-11T21:55:18Z (GMT). No. of bitstreams: 1 Reis_TeofilodeSouza_M.pdf: 733611 bytes, checksum: 0e64d330d9e71079eddd94de91f141c2 (MD5) Previous issue date: 2008
Resumo: Neste trabalho apresentamos um novo formalismo de decomposição de Lógicas, as Coberturas por Traduções Possíveis, ou simplesmente CTPs. As CTPs constituem uma versão formal das Semânticas de Traduções Possíveis, introduzidas por W. Carnielli em 1990. Mostramos como a adoção de um conceito mais geral de morfismo de assinaturas proposicionais (usando multifunções no lugar de funções) nos permite definir uma categoria Sig?, na qual os conectivos, ao serem traduzidos de uma assinatura para outra, gozam de grande flexibilidade. A partir de Sig?, contruímos a categoria Log? de lógicas tarskianas e morfismos (os quais são funções obtidas a partir de um morfismo de assinaturas, isto é, de uma multifunção). Estudamos algumas características de Sig? e Log?, afim de verificar que estas categorias podem de fato acomodar as construções que pretendemos apresentar. Mostramos como definir em Log? o conjunto de traduções possíveis de uma fórmula, e a partir disto definimos a noção de CTP para uma lógica L. Por fim, exibimos um exemplo concreto de utilização desta nova ferramenta, e discutimos brevemente as possíveis abordagens para uma continuação deste trabalho.
Abstract: We present a general study of a new formalism of decomposition of logics, the Possible- Translations Coverings (in short PTC 's) which constitute a formal version of Possible-Translations Semantics, introduced by W. Carnielli in 1990. We show how the adoption of a more general notion of propositional signatures morphism allows us to define a category Sig?, in which the connectives, when translated from a signature to another one, enjoy of great flexibility. Essentially, Sig? -morphisms will be multifunctions instead of functions. From Sig? we construct the category Log? of tarskian logics and morphisms between them (these .are functions obtained from signature morphisms, that is, from multifunctions) . We show how to define in Log? the set of possible translations of a given formula, and we define the notion of a PTC for a logic L. We analyze some properties of PTC 's and give concrete examples of the above mentioned constructions. We conclude with a discussion of the approaches to be used in a possible continuation of these investigations.
Mestrado
Mestre em Filosofia
Silvestrini, Luiz Henrique da Cruz. "Uma nova abordagem para a noção de quase-verdade." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/280594.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciências Humanas
Made available in DSpace on 2018-08-17T19:11:26Z (GMT). No. of bitstreams: 1 Silvestrini_LuizHenriquedaCruz_D.pdf: 1289416 bytes, checksum: aa5f4929e7149a647d28c4fd4df86874 (MD5) Previous issue date: 2011
Resumo: Mikenberg, da Costa e Chuaqui (1986) introduziram a noção de quase-verdade por meio da noção de estruturas parciais, e para tanto, conceberam os predicados como ternas. O arcabouço conceitual resultante proporcionou o emprego de estruturas parciais na ciência, pois, em geral, não sabemos tudo a respeito de um determinado domínio de conhecimento. Generalizamos a noção de predicados como ternas para fórmulas complexas. A partir desta nova abordagem, obtemos uma definição de quase-verdade via noção de satisfação pragmática de uma fórmula A em uma estrutura parcial E. Introduzimos uma lógica subjacente à nossa nova definição de quase-verdade, a saber, a lógica paraconsistente trivalente LPT1, a qual possui uma axiomática de primeira ordem. Relacionamos a noção de quase-verdade com algumas lógicas paraconsistentes já existentes. Defendemos que a formalização das Sociedades Abertas, introduzidas por Carnielli e Lima-Marques (1999), quando combinada com quantificadores modulados, introduzidos por Grácio (1999), constitui uma alternativa para capturar a componente indutiva presente na atividade científica, e mostramos, a partir disso, que a proposta original de da Costa e colaboradores pode ser explicada em termos da nova noção de sociedades moduladas
Abstract: Newton da Costa and his collaborators have introduced the notion of quasi-truth by means of partial structures, and for this purpose, they conceived the predicates as ordered triples: the set of tuples which satisfies, does not satisfy and can satisfy or not the predicate, respectively (the latter represents lack of information). This approach provides a conceptual framework to analyse the use of (first-order) structures in science in contexts of informational incompleteness. In this Thesis, the notion of predicates as triples is extended recursively to any complex formula of the first-order object language. From this, a new definition of quasi-truth via the notion of pragmatic satisfaction is obtained. We obtain the proof-theoretic counterpart of the logic underlying our new definition of quasi-truth, namely, the three-valued paraconsistent logic LPT1, which is presented axiomatically in a first-order language. We relate the notion of quasi-truth with some existing paraconsistent logics. We defend that the formalization of (open) society semantics when combined with the modulated quantifiers constitutes an alternative to capture the inductive component present in scientific activity, and show, from this, that the original proposal of da Costa and collaborators can be explained in terms of the new concept of modulated societies
Doutorado
Filosofia
Doutor em Filosofia
Bueno-Soler, Juliana 1976. "Multimodalidades anodicas e catodicas : a negação controlada em logicas multimodais e seu poder expressivo." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/280387.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas
Made available in DSpace on 2018-09-11T21:14:41Z (GMT). No. of bitstreams: 1 Bueno-Soler_Juliana_D.pdf: 1230879 bytes, checksum: c04ce9e8061c154854f6283749f9c12b (MD5) Previous issue date: 2009
Resumo: O presente trabalho tem por objetivo investigar o papel da negação no âmbito das modalidades, de forma a poder esclarecer até que ponto a negação pode ser atenuada, controlada ou mesmo totalmente eliminada em favor da melhor expressabilidade lógica de certas teorias, asserções ou raciocínios que sofrem os efeitos da negação. Contudo, atenuar ou eliminar a negação tem um alto preço: métodos tradicionais em lógica podem deixar de ser válidos e certos resultados, como teoremas de completude para sistemas lógicos, podem ser derrogados. Do ponto de vista formal, a questão central que investigamos aqui e até que ponto tais métodos podem ser restabelecidos. Com tal finalidade, iniciamos nosso estudo a partir do que denominamos sistemas anódicos" (sem negação) e, a posteriori, introduzimos gradativamente o elemento catódico" (negações, com diversas gradações e diferentes características) nos sistemas modais por meio de combinações com certas lógicas paraconsistentes, as chamadas lógicas da inconsistência formal (LFIs). Todos os sistemas tratados são semanticamente caracterizados por semânticas de mundos possíveis; resultados de incompletude são também obtidos e discutidos. Obtemos ainda semânticas modais de traduções possíveis para diversos desses sistemas. Avançamos na direção das multimodalidades, investigando os assim chamados sistemas multimodais anódicos e catódicos. Finalmente, procuramos avaliar criticamente o alcance e o interesse dos resultados obtidos na direção da racionalidade sensível à negação.
Abstract: The present work aims to investigate the role of negations in the scope of modalities and in the reasoning expressed by modalities. The investigation starts from what we call anodic" systems (without any form of negation) and gradually reaches the cathodic" elements, where negations are introduced by means of combining modal logics with certain paraconsistent logics known as logics of formal inconsistency (LFIs). We obtain completeness results for all treated systems, and also show that certain incompleteness results can be obtained. The class of the investigated systems includes all normal modal logics that are extended by means of the schema Gk;l;m;n due to E. J. Lemmon and D. Scott combined with LFIs. We also tackle the question of obtaining modal possible-translations semantics for these systems. Analogous results are analyzed in the scope of multimodalities, where anodic as much as cathodic logics are studied. Finally, we advance a critical evaluation of the reach and scope of all the results obtained to what concerns expressibility of reasoning considered to be sensible to negation. We also critically assess the obtained results in contrast with problems of rationality that are sensible to negation.
Doutorado
Doutor em Filosofia
Rodrigues, Tarcísio Genaro. "Sobre os fundamentos de programação lógica paraconsistente." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278897.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas
Made available in DSpace on 2018-08-17T03:29:03Z (GMT). No. of bitstreams: 1 Rodrigues_TarcisioGenaro_M.pdf: 1141020 bytes, checksum: 59bb8a3ae7377c05cf6a8d8e6f7e45a5 (MD5) Previous issue date: 2010
Resumo: A Programação Lógica nasce da interação entre a Lógica e os fundamentos da Ciência da Computação: teorias de primeira ordem podem ser interpretadas como programas de computador. A Programação Lógica tem sido extensamente utilizada em ramos da Inteligência Artificial tais como Representação do Conhecimento e Raciocínio de Senso Comum. Esta aproximação deu origem a uma extensa pesquisa com a intenção de definir sistemas de Programação Lógica paraconsistentes, isto é, sistemas nos quais seja possível manipular informação contraditória. Porém, todas as abordagens existentes carecem de uma fundamentação lógica claramente definida, como a encontrada na programação lógica clássica. A questão básica é saber quais são as lógicas paraconsistentes subjacentes a estas abordagens. A presente dissertação tem como objetivo estabelecer uma fundamentação lógica e conceitual clara e sólida para o desenvolvimento de sistemas bem fundados de Programação Lógica Paraconsistente. Nesse sentido, este trabalho pode ser considerado como a primeira (e bem sucedida) etapa de um ambicioso programa de pesquisa. Uma das teses principais da presente dissertação é que as Lógicas da Inconsistência Formal (LFI's), que abrangem uma enorme família de lógicas paraconsistentes, proporcionam tal base lógica. Como primeiro passo rumo à definição de uma programação lógica genuinamente paraconsistente, demonstramos nesta dissertação uma versão simplificada do Teorema de Herbrand para uma LFI de primeira ordem. Tal teorema garante a existência, em princípio, de métodos de dedução automática para as lógicas (quantificadas) em que o teorema vale. Um pré-requisito fundamental para a definição da programação lógica é justamente a existência de métodos de dedução automática. Adicionalmente, para a demonstração do Teorema de Herbrand, são formuladas aqui duas LFI's quantificadas através de sequentes, e para uma delas demonstramos o teorema da eliminação do corte. Apresentamos também, como requisito indispensável para os resultados acima mencionados, uma nova prova de correção e completude para LFI's quantificadas na qual mostramos a necessidade de exigir o Lema da Substituição para a sua semântica
Abstract: Logic Programming arises from the interaction between Logic and the Foundations of Computer Science: first-order theories can be seen as computer programs. Logic Programming have been broadly used in some branches of Artificial Intelligence such as Knowledge Representation and Commonsense Reasoning. From this, a wide research activity has been developed in order to define paraconsistent Logic Programming systems, that is, systems in which it is possible to deal with contradictory information. However, no such existing approaches has a clear logical basis. The basic question is to know what are the paraconsistent logics underlying such approaches. The present dissertation aims to establish a clear and solid conceptual and logical basis for developing well-founded systems of Paraconsistent Logic Programming. In that sense, this text can be considered as the first (and successful) stage of an ambitious research programme. One of the main thesis of the present dissertation is that the Logics of Formal Inconsistency (LFI's), which encompasses a broad family of paraconsistent logics, provide such a logical basis. As a first step towards the definition of genuine paraconsistent logic programming we shown, in this dissertation, a simplified version of the Herbrand Theorem for a first-order LFI. Such theorem guarantees the existence, in principle, of automated deduction methods for the (quantified) logics in which the theorem holds, a fundamental prerequisite for the definition of logic programming over such logics. Additionally, in order to prove the Herbrand Theorem we introduce sequent calculi for two quantified LFI's, and cut-elimination is proved for one of the systems. We also present, as an indispensable requisite for the above mentioned results, a new proof of soundness and completeness for first-order LFI's in which we show the necessity of requiring the Substitution Lemma for the respective semantics
Mestrado
Filosofia
Mestre em Filosofia
Palacios, Pastrana Florencio Edmundo. "Etude des rapports entre linguistique et logique concernant la dimension temporelle : un modèle de transition." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10273.
Повний текст джерелаYim, Austin Vincent. "On Galois correspondences in formal logic." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:b47d1dda-8186-4c81-876c-359409f45b97.
Повний текст джерелаDumbravă, Ştefania-Gabriela. "Formalisation en Coq de Bases de Données Relationnelles et Déductives -et Mécanisation de Datalog." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS525/document.
Повний текст джерелаThis thesis presents a formalization of fundamental database theories and algorithms. This furthers the maturing state of the art in formal specification development in the database field, with contributions stemming from two foundational approches to database models: relational and logic based.As such, a first contribution is a Coq library for the relational model. This contains a mechanization of integrity constraints and of their inference procedures. We model two of the most common dependencies, namely functional and multivalued, together with their corresponding axiomatizations. We prove soundness of their inference algorithms and, for the case of functional ones, also completeness. These types of dependencies are instances of equality and, respectively, tuple generating dependencies, which fall under the yet wider class of general dependencies. We model these and their inference procedure,i.e, the chase, for which we establish soundness.A second contribution consists of a Coq/Ssreflect library for logic programming in the Datalog setting. As part of this work, we give (one of the) first mechanizations of the standard Datalog language and of its extension with negation. The library includes a formalization of their model theoretical semantics and of their fixpoint semantics, implemented through bottom-up and, respectively, through stratified evaluation procedures. This is complete with the corresponding soundness, termination and completeness proofs. In this context, we also construct a preliminary framework for dealing with stratified programs. This work paves the way towards the certification of data-centric applications
Cholodovskis, Ana Flávia de Faria 1988. "Lógicas de inconsistência formal e não-monotonicidade." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/279773.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciências Humanas
Made available in DSpace on 2018-08-26T05:10:17Z (GMT). No. of bitstreams: 1 Cholodovskis_AnaFlaviadeFaria_M.pdf: 14177739 bytes, checksum: 714f42d947721ac9da9a5d1e34cd497e (MD5) Previous issue date: 2014
Resumo: Existem diversas razões para justificar o desenvolvimento de lógicas não-clássicas tais como a expressividade destas linguagens e como elas poderiam ajudar a formalizar o pensamento humano. Neste sentido, as lógicas não-monotônicas foram desenvolvidas em prol de formalizar raciocínios cotidianos baseados na premissa de que nós deveríamos ser capazes de retratar conclusões previamente obtidas quando confrontadas com novas informações. Algumas lógicas não-monotônicas utilizam a noção de pensamento default para formalizar raciocínios cotidianos. Por outro lado, as lógicas paraconsistentes são aquelas lógicas que estudam teorias não-explosivas e foram desenvolvidas em prol de lidar com contradições. Sobre as lógicas paraconsistentes, existe uma classe de sistemas que se mostram realmente interessantes, particularmente: as Lógicas de Inconsistência Formal (LIFs). LIFs são um tipo especial de lógicas paraconsistentes que são gentilmente explosivas e internalizam o conceito de consistência no nível da linguagem-objeto utilizando o operador de consistência ? . A questão inicial Poderia a Paraconsistência substituir a Não-Monotonicidade? nos guiou à formalização de uma pergunta mais específica, entretanto, mais intrigante: É possível desenvolver uma lógica não-monotônica gentilmente explosiva?. No intuito de buscar responder a essa questão, é importante investigar conceitual e filosoficamente a relevância e as problemáticas de se desenvolver tal lógica. Este trabalho visa justificar a importância de uma lógica não-monotônica paraconsistente baseada nas Lógicas de Inconsistência Formal a partir de uma análise intuitiva dos conceitos e das noções envolvidas em tais sistemas formais considerando, ainda, abordagens possíveis a partir das chamadas Lógicas Adaptativas de Inconsistência e das Lógicas Moduladas
Abstract: There are many reasons to justify the development of non-classical logics such as the expressivity of those languages and how they could help to formulate human reasoning. In that sense, nonmonotonic logics were developed in order to formalize everyday reasoning based on the premise that we should be able to retract conclusions previously obtained in face of new information. Some nonmonotonic logics uses the notion of default reasoning to formalize everyday reasoning. On the other hand, paraconsistent logics are those logics that studies non-explosive theories and were developed in order to deal with contradictions. About paraconsistent logics, there is a class of systems that has shown to be really interesting, particularly: the Logics of Formal Inconsistency [LFIs]. LFIs are a special kind of paraconsistent logics that are gently explosive and internalize the concept of consistency at the object-language level using the consistency operator ?. The initial question Can Paraconsistency replace Nonmonotonicity? guided us to the formulation of a more specific yet intriguing question: Is it possible to develop a gently explosive nonmonotonic logic?. In order to answer that question, it is important to investigate both conceptual and philosophical relevance and problems of developing such logic. This work intends to justify the importance of a non-monotonic paraconsistent logic based on Logics of Formal Inconsistency from an intuitive analysis of concepts and notions involved in such formal systems, also considering possible approaches from the so called Adaptive Logics of Inconsistency an Modulated Logics
Mestrado
Filosofia
Mestra em Filosofia
Книги з теми "Mathematical Logic and Formal Languages"
Srivastava, S. M. A Course on Mathematical Logic. 2nd ed. New York, NY: Springer New York, 2013.
Знайти повний текст джерелаSrivastava, S. M. A course on mathematical logic. New York: Springer, 2013.
Знайти повний текст джерелаCasadio, C. Logic for grammar: Developments in linear logic and formal linguistics. Roma: Bulzoni, 2002.
Знайти повний текст джерелаColloquium on Logic, Language, Mathematics Linguistics (3rd 1991 Brașov, Romania). Proceedings of the Third Colloquium on Logic, Language, Mathematics Linguistics, Brasov, 23-25 mai 1991. Brasov: Transilvania University of Brasov, Faculty of Sciences, Dept. of Mathematics, 1991.
Знайти повний текст джерелаLarrazabal, Jesús M. Logic Colloquium' 96: Proceedings of the Colloquium held in San Sebastián, Spain, July 9-15, 1996. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
Знайти повний текст джерелаservice), SpringerLink (Online, ed. Logica: Metodo Breve. Milano: Springer Milan, 2011.
Знайти повний текст джерела1953-, Delzell Charles N., ed. Mathematical logic and model theory: A brief introduction. London: Springer, 2011.
Знайти повний текст джерелаA, Carnielli Walter, ed. Analysis and synthesis of logics: How to cut and paste reasoning systems. Dordrecht: Springer, 2008.
Знайти повний текст джерелаInternational Colloquium on Grammatical Inference (10th 2010 Valencia, Spain). Grammatical inference: theoretical results and applications: 10th international colloquium ; proceedings. Berlin: Springer, 2010.
Знайти повний текст джерелаInternational Colloquium on Grammatical Inference (9th 2008 Saint-Malo, France). Grammatical inference: Algorithms and applications : 9th international colloquium, ICGI 2008, Saint-Malo, France, September 22-24, 2008 : proceedings. [New York]: Springer-Verlag Berlin Heidelberg, 2008.
Знайти повний текст джерелаЧастини книг з теми "Mathematical Logic and Formal Languages"
Csirmaz, Laszlo, and Zalán Gyenis. "Formal Languages and Automata." In Mathematical Logic, 13–18. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-79010-3_3.
Повний текст джерелаManin, Yu I. "Introduction to Formal Languages." In A Course in Mathematical Logic for Mathematicians, 3–18. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0615-1_1.
Повний текст джерелаReghiş, Mircea, and Eugene Roventa. "The Formal Language of Propositional Logic." In Classical and Fuzzy Concepts in Mathematical Logic and Applications, 23–35. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003067924-3.
Повний текст джерелаReghiş, Mircea, and Eugene Roventa. "The Formal Language of Predicate Logic." In Classical and Fuzzy Concepts in Mathematical Logic and Applications, 197–204. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003067924-13.
Повний текст джерелаvan Benthem, Johan. "Mathematical Logic and Natural Language: Life at the border." In Foundations of the Formal Sciences II, 25–38. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0395-6_2.
Повний текст джерелаIngram, David. "2. Knowledge, Language and Reason." In Health Care in the Information Society, 69–192. Cambridge, UK: Open Book Publishers, 2023. http://dx.doi.org/10.11647/obp.0335.02.
Повний текст джерелаAliferis, Constantin, and Gyorgy Simon. "Foundations and Properties of AI/ML Systems." In Health Informatics, 33–94. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-39355-6_2.
Повний текст джерелаLi, Wei. "Formal Inference Systems." In Mathematical Logic, 45–70. Basel: Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-7643-9977-1_3.
Повний текст джерелаLi, Wei. "Formal Inference Systems." In Mathematical Logic, 55–81. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0862-0_3.
Повний текст джерелаLi, Wei. "Sequences of Formal Theories." In Mathematical Logic, 117–37. Basel: Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-7643-9977-1_6.
Повний текст джерелаТези доповідей конференцій з теми "Mathematical Logic and Formal Languages"
Simko, Gabor, Tihamer Levendovszky, Sandeep Neema, Ethan Jackson, Ted Bapty, Joseph Porter, and Janos Sztipanovits. "Foundation for Model Integration: Semantic Backplane." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70534.
Повний текст джерелаHuang, K. S., B. K. Jenkins, and A. A. Sawchuk. "Binary Image Algebra and Digital Optical Cellular Image Processors." In Optical Computing. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/optcomp.1987.mb5.
Повний текст джерелаElleuch, Maissa, Yassine Aydi, and Mohamed Abid. "Formal specification of delta MINs for MPSOC in the ACL2 logic." In Design Languages (FDL). IEEE, 2008. http://dx.doi.org/10.1109/fdl.2008.4641461.
Повний текст джерелаHabiballa, Hashim, and Radek Jendryscik. "Formal logic rewrite system bachelor in teaching mathematical informatics." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992228.
Повний текст джерелаNakamura, Masaki, and Kazutoshi Sakakibara. "Formal Verification and Mathematical Optimization for Autonomous Vehicle Group Controllers." In 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE, 2019. http://dx.doi.org/10.1109/models-c.2019.00111.
Повний текст джерелаBertot, Yves. "Fixed Precision Patterns for the Formal Verification of Mathematical Constant Approximations." In POPL '15: The 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2676724.2693172.
Повний текст джерелаBelle, Vaishak. "Logic meets Probability: Towards Explainable AI Systems for Uncertain Worlds." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/733.
Повний текст джерелаTolk, Andreas, Saikou Y. Diallo, and Charles D. Turnitsa. "Mathematical models towards self-organizing formal federation languages based on conceptual models of information exchange capabilities." In 2008 Winter Simulation Conference (WSC). IEEE, 2008. http://dx.doi.org/10.1109/wsc.2008.4736163.
Повний текст джерелаGollapudi, Chandra, and Dawn Tilbury. "Logic Control Design and Implementation for a Machining Line Testbed Using Petri Nets." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/dsc-24594.
Повний текст джерелаAdamovich, Alexei Igorevich, and Andrei Valentinovich Klimov. "On theories of names and references in formal languages and implications for functional and object-oriented programming." In 23rd Scientific Conference “Scientific Services & Internet – 2021”. Keldysh Institute of Applied Mathematics, 2021. http://dx.doi.org/10.20948/abrau-2021-30.
Повний текст джерелаЗвіти організацій з теми "Mathematical Logic and Formal Languages"
Baader, Franz, and Ralf Küsters. Unification in a Description Logic with Transitive Closure of Roles. Aachen University of Technology, 2001. http://dx.doi.org/10.25368/2022.115.
Повний текст джерелаBaader, Franz, and Benjamin Zarrieß. Verification of Golog Programs over Description Logic Actions. Technische Universität Dresden, 2013. http://dx.doi.org/10.25368/2022.198.
Повний текст джерела