Добірка наукової літератури з теми "Mathematical models"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mathematical models".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Mathematical models"

1

Gardiner, Tony, and Gerd Fischer. "Mathematical Models." Mathematical Gazette 71, no. 455 (1987): 94. http://dx.doi.org/10.2307/3616334.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pavankumari, V. "Mathematical and Stochastic Growth Models." International Journal for Research in Applied Science and Engineering Technology 9, no. 11 (2021): 1576–82. http://dx.doi.org/10.22214/ijraset.2021.39055.

Повний текст джерела
Анотація:
Abstract: Many statistical and mathematical models of growth are developed in the literature and effectively applied to various conditions in the existent world that involve many research problems in the different fields of applied statistics. Nevertheless, still, there is an equally large number of conditions, which have not yet been mathematically or statistically modeled, due to the complex situations or formed models are mathematically or statistically inflexible. The present study is based on mathematical and stochastic growth models. The specification of both the growth models is depicte
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kumari, V. Pavan, Venkataramana Musala, and M. Bhupathi Naidu. "Mathematical and Stochastic Growth Models." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (2022): 987–89. http://dx.doi.org/10.22214/ijraset.2022.42330.

Повний текст джерела
Анотація:
Abstract: Many statistical and mathematical models of growth are developed in the literature and effectively applied to various conditions in the existent world involves many research problems in the different fields of applied statistics. Nevertheless, still, there are an equally a large number of conditions, which have not yet been mathematically or statistically modeled, due to the complex situations or formed models are mathematically or statistically inflexible. The present study is based on mathematical and stochastic growth models. The specification of both the growth models is depicted
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Denton, Brian, Pam Denton, and Peter Lorimer. "Making Mathematical Models." Mathematical Gazette 78, no. 483 (1994): 364. http://dx.doi.org/10.2307/3620232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Suzuki, Takashi. "Mathematical models of tumor growth systems." Mathematica Bohemica 137, no. 2 (2012): 201–18. http://dx.doi.org/10.21136/mb.2012.142866.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kogalovsky, M. R. "Digital Libraries of Economic-Mathematical Models: Economic-Mathematical and Information Models." Market Economy Problems, no. 4 (2018): 89–97. http://dx.doi.org/10.33051/2500-2325-2018-4-89-97.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Banasiak, J. "Kinetic models – mathematical models of everything?" Physics of Life Reviews 16 (March 2016): 140–41. http://dx.doi.org/10.1016/j.plrev.2016.01.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kleiner, Johannes. "Mathematical Models of Consciousness." Entropy 22, no. 6 (2020): 609. http://dx.doi.org/10.3390/e22060609.

Повний текст джерела
Анотація:
In recent years, promising mathematical models have been proposed that aim to describe conscious experience and its relation to the physical domain. Whereas the axioms and metaphysical ideas of these theories have been carefully motivated, their mathematical formalism has not. In this article, we aim to remedy this situation. We give an account of what warrants mathematical representation of phenomenal experience, derive a general mathematical framework that takes into account consciousness’ epistemic context, and study which mathematical structures some of the key characteristics of conscious
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Byrne, Patrick, S. D. Howison, F. P. Kelly, and P. Wilmott. "Mathematical Models in Finance." Statistician 45, no. 3 (1996): 389. http://dx.doi.org/10.2307/2988481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kozhanov, V. S., S. O. Ustalkov, and A. O. Khudoshina. "TOW CABLES MATHEMATICAL MODELS." Mathematical Methods in Technologies and Technics, no. 5 (2022): 62–68. http://dx.doi.org/10.52348/2712-8873_mmtt_2022_5_62.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Mathematical models"

1

Tonner, Jaromír. "Overcomplete Mathematical Models with Applications." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-233893.

Повний текст джерела
Анотація:
Chen, Donoho a Saunders (1998) studují problematiku hledání řídké reprezentace vektorů (signálů) s použitím speciálních přeurčených systémů vektorů vyplňujících prostor signálu. Takovéto systémy (někdy jsou také nazývány frejmy) jsou typicky vytvořeny buď rozšířením existující báze, nebo sloučením různých bazí. Narozdíl od vektorů, které tvoří konečně rozměrné prostory, může být problém formulován i obecněji v rámci nekonečně rozměrných separabilních Hilbertových prostorů (Veselý, 2002b; Christensen, 2003). Tento funkcionální přístup nám umožňuje nacházet v těchto prostorech přesnější reprezen
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Widmer, Tobias K. "Reusable mathematical models." Zürich : ETH, Eidgenössische Technische Hochschule Zürich, Department of Computer Science, Chair of Software Engineering, 2004. http://e-collection.ethbib.ethz.ch/show?type=dipl&nr=192.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Maggiori, Claudia. "Mathematical models in biomedicine." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21247/.

Повний текст джерела
Анотація:
In questa tesi vengono innanzitutto presentati due metodi matematici per lo studio di modelli biomedici e comportamentali. I modelli presentati sono tre: un modello per lo studio dell'evoluzione della malattia di Alzheimer, uno per lo studio dello sviluppo dei tumori e uno per la diffusione del Covid-19. Si riportano anche alcuni codici utilizzati per lo studio e lo sviluppo dei modelli trattati. Le conclusioni contengono alcuni possibili sviluppi degli argomenti trattati.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mathewson, Donald Jeffrey. "Mathematical models of immunity." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29575.

Повний текст джерела
Анотація:
A cross-linking model for the activation of the A cell or immune accessory cell as a function of certain extracellular conditions is developed to determine the valency of the specific factor receptor on the A cell surface. It is found that such a determination can be made based on the FWHM of cross-linking curves which differ by a full order of magnitude between the bivalent receptor case and the monovalent receptor case. This determination can be made provided one can obtain accurate values for the equilibrium constants which characterize the system and provided that activation and IL-1 secre
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Heron, Dale Robert. "Mathematical models of superconductivity." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296893.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bozic, Ivana. "Mathematical Models of Cancer." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10220.

Повний текст джерела
Анотація:
Major efforts to sequence cancer genomes are now occurring throughout the world. Though the emerging data from these studies are illuminating, their reconciliation with epidemiologic and clinical observations poses a major challenge. Here we present mathematical models that begin to address this challenge. First we present a model of accumulation of driver and passenger mutations during tumor progression and derive a formula for the number of driver mutations as a function of the total number of mutations in a tumor. Fitting this formula to recent experimental data, we were able to calculate t
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Luther, Roger. "Mathematical models of kleptoparasitism." Thesis, University of Sussex, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410365.

Повний текст джерела
Анотація:
The phenomenon of kleptoparasitism - "food-stealing" - has frequently been observed, in a wide range of animal species. In this thesis, I extend the game-theoretic model of kleptoparasitism, proposed by Broom and Ruxton 1998, in a number of ways. Firstly, using their model, I investigate how quickly the equilibrium state of a kleptoparasitic population is reached. This work has been published (Luther and Broom 2004). I then investigate the case of a single homogenous population of kleptoparasites, finding which behaviours are Evolutionarily Stable Strategies. This is done with a variable proba
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mazzag, Barbara Cathrine. "Mathematical models in biology /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Niederhauser, Beat. "Mathematical Aspects of Hopfield models." [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=960147535.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kowalewski, Jacob. "Mathematical Models in Cellular Biophysics." Licentiate thesis, KTH, Applied Physics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4361.

Повний текст джерела
Анотація:
<p>Cellular biophysics deals with, among other things, transport processes within cells. This thesis presents two studies where mathematical models have been used to explain how two of these processes occur.</p><p>Cellular membranes separate cells from their exterior environment and also divide a cell into several subcellular regions. Since the 1970s lateral diffusion in these membranes has been studied, one the most important experimental techniques in these studies is <i>fluorescence recovery after</i> <i>photobleach</i> (FRAP). A mathematical model developed in this thesis describes how dop
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Mathematical models"

1

Fischer, Gerd, ed. Mathematical Models. Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-18865-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tanguy, Jean-Michel, ed. Mathematical Models. John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9781118557853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ershov, I͡Uriĭ Leonidovich. Constructive models. Consultants Bureau, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hrsg, Crampin Mike, ed. Mathematical models and methods: Mathematical modelling. Open University, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Torres, Pedro J. Mathematical Models with Singularities. Atlantis Press, 2015. http://dx.doi.org/10.2991/978-94-6239-106-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Borisov, Andrey Valerievich, and Anatoly Vlasovich Chigarev. Mathematical Models of Exoskeleton. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97733-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stamova, Ivanka, and Gani Stamov. Applied Impulsive Mathematical Models. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28061-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mayergoyz, I. D. Mathematical Models of Hysteresis. Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3028-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ansorge, Rainer. Mathematical Models of Fluiddynamics. Wiley-VCH Verlag GmbH & Co. KGaA, 2002. http://dx.doi.org/10.1002/3527602771.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zazzu, Valeria, Maria Brigida Ferraro, and Mario R. Guarracino, eds. Mathematical Models in Biology. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23497-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Mathematical models"

1

Holst, Niels. "Mathematical Models." In Decision Support Systems for Weed Management. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44402-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gross, Sven, and Arnold Reusken. "Mathematical models." In Springer Series in Computational Mathematics. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19686-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pulido-Bosch, Antonio. "Mathematical Models." In Principles of Karst Hydrogeology. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55370-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hinrichsen, Diederich, and Anthony J. Pritchard. "Mathematical Models." In Mathematical Systems Theory I. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26410-8_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Marquardt, Wolfgang, Jan Morbach, Andreas Wiesner, and Aidong Yang. "Mathematical Models." In OntoCAPE. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04655-1_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mauergauz, Yuri. "Mathematical Models." In Advanced Planning and Scheduling in Manufacturing and Supply Chains. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27523-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Skiena, Steven S. "Mathematical Models." In Texts in Computer Science. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55444-0_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thorn, Colin E. "Mathematical models." In An Introduction to Theoretical Geomorphology. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-010-9441-2_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Layer, Edward. "Mathematical Models." In Modelling of Simplified Dynamical Systems. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56098-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Payne, Stephen. "Mathematical Models." In Cerebral Autoregulation. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31784-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Mathematical models"

1

Morrow, Gregory J., and Wei-Shih Yang. "Probability Models in Mathematical Physics." In Conference on Probability Models in Mathematical Physics. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814539852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weckesser, Markus, Malte Lochau, Michael Ries, and Andy Schürr. "Mathematical Programming for Anomaly Analysis of Clafer Models." In MODELS '18: ACM/IEEE 21th International Conference on Model Driven Engineering Languages and Systems. ACM, 2018. http://dx.doi.org/10.1145/3239372.3239398.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tweedie, Lisa, Robert Spence, Huw Dawkes, and Hus Su. "Externalising abstract mathematical models." In the SIGCHI conference. ACM Press, 1996. http://dx.doi.org/10.1145/238386.238587.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Yajun. "Mathematical models for diode laser beams." In OSA Annual Meeting. Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thr5.

Повний текст джерела
Анотація:
It is known that there are two mathematical models for the elliptic beams generated by semi conductor laser diodes. The first model is the simple Gaussian model,1 in which two Gaussian distributions with different widths are employed to describe the light distribution over the elliptic cross-section of the beam. The second model is known as the Lorentzian-Gaussian model2 which was established in a study of the fact that the Gaussian distribution is valid only for the light field parallel to the junction and in the perpendicular direction the field is described by the Loretzian distribution. In
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maskal, Alan B., and Fatih Aydogan. "Mathematical Models of Spacer Grids." In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60098.

Повний текст джерела
Анотація:
The fuel rods in Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) cores are supported by spacer grids. Even though spacer grids add to the pressure loss in the reactor core, spacer grids have several benefits in Light Water Reactors (LWRs). Some of these benefits are: (i) increasing the turbulence at the bottom of the reactor core for better heat transfer in single phase region of the LWRs, (ii) improving the departure nucleate boiling ratio results for PWRs, and (iii) improving critical power ratio (CPR) values by increasing the thickness of film in annular flow regime in the t
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chilbert, M., J. Myklebust, T. Prieto, T. Swiontek, and A. Sances. "Mathematical models of electrical injury." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.94632.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bogdanov, Yu I., A. Yu Chernyavskiy, A. S. Holevo, V. F. Lukichev, and A. A. Orlikovsky. "Mathematical models of quantum noise." In International Conference on Micro-and Nano-Electronics 2012, edited by Alexander A. Orlikovsky. SPIE, 2013. http://dx.doi.org/10.1117/12.2017396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nedostup, Leonid, Yuriy Bobalo, Myroslav Kiselychnyk, and Oxana Lazko. "Production Systems Complex Mathematical Models." In 2007 9th International Conference - The Experience of Designing and Applications of CAD Systems in Microelectronics. IEEE, 2007. http://dx.doi.org/10.1109/cadsm.2007.4297505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sanjana, N., M. S. Deepthi, H. R. Shashidhara, and Yajunath Kaliyath. "Comparison of Memristor Mathematical Models." In 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). IEEE, 2022. http://dx.doi.org/10.1109/discover55800.2022.9974669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dowding, Kevin. "Quantitative Validation of Mathematical Models." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24308.

Повний текст джерела
Анотація:
Abstract Validation is a process to compare a mathematical model with a set of physical experiment to quantify the accuracy of the model to represent the physical world (experiment). Because the goal is to use experiments to quantify the accuracy of the mathematical model, the interaction of the model and experiment must be carefully studied. Advancing the comparison beyond a qualitative nature requires consideration of the errors in the process and the effect of these errors on the comparison. The mathematical model, in conjunction with sensitivity analysis, uncertainty analysis, and statisti
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Mathematical models"

1

Equihua, M., and O. Perez-Maqueo. Mathematical Modeling and Conservation. American Museum of Natural History, 2010. http://dx.doi.org/10.5531/cbc.ncep.0154.

Повний текст джерела
Анотація:
Formal models are indispensable tools in natural resource management and in conservation biology. Explicit modeling can be a helpful tool for studying these systems, communicating across disciplines, and integrating varying viewpoints of numerous stakeholders. This module demonstrates how to explicitly construct models as alternative representations to help interpret and understand nature. Through a synthesis and two exercises, it describes the general context of scientific modeling (i.e., use and types of models), and allows students to practice building a model by evaluating the relationship
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mayergoyz, I. D. [Mathematical models of hysteresis]. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/6911694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mayergoyz, I. D. Mathematical models of hysteresis. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/6946876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mayergoyz, I. Mathematical models of hysteresis. Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/5246564.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kaper, H. Mathematical models of superconductivity. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/5907100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ringhofer, Christian. Mathematical Models for VLSI Device Simulation. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada191125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lovianova, Iryna V., Dmytro Ye Bobyliev, and Aleksandr D. Uchitel. Cloud calculations within the optional course Optimization Problems for 10th-11th graders. [б. в.], 2019. http://dx.doi.org/10.31812/123456789/3267.

Повний текст джерела
Анотація:
The article deals with the problem of introducing cloud calculations into 10th-11th graders’ training to solve optimization problems in the context of the STEM-education concept. After analyzing existing programmes of optional courses on optimization problems, the programme of the optional course Optimization Problems has been developed and substantiated implying solution of problems by the cloud environment CoCalc. It is a routine calculating operation and not a mathematical model that is accentuated in the programme. It allows considering more problems which are close to reality without adap
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mayergoyz, Isaak. MATHEMATICAL MODELS OF HYSTERESIS (DYNAMIC PROBLEMS IN HYSTERESIS). Office of Scientific and Technical Information (OSTI), 2006. http://dx.doi.org/10.2172/889747.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dawson, Steven. The Genesis of Cyberscience and its Mathematical Models (CYBERSCIENCE). Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada431570.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Steefel, C., D. Moulton, G. Pau, et al. Mathematical Formulation Requirements and Specifications for the Process Models. Office of Scientific and Technical Information (OSTI), 2010. http://dx.doi.org/10.2172/1000859.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!