Добірка наукової літератури з теми "Maurer-Cartan element"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Maurer-Cartan element".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Maurer-Cartan element"
Ward, Benjamin. "Maurer–Cartan elements and cyclic operads." Journal of Noncommutative Geometry 10, no. 4 (2016): 1403–64. http://dx.doi.org/10.4171/jncg/263.
Повний текст джерелаChen, Zhuo, Mathieu Stiénon, and Ping Xu. "Geometry of Maurer-Cartan Elements on Complex Manifolds." Communications in Mathematical Physics 297, no. 1 (March 31, 2010): 169–87. http://dx.doi.org/10.1007/s00220-010-1029-4.
Повний текст джерелаDas, Apurba, and Satyendra Kumar Mishra. "The L∞-deformations of associative Rota–Baxter algebras and homotopy Rota–Baxter operators." Journal of Mathematical Physics 63, no. 5 (May 1, 2022): 051703. http://dx.doi.org/10.1063/5.0076566.
Повний текст джерелаBuijs, Urtzi, Yves Félix, Aniceto Murillo, and Daniel Tanré. "Maurer–Cartan Elements in the Lie Models of Finite Simplicial Complexes." Canadian Mathematical Bulletin 60, no. 3 (September 1, 2017): 470–77. http://dx.doi.org/10.4153/cmb-2017-003-7.
Повний текст джерелаChtioui, T., A. Hajjaji, S. Mabrouk, and A. Makhlouf. "Cohomology and deformations of twisted O-operators on 3-Lie algebras." Filomat 37, no. 21 (2023): 6977–94. http://dx.doi.org/10.2298/fil2321977c.
Повний текст джерелаLiu, Jiefeng, and Yunhe Sheng. "Homotopy Poisson algebras, Maurer–Cartan elements and Dirac structures of CLWX 2-algebroids." Journal of Noncommutative Geometry 15, no. 1 (January 21, 2021): 147–93. http://dx.doi.org/10.4171/jncg/398.
Повний текст джерелаDas, Apurba. "Cohomology and deformations of weighted Rota–Baxter operators." Journal of Mathematical Physics 63, no. 9 (September 1, 2022): 091703. http://dx.doi.org/10.1063/5.0093066.
Повний текст джерелаXu, Senrong, Wei Wang, and Jia Zhao. "Twisted Rota-Baxter operators on Hom-Lie algebras." AIMS Mathematics 9, no. 2 (2023): 2619–40. http://dx.doi.org/10.3934/math.2024129.
Повний текст джерелаGoncharov, Alexander B. "Hodge correlators." Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, no. 748 (March 1, 2019): 1–138. http://dx.doi.org/10.1515/crelle-2016-0013.
Повний текст джерелаHAAK, G., M. SCHMIDT, and R. SCHRADER. "GROUP THEORETIC FORMULATION OF THE SEGAL-WILSON APPROACH TO INTEGRABLE SYSTEMS WITH APPLICATIONS." Reviews in Mathematical Physics 04, no. 03 (September 1992): 451–99. http://dx.doi.org/10.1142/s0129055x92000121.
Повний текст джерелаДисертації з теми "Maurer-Cartan element"
Hajjaji, Atef. "Étude des opérateurs de Rota-Baxter relatifs sur les algèbres ternaires de type Lie et Jordan." Electronic Thesis or Diss., Mulhouse, 2024. http://www.theses.fr/2024MULH7172.
Повний текст джерелаThe goal of this thesis is to explore relative Rota-Baxter operators in the context of ternary algebras of both Lie and Jordan types. We mainly consider Lie triple systems, 3-Lie algebras and ternary Jordan algebras. The study covers their structure, cohomology, deformations, and their connection with the Yang-Baxter equations. The work is divided into three main parts. The first part aims first to introduce and study a graded Lie algebra whose Maurer-Cartan elements are Lie triple systems. It turns out to be the controlling algebra of Lie triple systems deformations and fits with the adjoint cohomology theory of Lie triple systems introduced by Yamaguti. In addition, we introduce the notion of relative Rota-Baxter operators on Lie triple systems and construct a Lie 3-algebra as a special case of L∞-algebras, where the Maurer-Cartan elements correspond to relative Rota-Baxter operators. In the second part, we introduce the concept of twisted relative Rota-Baxter operators on 3-Lie algebras and construct an L∞-algebra, where the Maurer-Cartan elements are twisted relative Rota-Baxter operators. This allows us to define the Chevalley-Eilenberg cohomology of a twisted relative Rota-Baxter operator. In the last part, we deal with a representation theory of ternary Jordan algebras. In particular, we introduce and discuss the concept of coherent ternary Jordan algebras. We then define relative Rota-Baxter operators for ternary Jordan algebras and discuss solutions ofthe ternary Jordan Yang-Baxter equation involving relative Rota-Baxter operators. Moreover, we investigate ternary pre-Jordan algebras as the underlying algebraic structure of relative Rota-Baxter operators
Robert-Nicoud, Daniel. "Opérades et espaces de Maurer-Cartan." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCD048.
Повний текст джерелаThis thesis is inscribed in the topics of operad theory and homotopical algebra. Suppose we are given a type of algebras, a type of coalgebras, and a relationship between those types of algebraic structures (encoded by an operad, a cooperad, and a twisting morphism respectively). Then, it is possible to endow the space of linear maps from a coalgebra C and an algebra A with a natural structure of Lie algebra up to homotopy. We call the resulting homotopy Lie algebra the convolution algebra of A and C. In this thesis, we study the theory of convolution algebras and their compatibility with the tools of homotopical algebra : infinity morphisms and the homotopy transfer theorem. After doing that, we apply this theory to various domains, such as derived deformation theory and rational homotopy theory. In the first case, we use the tools we developed to construct an universal Lie algebra representing the space of Maurer-Cartan elements, a fundamental object of deformation theory. In the second case, we generalize a result of Berglund on rational models for mapping spaces between pointed topological spaces
Частини книг з теми "Maurer-Cartan element"
Buijs, Urtzi, Yves Félix, Aniceto Murillo, and Daniel Tanré. "Maurer–Cartan Elements and the Deligne Groupoid." In Lie Models in Topology, 93–115. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54430-0_4.
Повний текст джерелаTu, Loring W. "The Maurer–Cartan Form." In Introductory Lectures on Equivariant Cohomology, 121–26. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691191751.003.0015.
Повний текст джерела