Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Medical applications potential.

Статті в журналах з теми "Medical applications potential"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Medical applications potential".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

El-Naggar, Moustafa Y., Amira M. Hamdan, Ehab A. Beltagy, Hassan A. H. Ibrahim, and Mahetab M. M. Moustafa. "Endotoxin Production by Pseudomonas aeruginosa ATCC 9027 with Potential Medical Applications." Journal of Pure and Applied Microbiology 13, no. 1 (2019): 97–106. http://dx.doi.org/10.22207/jpam.13.1.10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Anil, Sukumaran. "Potential Medical Applications of Chitooligosaccharides." Polymers 14, no. 17 (2022): 3558. http://dx.doi.org/10.3390/polym14173558.

Повний текст джерела
Анотація:
Chitooligosaccharides, also known as chitosan oligomers or chitooligomers, are made up of chitosan with a degree of polymerization (DP) that is less than 20 and an average molecular weight (MW) that is lower than 3.9 kDa. COS can be produced through enzymatic conversions using chitinases, physical and chemical applications, or a combination of these strategies. COS is of significant interest for pharmacological and medical applications due to its increased water solubility and non-toxicity, with a wide range of bioactivities, including antibacterial, anti-inflammatory, anti-obesity, neuroprote
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alric, Matthieu, Frédéric Chapelle, Jean-Jacques Lemaire, and Grigore Gogu. "Potential applications of medical and non-medical robots for neurosurgical applications." Minimally Invasive Therapy & Allied Technologies 18, no. 4 (2009): 193–216. http://dx.doi.org/10.1080/13645700903053584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Reddy, Narendra, and Yiqi Yang. "Potential of plant proteins for medical applications." Trends in Biotechnology 29, no. 10 (2011): 490–98. http://dx.doi.org/10.1016/j.tibtech.2011.05.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Garbacz, Halina, and Krzysztof Jan Kurzydlowski. "Properties of Nanotitanium for Potential Medical Applications." Macromolecular Symposia 253, no. 1 (2007): 128–33. http://dx.doi.org/10.1002/masy.200750719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Quan, Pham Hong, Veronica Manescu Paltanea, Gheorghe Paltanea, Iulian Antoniac, and Iosif Vasile Nemoianu. "Potential of Biodegradable Magnesium Alloys for Medical Applications." Key Engineering Materials 931 (September 9, 2022): 55–61. http://dx.doi.org/10.4028/p-r405h8.

Повний текст джерела
Анотація:
Biodegradability of magnesium alloys in physiological media is important for material use in implant manufacture industry. Two industrial Mg alloys ZQ71 and ZQ63 were investigated. Optical microscopy was used to put in evidence microstructure. The conclusions are correlated with obtained results after scanning electron microscopy investigations coupled with energy dispersive X-ray spectroscopy. The evaluation of the hydrogen released rate was analyzed in laboratory made simulated body fluid (SBF) and Hanks’ solution at 37°C for 10 days. Different degradation rates are obtained, and it can be c
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Piskin, E. "Potential Sorbents for Medical and Some Related Applications." International Journal of Artificial Organs 9, no. 6 (1986): 401–4. http://dx.doi.org/10.1177/039139888600900608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Noor, Hafizh Muhammad. "Potential of Carrageenans in Foods and Medical Applications." GHMJ (Global Health Management Journal) 2, no. 2 (2018): 32. http://dx.doi.org/10.35898/ghmj-22188.

Повний текст джерела
Анотація:
Background: Carrageenans, the polysaccharides obtained by extraction of certain species of red seaweeds (Rhodophyceae), have been widely used in both food industry and medical applications because of their excellent physical functional properties that are used as gelling, thickening and stabilizing agent. Several studies showed biological properties of carrageenans such as antiviral, anticoagulant, antitumor, antioxidant, anti-inflammatory and immune-modulatory activity. Aims: This study is to bring a short overview of the potential of carrageenans in foods and medical applications based on th
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yasmin, Rehana, Mohsin Shah, Saeed Ahmad Khan, and Roshan Ali. "Gelatin nanoparticles: a potential candidate for medical applications." Nanotechnology Reviews 6, no. 2 (2017): 191–207. http://dx.doi.org/10.1515/ntrev-2016-0009.

Повний текст джерела
Анотація:
AbstractGelatin is a protein obtained from the hydrolysis of collagen. Gelatin is an attractive biodegradable material for use in nano-biotechnology and nano-pharmaceutics. Gelatin nanoparticles (NPs) have been widely used as drug and gene carrier to targeted sick tissues including cancer, tuberculosis, HIV infection along with the treatment of vasospasm and restenosis, due to its biocompatibility and biodegradability. For instance, coating with gelatin lowers the cytotoxicity of quantum dots. Moreover, gelatin NPs have the ability to cross the blood-brain barrier, hence proven as a promising
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Menz, W., and A. Guber. "Microstructure Technologies and their Potential in Medical Applications." min - Minimally Invasive Neurosurgery 37, no. 01 (1994): 21–27. http://dx.doi.org/10.1055/s-2008-1053444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Xu, Helan, Qiuran Jiang, Narendra Reddy, and Yiqi Yang. "Hollow nanoparticles from zein for potential medical applications." Journal of Materials Chemistry 21, no. 45 (2011): 18227. http://dx.doi.org/10.1039/c1jm11163a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Amenta, Valeria, and Karin Aschberger. "Carbon nanotubes: potential medical applications and safety concerns." Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 7, no. 3 (2014): 371–86. http://dx.doi.org/10.1002/wnan.1317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

McKenney, James M. "Potential Nontraditional Applications of Statins." Annals of Pharmacotherapy 37, no. 7-8 (2003): 1063–71. http://dx.doi.org/10.1345/aph.1c499.

Повний текст джерела
Анотація:
OBJECTIVE: To review the current evidence for use of hydroxymethylglutaryl coenzyme A reductase inhibitors (statins) in nontraditional lipid-related applications, including acute coronary syndromes, peripheral arterial disease, stroke, and renal disease, and to describe ongoing trials evaluating the role of statins in these conditions. DATA SOURCES: Clinical literature was identified by a MEDLINE search (1990–November 2002) using ≥1 of the following search terms: acute coronary syndrome(s), angina pectoris, atherosclerosis, atorvastatin, clinical trials, diabetes mellitus, end-stage renal dise
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Pomin, Vitor H., William P. Vignovich, Alysia V. Gonzales, Ariana A. Vasconcelos, and Barbara Mulloy. "Galactosaminoglycans: Medical Applications and Drawbacks." Molecules 24, no. 15 (2019): 2803. http://dx.doi.org/10.3390/molecules24152803.

Повний текст джерела
Анотація:
Galactosaminoglycans (GalAGs) are sulfated glycans composed of alternating N-acetylgalactosamine and uronic acid units. Uronic acid epimerization, sulfation patterns and fucosylation are modifications observed on these molecules. GalAGs have been extensively studied and exploited because of their multiple biomedical functions. Chondroitin sulfates (CSs), the main representative family of GalAGs, have been used in alternative therapy of joint pain/inflammation and osteoarthritis. The relatively novel fucosylated chondroitin sulfate (FCS), commonly found in sea cucumbers, has been screened in mu
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ashammakhi, N. "Nanosize, Mega-Impact, Potential for Medical Applications of Nanotechnology." Journal of Craniofacial Surgery 17, no. 1 (2006): 3–7. http://dx.doi.org/10.1097/01.scs.0000201086.73166.f0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Waynant, R. W., and I. K. Ilev. "Toward practical coherent X-ray sources: potential medical applications." IEEE Journal of Selected Topics in Quantum Electronics 6, no. 6 (2000): 1465–69. http://dx.doi.org/10.1109/2944.902202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Dudkowiak, Alina, Ewa Teślak, and Jan Habdas. "Photophysical studies of tetratolylporphyrin photosensitizers for potential medical applications." Journal of Molecular Structure 792-793 (July 2006): 93–98. http://dx.doi.org/10.1016/j.molstruc.2005.12.052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Roukos, Dimitrios H. "Next-generation sequencing and epigenome technologies: potential medical applications." Expert Review of Medical Devices 7, no. 6 (2010): 723–26. http://dx.doi.org/10.1586/erd.10.68.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Pop, Bogdan, Bogdan Fetica, Mihaiela Luminita Blaga, et al. "The role of medical registries, potential applications and limitations." Medicine and Pharmacy Reports 92, no. 1 (2019): 7–14. http://dx.doi.org/10.15386/cjmed-1015.

Повний текст джерела
Анотація:
Medical registries provide highly reliable data, challenged hierarchically only by randomized controlled trials. Although registries have been used in several fields of medicine for more than a century and a half, their key role is frequently overlooked and poorly recognized. Medical registries have evolved from calculating basic epidemiological data (incidence, prevalence, mortality) to diverse applications in disease prevention, early diagnosis and screening programs, treatment response, health care planning, decision making and disease control programs. Implementing, maintaining and running
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Gechev, Tsanko S., Jacques Hille, Herman J. Woerdenbag, et al. "Natural products from resurrection plants: Potential for medical applications." Biotechnology Advances 32, no. 6 (2014): 1091–101. http://dx.doi.org/10.1016/j.biotechadv.2014.03.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Raffort, Juliette, Charlotte Hinault, Olivier Dumortier, and Emmanuel Van Obberghen. "Circulating microRNAs and diabetes: potential applications in medical practice." Diabetologia 58, no. 9 (2015): 1978–92. http://dx.doi.org/10.1007/s00125-015-3680-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Ubaidillah, Saiful Amri Mazlan, Joko Sutrisno, and Hairi Zamzuri. "Potential Applications of Magnetorheological Elastomers." Applied Mechanics and Materials 663 (October 2014): 695–99. http://dx.doi.org/10.4028/www.scientific.net/amm.663.695.

Повний текст джерела
Анотація:
Magnetorheological elastomer still becomes interested topics among researchers since the rheological properties can be controlled by applying external magnetic field by means of adjustable modulus of elasticity. In this paper, the current application of MRE and related patents will be discussed. Potential application of MRE focused on three main areas. The first is explanation on MRE implementation in vibration cancellation mainly in vehicle system such as active vibration suppression and variable impedance sound absorber. The second explanationfocuses on its potential application on medical d
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Rodrigues, Lígia, Ibrahim M. Banat, José Teixeira, and Rosário Oliveira. "Biosurfactants: potential applications in medicine." Journal of Antimicrobial Chemotherapy 57, no. 4 (2006): 609–18. http://dx.doi.org/10.1093/jac/dkl024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Gomez, Catherine, Gauthier Hallot, Sophie Laurent, and Marc Port. "Medical Applications of Metallic Bismuth Nanoparticles." Pharmaceutics 13, no. 11 (2021): 1793. http://dx.doi.org/10.3390/pharmaceutics13111793.

Повний текст джерела
Анотація:
Recent reviews described the efficient syntheses of metallic bismuth nanoparticles. Nevertheless, few studies have been published on the medical applications of these nanoparticles compared to the number of studies on the well-documented clinical use of the bismuth(III) complex. An analysis of the literature revealed the significant potential of metallic bismuth nanoparticles in different theranostic applications. In the diagnostic field, preclinical proofs of concept have been demonstrated for X-ray, photoacoustic and fluorescence imaging. In the therapeutic field, several preclinical studies
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Thomas, Christy, and Cecilia Giulivi. "Saliva protein profiling for subject identification and potential medical applications." Medicine in Omics 3 (December 2021): 100012. http://dx.doi.org/10.1016/j.meomic.2021.100012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Malm, Johan, Mathias Farnegardh, Gary Grover, and Paul Ladenson. "Thyroid Hormone Antagonists: Potential Medical Applications and Structure Activity Relationships." Current Medicinal Chemistry 16, no. 25 (2009): 3258–66. http://dx.doi.org/10.2174/092986709788803277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Zakrzewska, Malgorzata, Ewa Marcinkowska, and Antoni Wiedlocha. "FGF-1: From Biology Through Engineering to Potential Medical Applications." Critical Reviews in Clinical Laboratory Sciences 45, no. 1 (2008): 91–135. http://dx.doi.org/10.1080/10408360701713120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Bremer, Christoph, Vasilis Ntziachristos, and Ralph Weissleder. "Optical-based molecular imaging: contrast agents and potential medical applications." European Radiology 13, no. 2 (2003): 231–43. http://dx.doi.org/10.1007/s00330-002-1610-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Mahapatra, Indrani, J. Clark, Peter J. Dobson, Richard Owen, and Jamie R. Lead. "Potential environmental implications of nano-enabled medical applications: critical review." Environ. Sci.: Processes Impacts 15, no. 1 (2013): 123–44. http://dx.doi.org/10.1039/c2em30640a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Karakuła-Juchnowicz, Hanna, Joanna Róg, Dariusz Juchnowicz, and Justyna Morylowska-Topolska. "GPR120: Mechanism of action, role and potential for medical applications." Postępy Higieny i Medycyny Doświadczalnej 71 (November 19, 2017): 0. http://dx.doi.org/10.5604/01.3001.0010.5809.

Повний текст джерела
Анотація:
G protein-coupled receptors (GPCRs) constitute a family of transmembrane proteins that mediate many cellular processes. GPR120/FFAR4, a receptor from this family that is activated by fatty acids, has received considerable attention recently. This paper presents a literature review concerning the role of GPR120 and its mechanism of action in animal and human studies as well as the potential use of GPR120 for the treatment of chronic diseases. Two electronic databases – Medline and Google Scholar – were searched for available studies addressing the review topic that were written in English and p
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Maldonado, Rafael, and Marta Torrens. "Cannabis research: Risks of recreational use and potential medical applications." European Neuropsychopharmacology 36 (July 2020): 167–68. http://dx.doi.org/10.1016/j.euroneuro.2020.06.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Hodyra, Katarzyna, and Krystyna Dąbrowska. "Molecular and Chemical Engineering of Bacteriophages for Potential Medical Applications." Archivum Immunologiae et Therapiae Experimentalis 63, no. 2 (2014): 117–27. http://dx.doi.org/10.1007/s00005-014-0305-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Salmond, George. "Bacteriophage applications: current and potential applications in biotechnology, agriculture and medicine." Future Microbiology 1, no. 2 (2006): 171–73. http://dx.doi.org/10.2217/17460913.1.2.171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Uesaka, Mitsuru, and Kazuyoshi Koyama. "Advanced Accelerators for Medical Applications." Reviews of Accelerator Science and Technology 09 (January 2016): 235–60. http://dx.doi.org/10.1142/s1793626816300115.

Повний текст джерела
Анотація:
We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration system
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Błaszczyk, Urszula, and Kamila Dąbrowska. "CHARACTERISTICS AND POTENTIAL APPLICATIONS OF CIRCULAR BACTERIOCINS." Postępy Mikrobiologii - Advancements of Microbiology 56, no. 4 (2019): 451–64. http://dx.doi.org/10.21307/pm-2017.56.4.451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Arthur, Timothy D., Veronica L. Cavera, and Michael L. Chikindas. "On bacteriocin delivery systems and potential applications." Future Microbiology 9, no. 2 (2014): 235–48. http://dx.doi.org/10.2217/fmb.13.148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

KIRWAN, JOHN R. "THE POTENTIAL OF COMPUTER APPLICATIONS IN RHEUMATOLOGY." Rheumatology 26, no. 1 (1987): 3–4. http://dx.doi.org/10.1093/rheumatology/26.1.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Walls, Elizabeth V., and Dorothy H. Crawford. "Human monoclonal antibodies—production and potential applications." Serodiagnosis and Immunotherapy in Infectious Disease 1, no. 2 (1987): 83–86. http://dx.doi.org/10.1016/0888-0786(87)90011-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Haniu, Hisao, Naoto Saito, Yoshikazu Matsuda, et al. "Basic Potential of Carbon Nanotubes in Tissue Engineering Applications." Journal of Nanomaterials 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/343747.

Повний текст джерела
Анотація:
Carbon nanotubes (CNTs) are attracting interest in various fields of science because they possess a high surface area-to-volume ratio and excellent electronic, mechanical, and thermal properties. Various medical applications of CNTs are expected, and the properties of CNTs have been greatly improved for use in biomaterials. However, the safety of CNTs remains unclear, which impedes their medical application. Our group is evaluating the biological responses of multiwall CNTs (MWCNTs)in vivoandin vitrofor the promotion of tissue regeneration as safe scaffold materials. We recently showed that in
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Javaid, Mohd, Abid Haleem, Ravi Pratap Singh, Mir Irfan Ul Haq, Ankush Raina, and Rajiv Suman. "Industry 5.0: Potential Applications in COVID-19." Journal of Industrial Integration and Management 05, no. 04 (2020): 507–30. http://dx.doi.org/10.1142/s2424862220500220.

Повний текст джерела
Анотація:
Industry 5.0, the fifth industrial revolution, consists of smart digital information and manufacturing technologies. This industrial revolution generates effective processes and makes rapid improvement in industries and healthcare. Solutions to challenges posed by COVID-19 pandemic can be identified with the deployment of Industry 5.0-based technologies. It helps to provide personalized therapy and treatment processes to the COVID-19 patients if a detailed patient’s information is available. The aim of Industry 5.0 technologies is to create a smart healthcare environment with real-time capabil
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Friesel, D. L., and T. A. Antaya. "Medical Cyclotrons." Reviews of Accelerator Science and Technology 02, no. 01 (2009): 133–56. http://dx.doi.org/10.1142/s1793626809000272.

Повний текст джерела
Анотація:
Particle accelerators were initially developed to address specific scientific research goals, yet they were used for practical applications, particularly medical applications, within a few years of their invention. The cyclotron's potential for producing beams for cancer therapy and medical radioisotope production was realized with the early Lawrence cyclotrons and has continued with their more technically advanced successors — synchrocyclotrons, sector-focused cyclotrons and superconducting cyclotrons. While a variety of other accelerator technologies were developed to achieve today's high en
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Peng, Xiao Yu. "Potential Biomedical Applications of Terahertz Technologies." American Journal of Biomedical Science & Research 10, no. 2 (2020): 149–51. http://dx.doi.org/10.34297/ajbsr.2020.08.001490.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Yuen, Jonathan D., Lisa C. Shriver-Lake, Scott A. Walper, Daniel Zabetakis, Joyce C. Breger, and David A. Stenger. "Microbial Nanocellulose Printed Circuit Boards for Medical Sensing." Sensors 20, no. 7 (2020): 2047. http://dx.doi.org/10.3390/s20072047.

Повний текст джерела
Анотація:
We demonstrate the viability of using ultra-thin sheets of microbially grown nanocellulose to build functional medical sensors. Microbially grown nanocellulose is an interesting alternative to plastics, as it is hydrophilic, biocompatible, porous, and hydrogen bonding, thereby allowing the potential development of new application routes. Exploiting the distinguishing properties of this material enables us to develop solution-based processes to create nanocellulose printed circuit boards, allowing a variety of electronics to be mounted onto our nanocellulose. As proofs of concept, we have demon
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Ali, Fayaz, Narayan S Hosmane, and Yinghuai Zhu. "Boron Chemistry for Medical Applications." Molecules 25, no. 4 (2020): 828. http://dx.doi.org/10.3390/molecules25040828.

Повний текст джерела
Анотація:
Boron compounds now have many applications in a number of fields, including Medicinal Chemistry. Although the uses of boron compounds in pharmacological science have been recognized several decades ago, surprisingly few are found in pharmaceutical drugs. The boron-containing compounds epitomize a new class for medicinal chemists to use in their drug designs. Carboranes are a class of organometallic compounds containing carbon (C), boron (B), and hydrogen (H) and are the most widely studied boron compounds in medicinal chemistry. Additionally, other boron-based compounds are of great interest,
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Hou, Wanting, Ruiqi Liu, Siwei Bi, Qian He, Haibo Wang, and Jun Gu. "Photo-Responsive Polymersomes as Drug Delivery System for Potential Medical Applications." Molecules 25, no. 21 (2020): 5147. http://dx.doi.org/10.3390/molecules25215147.

Повний текст джерела
Анотація:
Due to a strong retardation effect of o-nitrobenzyl ester on polymerization, it is still a great challenge to prepare amphiphilic block copolymers for polymersomes with a o-nitrobenzyl ester-based hydrophobic block. Herein, we present one such solution to prepare amphiphilic block copolymers with pure poly (o-nitrobenzyl acrylate) (PNBA) as the hydrophobic block and poly (N,N’-dimethylacrylamide) (PDMA) as the hydrophilic block using bulk reversible addition-fragmentation chain transfer (RAFT) polymerization of o-nitrobenzyl acrylate using a PDMA macro-RAFT agent. The developed amphiphilic blo
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Zhao, Jing, Zhuwen Chen, Mengying Yu, et al. "The small molecule optical probes for gases with potential medical applications." SCIENTIA SINICA Chimica 45, no. 11 (2015): 1145–58. http://dx.doi.org/10.1360/n032015-00112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Li, Yupeng, Xiaoyun Lu, Xiaomei Ren, and Ke Ding. "Small Molecule Discoidin Domain Receptor Kinase Inhibitors and Potential Medical Applications." Journal of Medicinal Chemistry 58, no. 8 (2015): 3287–301. http://dx.doi.org/10.1021/jm5012319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

HAZER, Baki. "Amphiphilic Poly (3-Hydroxy Alkanoate)s: Potential Candidates for Medical Applications." Energy and Power Engineering 02, no. 01 (2010): 31–38. http://dx.doi.org/10.4236/epe.2010.21006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Ge, Chenjiao, Mingli Li, Mingxuan Li, and Ali Ahmadi Peyghan. "Au-decorated BN nanotube as a breathalyzer for potential medical applications." Journal of Molecular Liquids 312 (August 2020): 113454. http://dx.doi.org/10.1016/j.molliq.2020.113454.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Alves, Eliana, Maria A. F. Faustino, Maria G. P. M. S. Neves, Ângela Cunha, Helena Nadais, and Adelaide Almeida. "Potential applications of porphyrins in photodynamic inactivation beyond the medical scope." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 22 (March 2015): 34–57. http://dx.doi.org/10.1016/j.jphotochemrev.2014.09.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!