Добірка наукової літератури з теми "Medical physics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Medical physics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Medical physics":

1

Wagner, L. K., M. J. Bronskill, G. T. Chen, T. L. Chenevert, E. Gardner, R. Gelse, M. Madsen, E. R. Ritenour, B. Schueler, and J. A. Seibert. "Medical physics." Radiology 190, no. 3 (March 1994): 945–51. http://dx.doi.org/10.1148/radiology.190.3.8115661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Leuenberger, Ronald, Ryan Kocak, David W. Jordan, and Tim George. "Medical Physics." Health Physics 115, no. 4 (October 2018): 512–22. http://dx.doi.org/10.1097/hp.0000000000000894.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Huda, W., J. M. Boone, S. Connors, A. Fenster, J. C. Gore, J. C. Honeyman, M. Madsen, E. L. Nickoloff, R. M. Nishikawa, and L. K. Wagner. "Medical physics." Radiology 198, no. 3 (March 1996): 941–49. http://dx.doi.org/10.1148/radiology.198.3.8628902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lamsal, Min Raj. "Medical Science and Physics." Himalayan Physics 5 (July 5, 2015): 91–97. http://dx.doi.org/10.3126/hj.v5i0.12880.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The study of physics seems to be theoretical or abstract. The connections between physics and real life can seem remote. But in reality physics is not a purely abstract subject. Like other branches of science, physics has a pure theoretical side and an applied side. The principles of physics are applied in a vast range of contexts from the building of bridges to the design of integrated circuits. Much of the technological revolution has its foundations in the applied physics. One of the major applications of physics which covers vast area of scientific knowledge is medicine. The knowledge of physics is essential for ultrasound, hologram, X-rays, laser therapy, radiotherapy, endoscopy, MRI, CT scanning, ECG, EEG, PET and so on in the field of medical science. The theoretical principles have to be learned and understood first if the applications are to be understood The Himalayan Physics Vol. 5, No. 5, Nov. 2014 Page: 91-97
5

Mahesh, Mahadevappa. "Medical Physics 3.0." Journal of the American College of Radiology 18, no. 12 (December 2021): 1596–97. http://dx.doi.org/10.1016/j.jacr.2021.10.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Samei, Ehsan. "Medical Physics 3.0." Health Physics 116, no. 2 (February 2019): 247–55. http://dx.doi.org/10.1097/hp.0000000000001022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Feder, Toni. "Medical Physics Fellowships." Physics Today 55, no. 3 (March 2002): 33. http://dx.doi.org/10.1063/1.4796677.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gibson, A. P., E. Cook, and A. Newing. "Teaching Medical Physics." Physics Education 41, no. 4 (June 20, 2006): 301–6. http://dx.doi.org/10.1088/0031-9120/41/4/001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vu, Hoang T. "Medical Health Physics." Health Physics 92, no. 2 (February 2007): 187. http://dx.doi.org/10.1097/01.hp.0000252347.45110.71.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Poudel, Parashu Ram. "Physics in Medical Science." Himalayan Physics 2 (July 31, 2011): 43–46. http://dx.doi.org/10.3126/hj.v2i2.5210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The domain of Physics covers vast area of scientific knowledge. Basic research on assemblies of atomic or nuclear radiation and gyromagnetic moments led to powerful technique for studying molecular structure as well as solid lattices. It led to invention and development of modern medical diagnostic and theraputic tools which have revolutionized the medical practices. Advancement in medical researches as seen today will be well-nigh impossible without the use of the finding of Physics. The funding made on Physics is in fact another way of funding made on human health.Keywords: Radioactivity; Crystallography; Radioimmune assay; MRI; CAT; PETThe Himalayan PhysicsVol.2, No.2, May, 2011Page: 43-46Uploaded Date: 1 August, 2011

Дисертації з теми "Medical physics":

1

Lazarine, Alexis D. "Medical physics calculations with MCNP: a primer." Texas A&M University, 2006. http://hdl.handle.net/1969.1/4297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The rising desire for individualized medical physics models has sparked a transition from the use of tangible phantoms toward the employment of computational software for medical physics applications. One such computational software for radiation transport modeling is the Monte Carlo N-Particle (MCNP) radiation transport code. However, no comprehensive document has been written to introduce the use of the MCNP code for simulating medical physics applications. This document, a primer, addresses this need by leading the medical physics user through the basic use of MCNP and its particular application to the medical physics field. This primer is designed to teach by example, with the aim that each example will illustrate a practical use of particular features in MCNP that are useful in medical physics applications. These examples along with the instructions for reproducing them are the results of this thesis research. These results include simulations of: dose from Tc-99m diagnostic therapy, calculation of Medical Internal Radiation Dose (MIRD) specific absorbed fraction (SAF) values using the ORNL MIRD phantom, x-ray phototherapy effectiveness, prostate brachytherapy lifetime dose calculations, and a radiograph of the head using the Zubal head phantom. Also included are a set of appendices that include useful reference data, code syntax, and a database of input decks including the examples in the primer. The sections in conjunction with the appendices should provide a foundation of knowledge regarding the MCNP commands and their uses as well as enable users to utilize the MCNP manual effectively for situations not specifically addressed by the primer.
2

Rolland, Jannick Paule Yvette. "Factors influencing lesion detection in medical imaging." Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/185096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An important goal in medical imaging is the assessment of image quality in a way that relates to clinical efficacy. An objective approach is to evaluate the performance of diagnosis for specific tasks, using ROC analysis. We shall concentrate here on classification tasks. While many factors may confine the performance achieved for these tasks, we shall investigate two main limiting factors: image blurring and object variability. Psychophysical studies followed by ROC analysis are widely used for system assessment, but it is of great practical interest to be able to predict the outcome of psychophysical studies, especially for system design and optimization. The ideal observer is often chosen as a standard of comparison for the human observer since, at least for simple tasks, its performance can be readily calculated using statistical decision theory. We already know, however, of cases reported in the literature where the human observer performs far below ideal, and one of the purposes of this dissertation is to determine whether there are other practical circumstances where human and ideal performances diverge. Moreover, when the complexity of the task increases, the ideal observer becomes quickly intractable, and other observers such as the Hotelling and the nonprewhitening (npw) ideal observers may be considered instead. A practical problem where our intuition tells us that the ideal observer may fail to predict human performance occurs with imaging devices that are characterized by a PSF having long spatial tails. The investigation of the impact of long-tailed PSFs on detection is of great interest since they are commonly encountered in medical imaging and even more generally in image science. We shall show that the ideal observer is a poor predictor of human performance for a simple two-hypothesis detection task and that linear filtering of the images does indeed help the human observer. Another practical problem of considerable interest is the effect of background nonuniformity on detectability since, it is one more step towards assessing image quality for real clinical images. When the background is known exactly (BKE), the Hotelling and the npw ideal observers predict that detection is optimal for an infinite aperture; a spatially varying background (SVB) results in an optimum aperture size. Moreover, given a fixed aperture size and a BKE, an increase in exposure time is highly beneficial for both observers. For SVB, on the other hand, the Hotelling observer benefits from an increases in exposure time, while the npw ideal observer quickly saturates. In terms of human performance, results show a good agreement with the Hotelling-observer predictions, while the performance disagrees strongly with the npw ideal observer.
3

Gharama, Huda. "A Planar Lightguide Power Combiner for Medical Applications." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1508173552760426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Redd, Randall Alex. "Radiation dosimetry and medical physics calculations using MCNP 5." Texas A&M University, 2004. http://hdl.handle.net/1969.1/467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Six radiation dosimetry and medical physics problems were analyzed using a beta version of MCNP 5 as part of an international intercomparison of radiation dosimetry computer codes, sponsored by the European Commission committee on the quality assurance of computational tools in radiation dosimetry. Results have been submitted to the committee, which will perform the inter-code comparison and publish the results independently. A comparison of the beta version of MCNP 5 with MCNP 4C2 is made, as well as a comparison of the new Doppler broadening feature. Comparisons are also made between the *F8 and F6 tallies, neutron tally results with and without the use of the S(a,b) cross sections, and analytically derived peak positions with pulse height distributions of a Ge detector obtained using the beta version of MCNP 5. The following problems from the study were examined: Problem 1 was modeled to determine the near-field angular anisotropy and dose distribution from a high dose rate 192Ir brachytherapy source in a surrounding spherical water phantom. Problem 2 was modeled to find radial and axial dose in an artery wall from an intravascular brachytherapy 32P source. Problem 4 was modeled to investigate the response of a four-element TLD-albedo personal dosimeter from neutrons and/or photons. Significant differences in neutron response with S(a,b) cross sections compared to results without these cross sections were found. Problem 5 was modeled to obtain air kerma backscatter profiles for 150 and 200 kVp X-rays upon a water phantom. Air kerma backscatter profiles were determined along the apothem and diagonal of the front face of the phantom. A comparison of experimental results is also made. Problem 6 was modeled to determine indirect spectral and energy fluences upon two neutron detectors within a calibration bunker. The largest indirect contribution was found to come from low energy neutrons with an average angle of 47o where 0o is a plane parallel to the floor. Problem 7 was modeled to obtain pulse height distributions for a germanium detector. Comparison of analytically derived peaks with peak positions in the spectra are made. An examination of the Doppler broadening feature is also included.
5

Wang, Yi Zhen 1965. "Photoneutrons and induced activity from medical linear accelerators." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81453.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study involves the measurement of the neutron equivalent dose ( NED) and the induced activity produced from medical linear accelerators. For the NED, various parameters such as the profile, field effects and energy responses were studied. The NED in a Solid Water(TM) phantom was measured and a new quantity, the neutron equivalent dose tissue-air ratio (NTAR), was defined and determined. Neutron production for electron beams was also measured. For the induced activity, comparisons were carried out between different linacs, fields and dose rates. The half life and activation saturation were also studied. A mathematical model of induced activity was developed to explain the experimental results. Room surveys of NED and induced activity were performed in and around a high energy linear accelerator room. Unwanted doses from photoneutrons and induced activity to the high energy linear accelerator radiotherapy staff and patient were estimated.
6

Förster, Fabian Alexander. "Novel CMOS Devices for High Energy Physics and Medical Applications." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670504.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Els experiments d’alta energia de física (HEP) a col·lisions de partícules demostren la nostra comprensió de l’estructura i la dinàmica de la matèria. Per avançar en el camp, els sistemes d’acceleradors s’actualitzen periòdicament a energies i lluminositats més elevades. Els experiments han de mantenir-se al punt millorant la seva instrumentació de detecció. Els detectors de píxels de silici tenen un paper crític en els experiments HEP. Gràcies a la seva excel·lent resolució de posició, compacitat, velocitat i duresa de la radiació, permeten la reconstrucció de la pista de partícules en entorns d’alta radiació com els col·lisionadors de hadrons. Al seu torn, el seu rendiment permet una excel·lent resolució de paràmetres d’impacte de pista, un ingredient clau per a la identificació de vèrtexs secundaris i l’etiquetatge b del jet. Actualment, el detector estàndard de píxels consisteix en un sensor segmentat, en el qual cada píxel està connectat a un canal de lectura d’un circuit integrat d’aplicacions específiques per a aplicacions (ASIC) mitjançant una tècnica complicada i cara, anomenada enllaç de cop. Un mètode alternatiu per als dispositius de píxels híbrids són els detectors monolítics, que combinen la detecció de partícules i les tasques de processament de senyal al mateix substrat. Aquests tipus de detectors desenvolupats en el procés CMOS han estat utilitzats en el passat, però només recentment es basen en dispositius de radiació durs. sobre aquesta tecnologia s’han proposat. En aquesta tesi s’investiga un primer prototip a mida completa d’un detector monolític desenvolupat en la tecnologia CMOS d’Alta Voltatge (HV-CMOS) com a dispositiu de píxel per a les capes exteriors del futur rastrejador ATLAS actualitzat, que es troba al Gran Col·lisionador d’Hadrons ( LHC) al CERN. A més de l’aplicació d’aquesta tecnologia en experiments HEP, la detecció de fotons de raigs X suaus també s’investiga en una matriu en un dels detectors de píxels HV-CMOS. Per últim, s’explora l’ús de dispositius CMOS per a la detecció de fotons de gairebé infraroig (NIR) amb fotodiode d’Avalanche (APD).
Los experimentos de física de alta energía (HEP) en colisionadores de partículas sondean nuestra comprensión de la estructura y la dinámica de la materia. Para avanzar en el campo, los sistemas de aceleración se actualizan periódicamente a mayores energías y luminosidades. Los experimentos tienen que mantenerse al día, mejorando la instrumentación de su detector. Los detectores de píxeles de silicio desempeñan un papel fundamental en los experimentos con HEP. Gracias a su excelente resolución de posición, compacidad, velocidad y dureza de radiación, permiten la reconstrucción de pistas de partículas en entornos de alta radiación como colisionadores de hadrones. A su vez, su rendimiento permite una excelente resolución de parámetros de impacto en la pista, un ingrediente clave para la identificación secundaria de vértices y el etiquetado de chorro b. Actualmente, el detector de píxeles estándar consta de un sensor segmentado, en el que cada píxel está conectado a un canal de lectura de un circuito integrado de aplicación específica (ASIC) a través de una técnica complicada y costosa llamada unión por golpes. Un enfoque alternativo a los dispositivos de píxeles híbridos son los detectores monolíticos, que combinan la detección de partículas y las tareas de procesamiento de señales en el mismo sustrato. Estos tipos de detectores desarrollados en el proceso CMOS se han utilizado en el pasado, pero solo relativamente recientemente basados ​​en dispositivos de radiación dura sobre esta tecnología se han propuesto. En esta tesis, se investiga un primer prototipo de tamaño completo de un detector monolítico desarrollado en la tecnología CMOS de alto voltaje (HV-CMOS) como un dispositivo de píxeles para las capas externas del rastreador ATLAS de actualización futura, que se encuentra en el Gran Colisionador de Hadrones ( LHC) en el CERN. Además de la aplicación de esta tecnología en experimentos HEP, la detección de fotones de rayos X blandos también se investiga en una matriz en uno de los detectores de píxeles HV-CMOS. Por último, se explora el uso de dispositivos CMOS para la detección de fotones de infrarrojo cercano (NIR) con Avalanche Photodiode (APD).
High Energy Physics (HEP) experiments at particle colliders probe our understanding of the structure and dynamics of matter. In order to advance the field, the accelerator systems are periodically upgraded to higher energies and luminosities. Experiments have to keep up, by improving their detector instrumentation. Silicon pixel detectors play a critical role in HEP experiments. Thanks to their excellent position resolution, compactness, speed and radiation hardness, they enable particle track reconstruction in high radiation environments like hadron colliders. In turn, their performance allows excellent track impact parameter resolution, a key ingredient for secondary vertex identification and jet b-tagging. Currently the standard pixel detector consists of a segmented sensor, in which each pixel is connected to a readout channel of an Application-Specific Integrated Circuit (ASIC) through a complicated, and expensive, technique called bump bonding. An alternative approach to hybrid pixel devices are monolithic detectors, which combine the particle sensing and the signal processing tasks in the same substrate.These kinds of detectors developed in the CMOS process have been used in the past, but only relatively recently radiation hard devices based on this technology have been proposed. In this thesis a first full size prototype of a monolithic detector developed in the High Voltage CMOS (HV-CMOS) technology is investigated as a pixel device for the outer layers of the future upgrade ATLAS tracker, which is located in the Large Hadron Collider (LHC) at CERN. Besides the application of this technology in HEP experiments, the detection of soft X-ray photons is also investigated in one matrix in one of the HV-CMOS pixel detectors. Lastly, the usage of CMOS devices for the detection of Near-Infrared (NIR) photons with Avalanche Photodiode (APD) is explored.
7

Andrews, Brian. "Computational Solutions for Medical Issues in Ophthalmology." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case15275972120621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Scannavini, Maria Giulia. "Medical Compton cameras based on semiconductor detectors." Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251785.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ratcliffe, Naomi. "Potential of a compact low energy proton accelertor for medical applications." Thesis, University of Huddersfield, 2014. http://eprints.hud.ac.uk/id/eprint/23711/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis explores the potential of a compact low energy (<10MeV) proton accelerator for medical applications such as the production of neutrons for cancer neutron therapy and the production of SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) radioisotopes. During the course of this study the simulation code GEANT4 was used to study yields of these neutrons and isotopes from the typically low threshold high cross-­‐section (p,n) reactions. Due to the limits of the current models within GEANT4 some development of a new data-­‐driven model for low energy proton interactions was undertaken and has been tested here. This model was found to be suitably reliable for continued study into the low energy production of positron emitting, PET, isotopes of copper and gallium as replacements for the main SPECT isotope technetium-­‐99m. While 99mTc is currently the most popular radioisotope being used in over 90% of the worlds nuclear medicine diagnostic procedures supply is under threat by the impending shut down of the current reactor based sources. Simulations of both thin and thick targets were carried out to study the potential of low energy production of these isotopes. The final activity of the radioisotopes after irradiation of these targets produced by the simulations has been shown here to be sufficient for multiple doses. The useable activity is dependent on the efficiency of the extraction process and the time between irradiation and administration.
10

Lazarus, Graeme Lawrence. "Validation of Monte Carlo-based calculations for small irregularly shaped intra-operative radiotherapy electron beams." Doctoral thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/16680.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Medical physics":

1

Hollins, Martin. Medical physics. Walton-on-Thames: Nelson, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Peet, Debbie, and Emma Chung. Practical Medical Physics. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pope, Jean A. Medical physics: Imaging. Oxford: Heinemann, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hendee, William R. Medical imaging physics. 3rd ed. St. Louis: Mosby Year Book, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

E, Williams Lawrence, ed. Nuclear medical physics. Boca Raton, FL: CRC Press, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Society, Biological Engineering. Medical engineering & physics. Oxford, UK: Butterworth-Heinemann, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Delchar, T. A. Physics in medical diagnosis. London: Chapman & Hall, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Keevil, Stephen, Renato Padovani, Slavik Tabakov, Tony Greener, and Cornelius Lewis. Introduction to Medical Physics. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429155758.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sun, Jidi. MATLAB for Medical Physics. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7565-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tabakov, Slavik. Encyclopaedia of medical physics. Boca Raton: CRC Press, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Medical physics":

1

Patel, Nisha R., Michael L. Wong, Anthony E. Dragun, Stephan Mose, Bernadine R. Donahue, Jay S. Cooper, Filip T. Troicki, et al. "Medical Physics." In Encyclopedia of Radiation Oncology, 490–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-85516-3_762.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hendee, William R., and Michael Yester. "Medical Physics." In AIP Physics Desk Reference, 467–91. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-3805-6_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wynn-Jones, Andrea, Caroline Reddy, John Gittins, Philip Baker, Anna Mason, and Greg Jolliffe. "Radiotherapy Physics." In Practical Medical Physics, 155–202. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425-6-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chung, Emma, and Justyna Janus. "Ultrasound Physics." In Practical Medical Physics, 51–69. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425-3-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Amestoy, William. "Radiation Physics." In Review of Medical Dosimetry, 1–108. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13626-4_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tao, Chen, Zhang Ting, Wang Guang Chang, Zhou Ji Fang, Zhang Jian Wei, and Liu Yu Hong. "Medical Physics Curriculum Reform." In Lecture Notes in Electrical Engineering, 715–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24820-7_114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rajan, K. N. Govinda. "Basic Medical Radiation Physics." In Radiation Safety in Radiation Oncology, 25–94. Boca Raton, FL: CRC Press, Taylor & Francis Group, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315119656-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sprawls, Perry. "Medical Physics, an Introduction." In Introduction to Medical Physics, 1–13. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429155758-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chowdhury, Alimul. "Magnetic Resonance Imaging Physics." In Practical Medical Physics, 25–49. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781315142425-2-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schieck, Hans Paetz gen. "Medical Applications." In Nuclear Physics with Polarized Particles, 161–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24226-7_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Medical physics":

1

Kralova, Eva. "ATTITUDES OF MEDICAL STUDENTS TOWARDS PHYSICS AND MEDICAL PHYSICS." In 12th annual International Conference of Education, Research and Innovation. IATED, 2019. http://dx.doi.org/10.21125/iceri.2019.0799.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Trujillo Zamudio, Flavio E., María-Ester Brandan, Isabel Gamboa-deBuen, Gerardo Herrera-Corral, and Luis A. Medina-Velázquez. "Preface: Medical Physics." In MEDICAL PHYSICS: Twelfth Mexican Symposium on Medical Physics. AIP, 2012. http://dx.doi.org/10.1063/1.4764583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mower, Herbert W., and Hakeem M. Oluseyi. "Medical Physics Professional Societies." In 007. AIP, 2008. http://dx.doi.org/10.1063/1.2905132.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Altuzarra, Antonio Cerdeira. "Semiconductor detectors for medical applications." In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zárate-Morales, A., M. Rodrı́guez-Villafuerte, F. Martı́nez-Rodrı́guez, and N. Arévila-Ceballos. "Determination of left ventricular mass through SPECT imaging." In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56376.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wright, Steven M. "RF coil arrays in MRI." In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ruiz, C., A. E. Buenfil, I. Gamboa-deBuen, M. Rodrı́guez-Villafuerte, P. Avilés, C. Olvera, and M. E. Brandan. "A novel method to use radiochromic dye films to determine dose under proton irradiation." In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Aranda, S., and H. Aranda-Espinoza. "Virus—Cell—Fusion." In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56373.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Huerta, R., A. Hernández, and J. J. Alvarado-Gil. "On the motility of living invertebrates The case of." In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mendoza-Alvarez, Julio G. "Biochips: A fruitful product of solid state physics and molecular biology." In MEDICAL PHYSICS. ASCE, 1998. http://dx.doi.org/10.1063/1.56375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Medical physics":

1

Herman, Michael, A. Harms, Kenneth Hogstrom, Eric Klein, Lawrence Reinstein, Lawrence Rothenberg, Brian Wichman, et al. Alternative Clinical Medical Physics Training Pathways for Medical Physicists. AAPM, August 2008. http://dx.doi.org/10.37206/119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Paliwal, Bhudatt R., James C. H. Chu, Paul M. DeLuca, Arnold Feldman, Ellen E. Grein, Donald E. Herbert, Edward F. Jackson, et al. Academic Program Recommendations for Graduate Degrees in Medical Physics. AAPM, 2002. http://dx.doi.org/10.37206/79.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Halvorsen, Per H., Julie F. Dawson, Martin W. Fraser, Geoffrey S. Ibbott, and Bruce R. Thomadsen. The Solo Practice of Medical Physics in Radiation Oncology. AAPM, 2003. http://dx.doi.org/10.37206/80.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Prisciandaro, Joann, Charles Willis, Jay Burmeister, Geoffrey Clarke, Rupak Das, Jacqueline Esthappan, Bruce Gerbi, et al. Essentials and Guidelines for Clinical Medical Physics Residency Training Programs. AAPM, October 2013. http://dx.doi.org/10.37206/149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jr., Paul M. DeLuca, F. H. Attix, Daniel A. Bassano, J. Larry Beach, L. Stephen Graham, David Gur, Gerda B. Krefft, et al. Academic Program for Master of Science Degree in Medical Physics. AAPM, 1993. http://dx.doi.org/10.37206/43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Deluca, Paul, Ellen Grein, Donald Herbert, Edward Jackson, Ervin Podgorsak, E. Russell Ritenour, Jennifer Smilowitz, George Starkschall, and Frank Verhaegen. Academic Program Recommendations for Graduate Degrees in Medical Physics (2009). Chair Bhudatt Paliwal. American Association of Physicists in Medicine, April 2009. http://dx.doi.org/10.37206/197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sternick, Edward S., Richard G. Evans, E. Roblert Heitzman, James G. Kereiakes, Edwin C. McCullough, Richard L. Morin, J. Thomas Payne, et al. Essentials and Guidelines for Hospital Based Medical Physics Residency Training Programs. AAPM, 1990. http://dx.doi.org/10.37206/35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lane, Richard G., Donna M. Stevens, John P. Gibbons, Lynn J. Verhey, Kenneth R. Hogstrom, Edward L. Chaney, Melissa C. Martin, et al. Essentials and Guidelines for Hospital-Based Medical Physics Residency Training Programs. AAPM, 2006. http://dx.doi.org/10.37206/91.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hetzel, Fred W., Suresh M. Brahmavar, Qun Chen, Steven L. Jacques, Michael S. Patterson, Brian C. Wilson, and Timothy C. Zhu. Photodynamic Therapy Dosimetry: A Task Group Report of the General Medical Physics Committee of the Science Council. AAPM, 2005. http://dx.doi.org/10.37206/89.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gress, Dustin, David Jordan, Priscilla Butler, Jessica Clements, Kenneth Coleman, David Lloyd Goff, Melissa Martin, et al. An Updated Description of the Professional Practice of Diagnostic and Imaging Medical Physics: The Report of AAPM Diagnostic Work and Workforce Study Subcommittee. AAPM, May 2017. http://dx.doi.org/10.37206/163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії