Дисертації з теми "Medical resonance imaging"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Medical resonance imaging".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Rajanayagam, Vasanthakumar. "Non-medical applications of imaging techniques : multi-dimensional NMR imaging." Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/27513.
Повний текст джерелаScience, Faculty of
Chemistry, Department of
Graduate
O'Neil, Shannon M. "Magnetic resonance imaging centers /." Online version of thesis, 1994. http://hdl.handle.net/1850/11916.
Повний текст джерелаCampbell, Jennifer 1975. "Magnetic resonance diffusion tensor imaging." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=30809.
Повний текст джерелаThis thesis describes the design and implementation of diffusion tensor imaging on a clinical MRI system. An acquisition sequence was designed and post-processing software developed to create diffusion trace images, scalar anisotropy maps, and anisotropy vector maps. A number of practical imaging problems were addressed and solved, including optimization of sequence parameters, accounting for flow effects, and dealing with eddy currents, patient motion, and ghosting. Experimental validation of the sequence was performed by calculating the trace of the diffusion tensor measured in various isotropic liquids. The results agreed very well with the quantitative values found in the literature, and the scalar anisotropy index was also found to be correct in isotropic phantoms. Anisotropy maps, showing the preferred direction of diffusion, were generated in human brain in vivo. These showed the expected white matter tracts in the corpus callosum.
Munasinghe, B. D. Jeeva P. "Nuclear magnetic resonance imaging of mice." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337912.
Повний текст джерелаWilliams, Catherine F. M. "Diffusion-weighted magnetic resonance imaging techniques." Thesis, University of Aberdeen, 1998. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602003.
Повний текст джерелаHirsch, Thomas John 1958. "APPLICATION OF ACOUSTIC NUCLEAR MAGNETIC RESONANCE TO MEDICAL IMAGING." Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/276937.
Повний текст джерелаTang, Mei-yee. "Medical imaging : applications of functional magnetic resonance imaging and the development of a magnetic resonance compatible ultrasound system /." View the Table of Contents & Abstract, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36749710.
Повний текст джерелаMcRobbie, Donald William. "Quantitative assessment of magnetic resonance imaging systems." Thesis, Imperial College London, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312949.
Повний текст джерелаMeakin, James A. "Velocity selective preparations in Magnetic Resonance Imaging." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:a4247c64-d113-42e6-beee-5795e78a4cdc.
Повний текст джерелаGrey, Michael L. "Medical imaging field of magnetic resonance imaging : identification of specialties within the field /." Available to subscribers only, 2009. http://proquest.umi.com/pqdweb?did=1968777471&sid=3&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Повний текст джерелаGrey, Michael L. "Medical Imaging Field of Magnetic Resonance Imaging: Identification of Specialities Within the Field." OpenSIUC, 2009. https://opensiuc.lib.siu.edu/dissertations/70.
Повний текст джерелаRich, Adam V. "Bayesian Models for Practical Flow Imaging Using Phase Contrast Magnetic Resonance Imaging." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1490987092511083.
Повний текст джерелаGreer, Mason. "Portable and Autonomous Magnetic Resonance." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1586359944642158.
Повний текст джерелаFrancis, S. T. "Magnetic Resonance Imaging of perfusion : techniques and applications." Thesis, University of Nottingham, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243771.
Повний текст джерелаUtting, Jane Francis. "Magnetic resonance imaging of tissue microcirculation in experimental studies." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272348.
Повний текст джерелаTaylor, Nicola Jane. "Applications of projections to quantitative magnetic resonance imaging." Thesis, Institute of Cancer Research (University Of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300557.
Повний текст джерелаMiddleton, Ian. "Segmentation of magnetic resonance images using artificial neural networks." Thesis, University of Southampton, 1998. https://eprints.soton.ac.uk/256267/.
Повний текст джерелаNorén, Bengt. "Non-Invasive Assessment of Liver Fibrosis with 31P-Magnetic Resonance Spectroscopy and Dynamic Contrast Enhanced Magnetic Resonance Imaging." Doctoral thesis, Linköpings universitet, Medicinsk radiologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-90154.
Повний текст джерелаThomas, David H. "Acoustic investigation of microbubble response to medical imaging ultrasound pulses." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4516.
Повний текст джерелаTang, Mei-yee, and 鄧美宜. "Medical imaging: applications of functional magnetic resonance imaging and the development of a magnetic resonancecompatible ultrasound system." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37897688.
Повний текст джерелаAldokhail, Abdullah M. "Automated Signal to Noise Ratio Analysis for Magnetic Resonance Imaging Using a Noise Distribution Model." University of Toledo Health Science Campus / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=mco1469557255.
Повний текст джерелаBaras, Panagiotis. "A study of field cycling on a low field magnetic resonance imager." Thesis, University of Aberdeen, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262917.
Повний текст джерелаDussauge, Isabelle. "Technomedical Visions : Magnetic Resonance Imaging in 1980s Sweden." Doctoral thesis, Stockholm : Filosofi och teknikhistoria, Philosophy and the History of Technology, Kungliga Teknsika högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4671.
Повний текст джерелаBoucneau, Tanguy. "Magnetic resonance imaging of respiratory mechanics." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS165.
Повний текст джерелаThe respiratory function in human cannot be separated from the deformation motion of the lung: the gas exchanges between the organism and its environment are made possible, during the inspiration, by the swelling of the alveoli in the pulmonary parenchyma, and during the expiration, by a passive return to the static equilibrium state of the lung. The viscoelastic properties of lung tissue play a key role in the function of this organ. These elements of respiratory mechanics may prove to be very sensitive biomarkers of the pathophysiological state of the lung since they depend on the structure of tissues and biological conditions that are considerably altered by most pulmonary diseases such as cancer, emphysema, asthma or interstitial fibrosis. Magnetic resonance imaging enables non-invasive measurement of three-dimensional anatomical images that allow, thanks to the accessible spatial and temporal resolutions as well as the rich contrasts observed in the soft tissues, the measurement of the deformation state of an organ at a given moment. Moreover, by applying motion encoding gradients, magnetic resonance elastography gives the possibility to follow, onto to the magnetic resonance phase signal, the mechanical strain response of organs to an external mechanical stress in order to reveal their viscoelastic properties, which makes possible a quantitative and spatially-resolved exploration of deep organs that are nor reachable by the medical doctor's hand. In the lung, conventional MRI is, however, relatively difficult: the low tissue density, the large differences in magnetic susceptibility at the interface between gas and tissue and, correlatively, the very short lifetimes of the magnetic resonance signal, lead to signal-to-noise ratios that are difficult to exploit. In addition, the durations of three-dimensional MRI scans are generally longer than the period of the respiratory motion, which requires consideration of this motion within the imaging process. This PhD project, carried out in collaboration with GE Healthcare, aims at circumventing the limitations mentioned above by using UTE and ZTE sub-millisecond echo-time acquisition techniques, combined with original and innovative approaches of intrinsic physiological motions monitoring as well as four-dimensional image reconstruction techniques taking into account the respiratory motion, the redundancy of information between the different data acquisition channels and the sparsity of the reconstructed images through some mathematical representations. The ultimate goal of this project is the development and the validation of local and quantitative techniques to explore the respiratory function, as well as dynamic magnetic resonance lung elastography, in order to extract local ventilation parameters and viscoelastic shear moduli in the lung during the breathing cycle
Soliman, Ahmed Talaat Elsayed. "Hidden Markov Models Based Segmentation of Brain Magnetic Resonance Imaging." Scholarly Repository, 2007. http://scholarlyrepository.miami.edu/oa_theses/80.
Повний текст джерелаBjörnfot, Cecilia. "Multiband functional magnetic resonance imaging (fMRI) for functional connectivity assessments." Thesis, Umeå universitet, Institutionen för fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-149906.
Повний текст джерелаClark, Christopher Alan. "Magnetic resonance techniques for measurement of water diffusion in the human central nervous system." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286293.
Повний текст джерелаPrice, Ryan Glen. "Toward magnetic resonance only treatment planning| Distortion mitigation and image-guided radiation therapy validation." Thesis, Wayne State University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10153444.
Повний текст джерелаWhile MR-only treatment planning has shown promise, there are still several well-known challenges that are currently limiting widespread clinical implementation. Firstly, MR images are affected by both patient-induced and system-level geometric distortions that can significantly degrade treatment planning accuracy. In addition, the availability of comprehensive distortion analysis software is currently limited. Also while many groups have been working toward a synthetic CT solution, further study is needed on the implementation of synCTs as the reference datasets for linac-based image-guided radiation therapy (IGRT) to help determine their robustness in an MR-only workflow.
To determine candidate materials for phantom and software development, 1.0 T MR and CT images were acquired of twelve urethane foam samples of various densities and strengths. Samples were precision machined to accommodate 6 mm diameter paintballs used as landmarks. Final material candidates were selected by balancing strength, machinability, weight, and cost. Bore sizes and minimum aperture width resulting from couch position were tabulated from the literature. Bore geometry and couch position were simulated using MATLAB to generate machine-specific models to optimize the phantom build. Previously developed software for distortion characterization was modified for several magnet geometries, compared against previously published 1.0 T results, and integrated into the 3DSlicer application platform.
To evaluate the performance of synthetic CTs in an image guided workflow, magnetic resonance simulation and CT simulation images were acquired of an anthropomorphic skull phantom and 12 patient brain cancer cases. SynCTs were generated using fluid attenuation inversion recovery, ultrashort echo time, and Dixon data sets through a voxel-based weighted summation of 5 tissue classifications. The DRRs were generated from the phantom synCT, and geometric fidelity was assessed relative to CT-generated DRRs through bounding box and landmark analysis. An offline retrospective analysis was conducted to register cone beam CTs to synCTs and CTs using automated rigid registration in the treatment planning system. Planar MV and KV images were rigidly registered to synCT and CT DRRs using an in-house script. Planar and volumetric registration reproducibility was assessed and margin differences were characterized by the van Herk formalism.
Over the sampled FOV, non-negligible residual gradient distortions existed as close as 9.5 cm from isocenter, with a maximum distortion of 7.4mm as close as 23 cm from isocenter. Over 6 months, average gradient distortions were -0.07±1.10 mm and 0.10±1.10 mm in the x and y-directions for the transverse plane, 0.03±0.64 and -0.09±0.70 mm in the sagittal plane, and 0.4±1.16 and 0.04±0.40 mm in the coronal plane. After implementing 3D correction maps, distortions were reduced to < 1 pixel width (1mm) for all voxels up to 25 cm from magnet isocenter.
Bounding box and landmark analysis of phantom synCT DRRs were within 1 mm of CT DRRs. Absolute planar registration shift differences ranged from 0.0 to 0.7 mm for phantom DRRs on all treatment platforms and from 0.0 to 0.4 mm for volumetric registrations. For patient planar registrations, the mean shift differences were 0.4±0.5 mm, 0.0±0.5 mm, and 0.1±0.3 mm for the superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) axes, respectively. The mean shift differences in volumetric registrations were 0.6±0.4 mm (range, 0.2 to 1.6 mm), 0.2±0.4 mm, and 0.2±0.3 mm for the S-I, L-R, and A-P axes, respectively. The CT-SIM and synCT derived margins were <0.3mm different.
This work has characterized the inaccuracies related to GNL distortion for a previously uncharacterized MR-SIM system at large FOVs, and established that while distortions are still non-negligible after current vendor corrections are applied, simple post-processing methods can be used to further reduce these distortions to less than 1mm for the entire field of view. Additionally, it was important to not only establish effective corrections, but to establish the previously uncharacterized temporal stability of these corrections. This work also developed methods to improve the accessibility of these distortion characterizations and corrections. We first tested the application of a more readily available 2D phantom as a surrogate for 3D distortion characterization by stepping the table with an integrated batch script file. Later we developed and constructed a large modular distortion phantom using easily obtainable materials, and showed and constructed a large modular distortion phantom using easily obtainable materials, and used it to characterize the distortion on several widely available MR systems. To accompany this phantom, open source software was also developed for easy characterization of system-dependent distortions. Finally, while the dosimetric equivalence of synCT with CT has been well established, it was necessary to characterize any differences that may exist between synCT and CT in an IGRT setting. This work has helped to establish the geometric equivalence of these two modalities, with some caveats that have been discussed at length. (Abstract shortened by ProQuest.)
Mehndiratta, Amit. "Quantitative measurements of cerebral hemodynamics using magnetic resonance imaging." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:b9dfb1a4-f297-47b9-a95f-b60750065008.
Повний текст джерелаHamid, Darja. "Cardiac function and structure in patients with diabetes examined with cardiovascular magnetic resonance imaging." Thesis, Örebro universitet, Institutionen för hälsovetenskaper, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-83438.
Повний текст джерелаChen, Way Cherng. "Magnetic susceptibility-based white matter magnetic resonance imaging techniques." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:7272b7e6-1fb9-4a1b-a71f-2ce5dfe93fde.
Повний текст джерелаHogan, Patrick Gerard. "Design and synthesis of paramagnetic contrast agents : applications to magnetic resonance imaging." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304448.
Повний текст джерелаBarron, Nicholas Henry. "An Analysis of an Advanced Software Business Model for Magnetic Resonance Imaging Data Post Processing." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459422647.
Повний текст джерелаAdjeiwaah, Mary. "Quality assurance for magnetic resonance imaging (MRI) in radiotherapy." Licentiate thesis, Umeå universitet, Institutionen för strålningsvetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-142603.
Повний текст джерелаSabisch, Theo. "Towards automatic registration of magnetic resonance images of the brain using neural networks." Thesis, University of Hertfordshire, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245503.
Повний текст джерелаSnell, Rodney James 1965. "A digital-electronic video-rate reconstruction system for magnetic resonance imaging." Thesis, The University of Arizona, 1992. http://hdl.handle.net/10150/278071.
Повний текст джерелаZheng, Jimmy. "Characterization of Iron Oxide Nanoparticle-Based Contrast Agent in Photoacoustic Imaging and Magnetic Resonance Imaging." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297596.
Повний текст джерелаHammond, Emily Marie. "Longitudinal medical imaging approaches for characterization of porcine cancer models." Diss., University of Iowa, 2017. https://ir.uiowa.edu/etd/5491.
Повний текст джерелаOatridge, Angela. "The use of subvoxel registration and subtraction of serial magnetic resonance imaging for detecting small changes to the brain." Thesis, Leeds Beckett University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288037.
Повний текст джерелаLevesque, Ives. "Quantitative magnetic resonance imaging of magnetization transfer and T2 relaxation in human white matter pathology." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66751.
Повний текст джерелаL'objectif principal de cette thèse est la réconciliation de deux techniques quantitatives d'imagerie par résonance magnétique, en apparence difféerentes, utilisées pour la caractérisation de la susbtance blanche du cerveau humain en santé ou affectée par la maladie. Les techniques d'imagerie quantitative par transfert de magnétisation (QTM) et d'analyse de la relaxation T2 par de multiples composantes (QT2) proposent toutes deux des mesures in vivo de la quantitée de myéline, mais à l'aide de modèles fondamentalement différents. D'un côté, l'imagerie QTM sonde la composante macro-moléculaire des tissues à l'aide d'un modèle à deux réservoirs pour le transfert de magnétisation. De l'autre, l'imagerie QT2 sépare les signaux acqueux provenant de compartiments micro-anatomiques distincts. Plus spécifiquement, cet ouvrage cherche à mieux comprendre l'interdépendance des mesures de ces deux techniques dans le contexte pathologique de la sclérose en plaques (SEP), pour ensuite les appliquer à l' étude de lésions aigues de SEP. En premier lieu, des simulations ont été effectuées pour évaluer la sensibilité de chaque technique aux caractéristiques d'un modèle plus complet de la substance blanche, qui découle de résultats in vitro publiés et incorpore quatre réservoirs de magnétisation. Ensuite, la reproductibilité de chacune des techniques a été évaluée; de plus, quelques variations élémentaires des méthodes d'acquisition et d'analyse des données examinées. En dernier lieu, les deux techniques ont été utilisées in vivo afin de mesurer les changements dynamiques des lésions aigues de SEP, présentant un hyper-signal rehaussée par un agent de contraste. Les résultats des simulations démontrent d'un point de vue théorique la sensibilité et les limites de chacune de ces technique aux changements dans la substance blanche. Ces résultats apportent égalem
Song, Xin. "Path reconstruction in diffusion tensor magnetic resonance imaging." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00694403.
Повний текст джерелаBadachhape, Andrew A. "Characterization of Structural Dynamics of the Human Head Using Magnetic Resonance Elastography." Thesis, Washington University in St. Louis, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10687152.
Повний текст джерелаIn traumatic brain injury (TBI), the skull-brain interface, composed of three meningeal layers: the dura mater, arachnoid mater, and pia mater, along with cerebrospinal fluid (CSF) between the layers, plays a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is a noninvasive imaging modality capable of providing in vivo estimates of tissue motion and material properties. The objective of this work is to augment human and phantom MRE studies to better characterize the mechanical contributions of the skull-brain interface to improve the parameterization and validation of computational models of TBI. Three specific aims were to: 1) relate 3D skull kinematics estimated from tri-axial accelerometers to brain tissue motion (rigid-body motion and deformation) estimated from MRE, 2) modify existing MRE data collection methods to capture simultaneous scalp and brain displacements, and 3) create cylindrical and cranial phantoms capable of simulating a CSF interface and dural membranes. Achievement of these aims has provided new quantitative understanding of the transmission of skull motion to the brain.
Kihlberg, Johan. "Magnetic Resonance Imaging of Myocardial Deformation and Scarring in Coronary Artery Disease." Doctoral thesis, Linköpings universitet, Avdelningen för radiologiska vetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143028.
Повний текст джерелаBerman, Avery. "Development of a funtional magnetic resonance imaging simulator: deterministic simulation of the transverse magnetization in microvasulature." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110687.
Повний текст джерелаLes simulations numériques sont d'une valeur inestimable pour le développement et la compréhension des techniques d'imagerie par résonance magnétique (IRM). Cette thèse, motivée par le but de comprendre le comportement du signal de l'IRM fonctionnelle (IRMf) dans le tissu cérébral, utilise une technique de simulation déterministe dans laquelle la magnétisation transversale et l'inhomogénéité B0 au sein d'un voxel sont spatialement discrétisées et l'auto-diffusion stochastique des molécules d'eau est modélisée par un flou gaussien isotrope de la magnétisation transversale. Bien que cette technique de simulation existe depuis les débuts de l'IRMf, son utilisation a augmenté récemment par des chercheurs tentant d'interpréter quantitativement le signal mesuré. Malgré sa popularité récente, une validation quantitative approfondie de cette technique est absente de la littérature.Ayant pour force motrice le développement de techniques d'IRMf quantitatives, cette thèse valide des simulations tridimensionnelles déterministes du signal IRM en mettant l'emphase sur leur application dans la microvascularisation cérébrale. Les vaisseaux sanguins individuels sont modélisés par des cylindres infinis avec une distribution de rayons réaliste. Les effets de plusieurs paramètres de simulation sont étudiées en utilisant une séquence écho de spin.Des validations ignorant l'effet de diffusion montrent que la discrétisation des voxel en sous-voxels peut être très grossière - jusqu'à des tailles de sous-voxels de 10 μm - sans détériorer les résultats de la simulation. Des simulations tenant compte de la diffusion sont validées à l'aide d'une solution analytique à l'équation de Bloch-Torrey. En présence de diffusion, la taille des sous-voxels est un facteur clé et doit être petite (~ 2 μm, dépendamment des autres paramètres de simulation) pour que les simulations soient précises. Enfin, comme preuve de concept, il est démontré que des simulations précises peuvent être obtenues avec des sous-voxels plus grands pourvu que le coefficient de diffusion soit multiplié par un facteur de correction pour produire la série temporelle désirée.
Gutierrez-Nibeyro, Santiago Daniel. "Outcomes of Medical Treatment for Pathologies of the Equine Foot Diagnosed with Magnetic Resonance Imaging." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/34461.
Повний текст джерелаMaster of Science
Ersoy, Mehmet. "A LEFT VENTRICULAR MOTION PHANTOM FOR CARDIAC MAGNETIC RESONANCE IMAGING." Cleveland State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=csu1306471866.
Повний текст джерелаFonseca, Carissa Grace. "Assessment of left ventricular diastolic function with three dimensional cardiac magnetic resonance imaging." Thesis, University of Auckland, 2004. http://hdl.handle.net/2292/5715.
Повний текст джерелаCurtis, James. "Whole Brain Isotropic Arterial Spin Labeling Magnetic Resonance Imaging in a transgenic mouse model of Alzheimer's Disease." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=32516.
Повний текст джерелаCette thèse présente la conception et la validation d'un nouveau séquence d'acquisition d'imagerie par resonance magnetique (IRM) pour la marquage des spins des arteres (ASL) pour créer des cartes parametrique en trois-dimensions de debit de sanguin cérébral (CBF) dans les souris à 7 Tesla. avec un résolution isotrope de 281 μm. Les volumes d'IRM anatomique et ASL ont été enregistrées avec un procedure non linéaire pour effectuer des comparaisons de CBF par-voxel entre les scans seriale et entre les animaux. La technique a été appliquée à l'étude d'un modèle de souris transgénique de la maladie d'Alzheimer (MA), qui démontre beaucoup de traits caractéristiques de dysfonctionnement cérébral qui sont présents dans la maladie d'Alzheimer. La technique résolu régions de différence significative entre les populations transgéniques et de type sauvage par les methodes d'analyse par-voxel et par-regions-d'intérêt. Ces résultats sont les premiers à démontrer l'utilité de l'IRM de perfusion au niveau de la population sur l'analyse de physiopathologie vasculaire cérébral dans les souris transgéniques MA.
Qin, Shanlin. "Fractional order models: Numerical simulation and application to medical imaging." Thesis, Queensland University of Technology, 2017. https://eprints.qut.edu.au/115108/1/115108_9066888_shanlin_qin_thesis.pdf.
Повний текст джерелаNilsson, Erik. "Super-Resolution for Fast Multi-Contrast Magnetic Resonance Imaging." Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160808.
Повний текст джерела