Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Medical resonance imaging.

Статті в журналах з теми "Medical resonance imaging"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Medical resonance imaging".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Brown, James E., and Choon S. Lee. "Radiofrequency resonance heating near medical devices in magnetic resonance imaging." Microwave and Optical Technology Letters 55, no. 2 (December 21, 2012): 299–302. http://dx.doi.org/10.1002/mop.27332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

de Beer, R. "Modelling of medical magnetic-resonance-imaging signals." IEE Proceedings - Vision, Image, and Signal Processing 141, no. 1 (1994): 71. http://dx.doi.org/10.1049/ip-vis:19949914.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Erin, Onder, Mustafa Boyvat, Mehmet Efe Tiryaki, Martin Phelan, and Metin Sitti. "Magnetic Resonance Imaging System–Driven Medical Robotics." Advanced Intelligent Systems 2, no. 2 (January 20, 2020): 1900110. http://dx.doi.org/10.1002/aisy.201900110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Blümich, Bernhard. "Nuclear magnetic resonance imaging beyond medical tomography." Applied Magnetic Resonance 22, no. 2 (June 2002): 137–38. http://dx.doi.org/10.1007/bf03166097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Margulis, A. R., H. Hricak, and L. Crooks. "Medical applications of nuclear magnetic resonance imaging." Quarterly Reviews of Biophysics 19, no. 3-4 (May 1987): 221–37. http://dx.doi.org/10.1017/s0033583500004133.

Повний текст джерела
Анотація:
In the very short time since magnetic resonance imaging (MRI) was born it has gained surprisingly rapid and enthusiastic acceptance and has speedily proliferated, particularly in the United States and Western Europe. Magnetic resonance imaging (MRI) has successfully challenged computed tomography (CT) in all areas of the body where respiratory motion does not degrade the image (Steinberg, 1986). Newer techniques using a multiplicity of approaches are starting to close the gap between CT and MRI, even in the upper abdomen where the effects of respiratory motion are most pronounced. Although MR is already widely clinically applied and is an accepted everyday diagnostic modality in most large medical centres in the United States, it is not a mature modality. It is rapidly evolving, with whole new areas opening to investigation which will vastly broaden its applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wright, Graham A., Philippa R. P. Krahn, and Benedict M. Glover. "Magnetic Resonance Imaging." JACC: Clinical Electrophysiology 5, no. 1 (January 2019): 101–3. http://dx.doi.org/10.1016/j.jacep.2018.11.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Aoyagi, Kota. "MEDICAL IMAGING APPARATUS, ULTRASONIC IMAGING APPARATUS, MAGNETIC RESONANCE IMAGING APPARATUS, MEDICAL IMAGE PROCESSING APPARATUS, AND MEDICAL IMAGE PROCESSING METHOD." Journal of the Acoustical Society of America 133, no. 5 (2013): 3220. http://dx.doi.org/10.1121/1.4803793.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Katscher, Ulrich, and Peter Börnert. "Parallel magnetic resonance imaging." Neurotherapeutics 4, no. 3 (July 2007): 499–510. http://dx.doi.org/10.1016/j.nurt.2007.04.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Denis de Senneville, B., B. Quesson, and C. T. W. Moonen. "Magnetic resonance temperature imaging." International Journal of Hyperthermia 21, no. 6 (September 2005): 515–31. http://dx.doi.org/10.1080/02656730500133785.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chauveau, F., T. H. Cho, Y. Berthezène, N. Nighoghossian, and M. Wiart. "Imaging inflammation in stroke using magnetic resonance imaging." Int. Journal of Clinical Pharmacology and Therapeutics 48, no. 11 (November 1, 2010): 718–28. http://dx.doi.org/10.5414/cpp48718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Hanigan, William C., Jack Gibson, Nicholas J. Kleopoulos, Thomas Cusack, George Zwicky, and Robert M. Wright. "Medical imaging of fetal ventriculomegaly." Journal of Neurosurgery 64, no. 4 (April 1986): 575–80. http://dx.doi.org/10.3171/jns.1986.64.4.0575.

Повний текст джерела
Анотація:
✓ Five cases of fetal ventriculomegaly are described in detail. Following ultrasonography, either computerized tomography or magnetic resonance imaging was used in an attempt to clarify the structural pathology of the ventriculomegaly. In two patients, a precise diagnosis was achieved while a probable diagnosis was established in a third patient. The diverse etiology of fetal ventriculomegaly in these five cases demonstrates that ancillary medical imaging may be necessary to achieve diagnostic precision prior to therapeutic intervention.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

SIMON, JACK H., and JERZY SZUMOWSKI. "Proton (Fat/Water) Chemical Shift Imaging in Medical Magnetic Resonance Imaging." Investigative Radiology 27, no. 10 (October 1992): 865–74. http://dx.doi.org/10.1097/00004424-199210000-00018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Klein, Hans-Martin. "Low-Field Magnetic Resonance Imaging." RöFo - Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren 192, no. 06 (May 12, 2020): 537–48. http://dx.doi.org/10.1055/a-1123-7944.

Повний текст джерела
Анотація:
Background For more than two decades, the focus of technological progress in MRI was restricted to systems with a field strength of 1.5 T and higher. Low- and mid-field MRI systems, which offer some specific advantages, are vanishing from the market. This article is intended to initiate a re-evaluation of the factor ‘field strength’ in MR imaging. Method Literature review was carried out using MEDLINE database (via Pubmed) over a time span from 1980 to 2019 using free-text and Medical Subject headings (MeSH). Article selection was based on relevance and evidence. Results and Conclusion Low-field MR systems are meanwhile rare in clinical imaging. MRI systems with a lower field strength provide a reduced signal-noise ratio (SNR) and spectral differentiation. However, these systems offer a variety of advantages: Shorter T1 relaxation, better T1 contrast, fewer metal artifacts, reduced susceptibility and chemical shift artifacts, fewer dielectric effects, better tissue penetration, less RF-power deposition, fewer ‘missile effects’, reduced effect on biomedical implants such as shunt valves, less energy and helium consumption. If we free ourselves from the constraints of high-field strength, we are able to offer multiple medical, economic and ecologic advantages to our patients. The development of high-quality low-field MRI is possible and necessary. Key Points: Citation Format
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Bammer, Roland, Stefan Skare, Rexford Newbould, Chunlei Liu, Vincent Thijs, Stefan Ropele, David B. Clayton, Gunnar Krueger, Michael E. Moseley, and Gary H. Glover. "Foundations of advanced magnetic resonance imaging." NeuroRX 2, no. 2 (April 2005): 167–96. http://dx.doi.org/10.1602/neurorx.2.2.167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Russell, Lori. "Intraoperative Magnetic Resonance Imaging Safety Considerations." AORN Journal 77, no. 3 (March 2003): 590–92. http://dx.doi.org/10.1016/s0001-2092(06)61252-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Fowler, Kathryn J., Jeffry Maxwell, Nael E. Saad, Motoyo Yano, Constantine Raptis, Christine Menias, and Vamsi Narra. "Magnetic resonance imaging of iatrogeny: understanding imaging artifacts related to medical devices." Abdominal Imaging 39, no. 2 (January 7, 2014): 411–23. http://dx.doi.org/10.1007/s00261-013-0065-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Vanderby, Sonia, Juan Nicolás Peña-Sánchez, Neil Kalra, and Paul Babyn. "Finding the Truth in Medical Imaging: Painting the Picture of Appropriateness for Magnetic Resonance Imaging in Canada." Canadian Association of Radiologists Journal 66, no. 4 (November 2015): 323–31. http://dx.doi.org/10.1016/j.carj.2015.05.002.

Повний текст джерела
Анотація:
Background Questions about the appropriateness of medical imaging exams, particularly related to magnetic resonance exams, have arisen in recent years. However, the prevalence of inappropriate imaging in Canada is unclear as inappropriate exam proportion estimates are often based on studies from other countries. Hence, we sought to compare and summarize Canadian studies related to magnetic resonance imaging appropriateness. Methods We completed a systematic literature search identifying studies related to magnetic resonance appropriateness in Canada published between 2003 and 2013. Two researchers independently searched and evaluated the literature available. Articles that studied or discussed magnetic resonance appropriateness in Canada were selected based on titles, abstracts, and, where necessary, full article review. Articles relating solely to other modalities or countries were excluded, as were imaging appropriateness guidelines and reviews. Results Fourteen articles were included: 8 quantitative studies and 6 editorials/commentaries. The quantitative studies reported inappropriate proportions of magnetic resonance exams ranging from 2%-28.5%. Our review also revealed substantial variations among study methods and analyses. Common topics identified among editorials/commentaries included reasons for obtaining imaging in general and for selecting a specific modality, consequences of inappropriate imaging, factors contributing to demand, and suggested means of mitigating inappropriate medical imaging use. Conclusions The available studies do not support the common claim that 30% of medical imaging exams in Canada are inappropriate. The actual proportion of inappropriate magnetic resonance exams has not yet been established conclusively in Canada. Further research, particularly on a widespread national scale, is needed to guide healthcare policies.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Valluru, Keerthi S., Bhargava K. Chinni, and Navalgund A. Rao. "Photoacoustic Imaging: Opening New Frontiers in Medical Imaging." Journal of Clinical Imaging Science 1 (May 6, 2011): 24. http://dx.doi.org/10.4103/2156-7514.80522.

Повний текст джерела
Анотація:
In today's world, technology is advancing at an exponential rate and medical imaging is no exception. During the last hundred years, the field of medical imaging has seen a tremendous technological growth with the invention of imaging modalities including but not limited to X-ray, ultrasound, computed tomography, magnetic resonance imaging, positron emission tomography, and single-photon emission computed tomography. These tools have led to better diagnosis and improved patient care. However, each of these modalities has its advantages as well as disadvantages and none of them can reveal all the information a physician would like to have. In the last decade, a new diagnostic technology called photoacoustic imaging has evolved which is moving rapidly from the research phase to the clinical trial phase. This article outlines the basics of photoacoustic imaging and describes our hands-on experience in developing a comprehensive photoacoustic imaging system to detect tissue abnormalities.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Friday, Paul J., and Wayne S. Kubal. "Magnetic Resonance Imaging: Improved Patient Tolerance Utilizing Medical Hypnosis." American Journal of Clinical Hypnosis 33, no. 2 (October 1990): 80–84. http://dx.doi.org/10.1080/00029157.1990.10402908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

MENG Xian-fu, 孟宪福, 刘艳颜 LIU Yan-yan, and 步文博 BU Wen-bo. "Rare-earth Upconversion Nanomaterials for Medical Magnetic Resonance Imaging." Chinese Journal of Luminescence 39, no. 1 (2018): 69–91. http://dx.doi.org/10.3788/fgxb20183901.0069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Fishman, Royce S. "5186924 Magnetic resonance human medical and veterinary imaging method." Magnetic Resonance Imaging 11, no. 8 (January 1993): XLIII. http://dx.doi.org/10.1016/0730-725x(93)90322-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Yu, Eugene, Brian O’Sullivan, John Kim, Lillian Siu, and Eric Bartlett. "Magnetic resonance imaging of nasopharyngeal carcinoma." Expert Review of Anticancer Therapy 10, no. 3 (March 2010): 365–75. http://dx.doi.org/10.1586/era.10.9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

SINCLAIR, HILARY D. "THE ATTRACTION OF MAGNETIC RESONANCE IMAGING." Rheumatology 27, no. 1 (1988): 68–71. http://dx.doi.org/10.1093/rheumatology/27.1.68.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Lederman, Robert J. "Cardiovascular Interventional Magnetic Resonance Imaging." Circulation 112, no. 19 (November 8, 2005): 3009–17. http://dx.doi.org/10.1161/circulationaha.104.531368.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Avalueva, E. B., A. K. Karpenko, M. Y. Serkova, I. V. Sazhina, I. G. Bakulin, and S. I. Sitkin. "Magnetic resonance imaging and other medical imaging techniques in the diagnosis of gallstones." Experimental and Clinical Gastroenterology, no. 12 (January 14, 2022): 28–34. http://dx.doi.org/10.31146/1682-8658-ecg-196-12-28-34.

Повний текст джерела
Анотація:
Biliary diseases are one of the most common pathologies of the digestive system in the world. However, assessing the prevalence of biliary diseases is difficult, due to the asymptomatic course of the disease in some cases. Biliary diseases are a diagnostic problem, especially if a complicated course of the disease is suspected, and when the etiology cannot be established after laboratory examination and ultrasound imaging. Magnetic resonance imaging (MRI) is a highly specific non-invasive method for examining the gallbladder and imaging the bile ducts to identify gallstones, biliary strictures, tumors, and detect the level of obstruction. Magnetic resonance cholangiography/cholangiopancreatography (MRCP) is currently considered to be the most accurate non-invasive procedure for detecting bile duct stones, with high sensitivity, which allows to obtain a detailed image of the biliary tract. MRI is an established imaging technique for the biliary tract, has better contrast resolution, and is an excellent diagnostic tool. The choice of method to start the diagnosis with depends on many factors and requires careful interaction between the gastroenterologist and the radiologist to optimize the imaging technique.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hemingway, Maureen, and Marguerite Kilfoyle. "Safety Planning for Intraoperative Magnetic Resonance Imaging." AORN Journal 98, no. 5 (November 2013): 508–24. http://dx.doi.org/10.1016/j.aorn.2013.09.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Seo, Hee, Se Hyung Lee, Jong Hwi Jeong, Chan Hyeong Kim, Ju Hahn Lee, Chun Sik Lee, and Jae Sung Lee. "Feasibility study on hybrid medical imaging device based on Compton imaging and magnetic resonance imaging." Applied Radiation and Isotopes 67, no. 7-8 (July 2009): 1412–15. http://dx.doi.org/10.1016/j.apradiso.2009.02.082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Purdy, Isabell, and Dorothy Wiley. "Magnetic Resonance Imaging and the Neonate." Neonatal Network 22, no. 1 (January 2003): 9–18. http://dx.doi.org/10.1891/0730-0832.22.1.9.

Повний текст джерела
Анотація:
Over the past decade, advances in neuroimaging have given birth to a new field of diagnostic pediatric neurologic assessment that includes magnetic resonance imaging (MRI). This invaluable tool helps medical professionals to resolve many clinical and research questions related to neonatal neurodevelopment that other imaging technology cannot explain. Nurses and others who accompany infants to MRI would benefit from a better understanding of early neurodevelopment and of the neuroimaging procedure. Knowing the advantages and disadvantages of MRI techniques can help nurses be better patient advocates, parent liaisons, and caregivers to infants having MRI scans.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Abbasov, I. B. "Artificial intelligence in medical imaging." Journal of Physics: Conference Series 2094, no. 3 (November 1, 2021): 032008. http://dx.doi.org/10.1088/1742-6596/2094/3/032008.

Повний текст джерела
Анотація:
Abstract This review focuses on current research in medical imaging using artificial intelligence. The application of these technologies in relation to the study of the cardiovascular system is considered. The topic of modern works using X-ray studies, nuclear cardiology, echocardiography, magnetic resonance and computed tomography is analyzed. The increasing influence of modern mobile technologies is emphasized, allowing to remove, transfer medical data to a remote expert for diagnosis. The stages of medical imaging are presented, works are described on the implementation of an artificial neural network in medical imaging, the stages of deep learning in the field of radiology. Works on the technical aspects of the use of threedimensional printing in heart diseases are presented, modern three-dimensional models with physiological qualities can have a prospect of application. Also noted are works devoted to the use of virtual reality in the study of the anatomy of the heart. These technologies will allow doctors to timely select the means and treatment method for effective interaction with the patient.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

McFadden, Joseph T. "Magnetic resonance imaging and aneurysm clips." Journal of Neurosurgery 117, no. 1 (July 2012): 1–11. http://dx.doi.org/10.3171/2012.1.jns111786.

Повний текст джерела
Анотація:
The problem of implanted metals causing tissue damage by movement in patients exposed to MRI fields has produced a confusing welter of erroneous, pseudoscientific publications about magnetics, metals, medical equipment, and tissue compatibility. Quite simply, among the devices made for implantation, only those fabricated of stainless steel have the ferromagnetic properties capable of causing such accidents. The author, who introduced the basic design of the modern aneurysm clip in the late 1960s and then a cobalt nickel alloy as an improvement over steel, while chairing the neurosurgical committee assigned to the task of establishing neurosurgical standards at American Society for Testing and Materials, exposes this flawed information and offers clear guidelines for avoiding trouble.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Shepelytskyi, Yurii, Camryn J. Newman, Vira Grynko, Lauren E. Seveney, Brenton DeBoef, Francis T. Hane, and Mitchell S. Albert. "Cyclodextrin-Based Contrast Agents for Medical Imaging." Molecules 25, no. 23 (November 27, 2020): 5576. http://dx.doi.org/10.3390/molecules25235576.

Повний текст джерела
Анотація:
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides consisting of multiple glucose subunits. CDs are widely used in host–guest chemistry and biochemistry due to their structural advantages, biocompatibility, and ability to form inclusion complexes. Recently, CDs have become of high interest in the field of medical imaging as a potential scaffold for the development of a large variety of the contrast agents suitable for magnetic resonance imaging, ultrasound imaging, photoacoustic imaging, positron emission tomography, single photon emission computed tomography, and computed tomography. The aim of this review is to summarize and highlight the achievements in the field of cyclodextrin-based contrast agents for medical imaging.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Bammer, Roland, Stefan Skare, Rexford Newbould, Chunlei Liu, Vincent Thijs, Stefan Ropele, David B. Clayton, Gunnar Krueger, Michael E. Moseley, and Gary H. Glover. "Foundations of advanced magnetic resonance imaging." Neurotherapeutics 2, no. 2 (April 2005): 167–96. http://dx.doi.org/10.1007/bf03206665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Viviani, Roberto, Marie-Louise Lehmann, and Julia C. Stingl. "Use of magnetic resonance imaging in pharmacogenomics." British Journal of Clinical Pharmacology 77, no. 4 (March 20, 2014): 684–94. http://dx.doi.org/10.1111/bcp.12197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Thomas, E. Louise, Nadeem Saeed, Joseph V. Hajnal, Audrey Brynes, Anthony P. Goldstone, Gary Frost, and Jimmy D. Bell. "Magnetic resonance imaging of total body fat." Journal of Applied Physiology 85, no. 5 (November 1, 1998): 1778–85. http://dx.doi.org/10.1152/jappl.1998.85.5.1778.

Повний текст джерела
Анотація:
In this study we assessed different magnetic resonance imaging (MRI) scanning regimes and examined some of the assumptions commonly made for measuring body fat content by MRI. Whole body MRI was used to quantify and study different body fat depots in 67 women. The whole body MRI results showed that there was a significant variation in the percentage of total internal, as well as visceral, adipose tissue across a range of adiposity, which could not be predicted from total body fat and/or subcutaneous fat. Furthermore, variation in the amount of total, subcutaneous, and visceral adipose tissue was not related to standard anthropometric measurements such as skinfold measurements, body mass index, and waist-to-hip ratio. Finally, we show for the first time subjects with a percent body fat close to the theoretical maximum (68%). This study demonstrates that the large variation in individual internal fat content cannot be predicted from either indirect methods or direct imaging techniques, such as MRI or computed tomography, on the basis of a single-slice sampling strategy.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

VIDALLER, A., J. CARRATALÁ, ROSA MORENO, T. ARBIZU, and F. RUBIO. "Magnetic Resonance Imaging in Neuro-Behcet's Disease." Rheumatology 27, no. 1 (1988): 79–80. http://dx.doi.org/10.1093/rheumatology/27.1.79-a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

CLARKE, D. P., J. N. HIGGINS, A. R. VALENTINE, and C. BLACK. "Magnetic Resonance Imaging of Osteitis Condensans Ilii." Rheumatology 33, no. 6 (1994): 599–600. http://dx.doi.org/10.1093/rheumatology/33.6.599.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Baddeley, Hiram. "The assessment of magnetic resonance imaging in Australian medical practice." Medical Journal of Australia 149, no. 2 (July 1988): 59–60. http://dx.doi.org/10.5694/j.1326-5377.1988.tb120504.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Clayton-Smith, J. "Medical genetics: advances in brief: Magnetic resonance imaging in phenylketonuria." Journal of Medical Genetics 33, no. 2 (February 1, 1996): 171. http://dx.doi.org/10.1136/jmg.33.2.171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

lezzoni, Lisa I., Oren Grad, and Mark A. Moskowitz. "Magnetic Resonance Imaging:Overview of the Technology and Medical Applications." International Journal of Technology Assessment in Health Care 1, no. 3 (July 1985): 481–98. http://dx.doi.org/10.1017/s0266462300001434.

Повний текст джерела
Анотація:
The physical phenomenon of nuclear magnetic resonance (NMR) was first characterized almost forty years ago in 1946 by the simultaneous but independent experimental successes of American scientists Felix Bloch and Edward Purcell. Their discoveries prompted development of conventional NMR spectroscopy. a technique used to describe the molecular composition and behavior of chemical compounds. Twenty-five years later, in 1971, Damadian used NMR to demonstrate differences in the behavior of water in malignant and benign tissues, and he suggested that NMR possessed “many of the desirable features of an external probe for the detection of internal cancer” (7). In the same year, Lauterbur produced the first two-dimensional NMR image, a cross-sectional portrait of two tubes of water (25). The potential utility of this technique to medical imaging was obvious, and soon afterwards multiple researchers began development of clinical NMR imaging systems. The first human whole-body NMR scan was accomplished by 1977. Improvements in the scanning process and image quality continue with, as yet, no limits in sight. In this clinical context, NMR techniques have experienced a name change to the current prevailing appellation, magnetic resonance imaging (MRI).
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Wagner, Judith L. "Cost Containment and Computerized Medical Imaging." International Journal of Technology Assessment in Health Care 3, no. 3 (July 1987): 343–53. http://dx.doi.org/10.1017/s0266462300001161.

Повний текст джерела
Анотація:
AbstractToday, computers are used in several important and fast-growing medical imaging modalities, such as digital subtraction angiography, positron emission tomography, magnetic resonance imaging, nuclear medicine, and diagnostic ultrasound. The ultimate test for the computer in medical imaging will be its ability to replace traditional film-based radiography as the mechanism for displaying, communicating, and storing imaging information. This transition will require radiologists and other imagers to accept information in digital form. The speed of that acceptance depends on the economic incentives of the health care system. These are changing as a result of cost containment, which is moving away from fee-for-service toward bundled payment. The increase in capitated health plans will encourage the development of digital radiography systems that realistically trade-off the perceived quality needs of radiologists with the costs of producing and operating such systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Borlaug, Barry A., and Michael D. Nelson. "Real-Time Cardiac Magnetic Resonance Imaging." Circulation 143, no. 15 (April 13, 2021): 1499–501. http://dx.doi.org/10.1161/circulationaha.120.053026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Nazarian, Saman, Roy Beinart, and Henry R. Halperin. "Magnetic Resonance Imaging and Implantable Devices." Circulation: Arrhythmia and Electrophysiology 6, no. 2 (April 2013): 419–28. http://dx.doi.org/10.1161/circep.113.000116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

&NA;. "MEDICARE NOW COVERS MAGNETIC RESONANCE IMAGING." Journal of Wound, Ostomy and Continence Nursing 13, no. 4 (July 1986): 26A. http://dx.doi.org/10.1097/00152192-198607000-00010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Zimmermann-Paul, Gesine G., Harald H. Quick, Peter Vogt, Gustav K. von Schulthess, Dorothee Kling, and Jörg F. Debatin. "High-Resolution Intravascular Magnetic Resonance Imaging." Circulation 99, no. 8 (March 2, 1999): 1054–61. http://dx.doi.org/10.1161/01.cir.99.8.1054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Dickfeld, T. "Magnetic Resonance Imaging and radiofrequency ablations." Herzschrittmachertherapie & Elektrophysiologie 18, no. 3 (September 2007): 147–56. http://dx.doi.org/10.1007/s00399-007-0572-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Palesh, Mohammad, Sten Fredrikson, Hamidreza Jamshidi, Pia Maria Jonsson, and Goran Tomson. "Diffusion of magnetic resonance imaging in Iran." International Journal of Technology Assessment in Health Care 23, no. 2 (April 2007): 278–85. http://dx.doi.org/10.1017/s0266462307070377.

Повний текст джерела
Анотація:
Objectives:The aim of this article is to describe the diffusion of magnetic resonance imaging (MRI) in Iran, including regional variations during the period of 1990 to 2005 and international comparisons.Methods:Data on the diffusion of MRI were obtained from the Medical Equipment Office of the Ministry of Health (MOH) and, using self-administered questionnaires, from forty-one universities specializing in medical sciences. Data were gathered from the year of first purchase up to mid-2005. Information for international comparisons was obtained from the Organization for Economic Cooperation and Development health data of 2006.Results:Iran purchased its first MRI unit in 1990. Since then, the number of MRI units has increased remarkably. The diffusion curve of MRI in Iran follows an S-shaped curve with a very slow speed in the period of 1991–95. Accelerated adoption occurred later coinciding with a significant influence from the private sector, especially from 1999. Iran had ninety-three MRI units in 2005, and the number of MRI units per million in the population was 1.36.Conclusions:The number of MRI units in provinces is not in direct proportion to the number of their inhabitants. Rational adoption and equitable diffusion of MRI may require the MOH and regulatory bodies to improve their ability in health technology assessment and integrate it into the policy making regarding adoption, diffusion, and utilization of health technologies.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Kanan, Angela, and Beth Gasson. "Brain Tumor Resections Guided by Magnetic Resonance Imaging." AORN Journal 77, no. 3 (March 2003): 583–89. http://dx.doi.org/10.1016/s0001-2092(06)61251-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Picano, Eugenio, Cristina Mangia, and Antonello D’Andrea. "Climate Change, Carbon Dioxide Emissions, and Medical Imaging Contribution." Journal of Clinical Medicine 12, no. 1 (December 27, 2022): 215. http://dx.doi.org/10.3390/jcm12010215.

Повний текст джерела
Анотація:
Human activities have raised the atmosphere’s carbon dioxide (CO2) content by 50% in less than 200 years and by 10% in the last 15 years. Climate change is a great threat and presents a unique opportunity to protect cardiovascular health in the next decades. CO2 equivalent emission is the most convenient unit for measuring the greenhouse gas footprint corresponding to ecological cost. Medical imaging contributes significantly to the CO2 emissions responsible for climate change, yet current medical guidelines ignore the carbon cost. Among the common cardiac imaging techniques, CO2 emissions are lowest for transthoracic echocardiography (0.5–2 kg per exam), increase 10-fold for cardiac computed tomography angiography, and 100-fold for cardiac magnetic resonance. A conservative estimate of 10 billion medical examinations per year worldwide implies that medical imaging accounts for approximately 1% of the overall carbon footprint. In 2016, CO2 emissions from magnetic resonance imaging and computed tomography, calculated in 120 countries, accounted for 0.77% of global emissions. A significant portion of global greenhouse gas emissions is attributed to health care, which ranges from 4% in the United Kingdom to 10% in the United States. Assessment of carbon cost should be a part of the cost-benefit balance in medical imaging.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Maria-Andreea, Micu, and Emese Orban. "Nuclear magnetic resonance: actualities and perspectives." Medic.ro 4, no. 1 (September 30, 2021): 29–34. http://dx.doi.org/10.26416/med.142.4.2021.5416.

Повний текст джерела
Анотація:
Nuclear magnetic resonance (NMR) is a complex physical process based on the interaction of protons in an electro­mag­ne­tic field, the most well-known and widespread ap­pli­cation in medical-clinical and medical-surgical field being nuclear magnetic resonance imaging. Considering the interdependent relationship between research in scien­ti­fic fields that are closely related to medicine and the me­di­cal world, it is particularly important to be aware of the existence of other applications of the physical process men­tioned before: diffusionometry, relaxometry and MRI spectroscopy. These are well-known and studied research entities, but their applicability in the clinical diagnostic pro­cess is still limited, despite the huge potential to provide a much broader and more detailed perspective on various biological tissues in vitro, but even in vivo. We want to re­view the evolution of nuclear magnetic resonance to­mo­gra­phy or imaging, which has gone from being a Nobel Prize-winning idea to one of the most widespread and useful methods of non-invasive and non-irradiating me­di­cal imaging, but especially an example of the feasi­bi­li­ty of diffusionometry, relaxometry, respectively MRI spec­tro­scopy in a medical setting, through global studies on their po­ten­tial diagnosis in areas such as oncology, neurology, en­do­cri­no­logy and others.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Rao, G. Prakash. "Spinal intramedullary tuberculous lesion: medical management." Journal of Neurosurgery: Spine 93, no. 1 (July 2000): 137–41. http://dx.doi.org/10.3171/spi.2000.93.1.0137.

Повний текст джерела
Анотація:
✓ The author describes the successful medical management of intramedullary tuberculous lesions in four patients who received treatment between 1994 and 1997. The role of magnetic resonance imaging and the treatment protocol for intramedullary tuberculous lesions are also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії