Добірка наукової літератури з теми "Membrane crystallization"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Membrane crystallization".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Membrane crystallization"

1

Li, Xue, Jun Pan, Francesca Macedonio, Claudia Ursino, Mauro Carraro, Marcella Bonchio, Enrico Drioli, Alberto Figoli, Zhaohui Wang, and Zhaoliang Cui. "Fluoropolymer Membranes for Membrane Distillation and Membrane Crystallization." Polymers 14, no. 24 (December 12, 2022): 5439. http://dx.doi.org/10.3390/polym14245439.

Повний текст джерела
Анотація:
Fluoropolymer membranes are applied in membrane operations such as membrane distillation and membrane crystallization where hydrophobic porous membranes act as a physical barrier separating two phases. Due to their hydrophobic nature, only gaseous molecules are allowed to pass through the membrane and are collected on the permeate side, while the aqueous solution cannot penetrate. However, these two processes suffer problems such as membrane wetting, fouling or scaling. Membrane wetting is a common and undesired phenomenon, which is caused by the loss of hydrophobicity of the porous membrane employed. This greatly affects the mass transfer efficiency and separation efficiency. Simultaneously, membrane fouling occurs, along with membrane wetting and scaling, which greatly reduces the lifespan of the membranes. Therefore, strategies to improve the hydrophobicity of membranes have been widely investigated by researchers. In this direction, hydrophobic fluoropolymer membrane materials are employed more and more for membrane distillation and membrane crystallization thanks to their high chemical and thermal resistance. This paper summarizes different preparation methods of these fluoropolymer membrane, such as non-solvent-induced phase separation (NIPS), thermally-induced phase separation (TIPS), vapor-induced phase separation (VIPS), etc. Hydrophobic modification methods, including surface coating, surface grafting and blending, etc., are also introduced. Moreover, the research advances on the application of less toxic solvents for preparing these membranes are herein reviewed. This review aims to provide guidance to researchers for their future membrane development in membrane distillation and membrane crystallization, using fluoropolymer materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tsai, Jheng-Han, Maria Luisa Perrotta, Annarosa Gugliuzza, Francesca Macedonio, Lidietta Giorno, Enrico Drioli, Kuo-Lun Tung, and Elena Tocci. "Membrane-Assisted Crystallization: A Molecular View of NaCl Nucleation and Growth." Applied Sciences 8, no. 11 (November 2, 2018): 2145. http://dx.doi.org/10.3390/app8112145.

Повний текст джерела
Анотація:
Membrane-assisted crystallization, aiming to induce supersaturation in a solution, has been successfully tested in the crystallization of ionic salts, low molecular organic acids, and proteins. Membrane crystallization is an emerging membrane process with the capability to simultaneously extract fresh water and valuable components from various streams. Successful application of crystallization for produced water treatment, seawater desalination, and salt recovery has been demonstrated. Recently, membrane crystallization has been developed to recover valuable minerals from highly concentrated solutions, since the recovery of high-quality minerals is expected to impact agriculture, pharmaceuticals, and household activities. In this work, molecular dynamics simulations were used to study the crystal nucleation and growth of sodium chloride in bulk and with hydrophobic polymer surfaces of polyvinylidene fluoride (PVDF) and polypropylene (PP) at a supersaturated concentration of salt. In parallel, membrane crystallization experiments were performed utilizing the same polymeric membranes in order to compare the experimental results with the computational ones. Moreover, the comparison in terms of nucleation time between the crystallization of sodium chloride (NaCl) using the traditional evaporation process and the membrane-assisted crystallization process was performed. Here, with an integrated experimental–computational approach, we demonstrate that the PVDF and PP membranes assist the crystal growth for NaCl, speeding up crystal nucleation in comparison to the bulk solution and leading to smaller and regularly structured face-centered cubic lattice NaCl crystals. This results in a mutual validation between theoretical data and experimental findings and provides the stimuli to investigate other mono and bivalent crystals with a new class of materials in advanced membrane separations.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ruiz Salmón, I., and P. Luis. "Membrane crystallization via membrane distillation." Chemical Engineering and Processing - Process Intensification 123 (January 2018): 258–71. http://dx.doi.org/10.1016/j.cep.2017.11.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cherezov, Vadim, and Martin Caffrey. "Picolitre-scale crystallization of membrane proteins." Journal of Applied Crystallography 39, no. 4 (July 15, 2006): 604–6. http://dx.doi.org/10.1107/s0021889806022953.

Повний текст джерела
Анотація:
Crystallization of membrane proteins in lipidic mesophases by the standardin mesomethod is extremely efficient in that small amounts of valuable protein are required per trial. Here it is shown that it is possible to reduce the requisite amount of protein (and lipid) by two orders of magnitude into the picolitre volume range. Successful crystallizations have been performed with two integral membrane proteins, bacteriorhodopsin and the vitamin B12receptor, BtuB, using volumes of mesophase corresponding to 210 pl of protein solution (2–4 ng protein) and 320 pl of lipid. The total dead volume of the system is 1 µl. This means that thousands of crystallization trials can be performed with just micrograms of the target. Thus, for a given amount of protein, which is often in short supply, the likelihood of obtaining crystals is significantly enhanced. The reproducibility of crystallogenesis and of volume delivery at this picolitre scale is described. This advance will contribute to broadening the range of membrane proteins that yield to structure determination.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Frappa, Mirko, Francesca Macedonio, and Enrico Drioli. "Membrane-assisted crystallization." Journal of Resource Recovery 1, January - December (January 1, 2023): 1018. http://dx.doi.org/10.61186/jrr.2308.1018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Caffrey, Martin. "Membrane protein crystallization." Journal of Structural Biology 142, no. 1 (April 2003): 108–32. http://dx.doi.org/10.1016/s1047-8477(03)00043-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Frappa, Mirko, Francesca Macedonio, Annarosa Gugliuzza, Wanqin Jin, and Enrico Drioli. "Performance of PVDF Based Membranes with 2D Materials for Membrane Assisted-Crystallization Process." Membranes 11, no. 5 (April 21, 2021): 302. http://dx.doi.org/10.3390/membranes11050302.

Повний текст джерела
Анотація:
Membrane crystallization (MCr) is a promising and innovative process for the recovery of freshwater from seawater and for the production of salt crystals from the brine streams of desalination plants. In the present work, composite polymeric membranes for membrane crystallization were fabricated using graphene and bismuth telluride inks prepared according to the wet-jet milling (WJM) technology. A comparison between PVDF-based membranes containing a few layers of graphene or bismuth telluride and PVDF-pristine membranes was carried out. Among the 2D composite membranes, PVDF with bismuth telluride at higher concentration (7%) exhibited the highest flux (about 3.9 L∙m−2h−1, in MCr experiments performed with 5 M NaCl solution as feed, and at a temperature of 34 ± 0.2 °C at the feed side and 11 ± 0.2 °C at the permeate side). The confinement of graphene and bismuth telluride in PVDF membranes produced more uniform NaCl crystals with respect to the pristine PVDF membrane, especially in the case of few-layer graphene. All the membranes showed rejection equal to or higher than 99.9% (up to 99.99% in the case of the membrane with graphene). The high rejection together with the good trans-membrane flux confirmed the interesting performance of the process, without any wetting phenomena, at least during the performed crystallization tests.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nishino, Yuri, and Atsuo Miyazawa. "Two-dimensional Crystallization of Membrane Proteins." MEMBRANE 32, no. 1 (2007): 25–31. http://dx.doi.org/10.5360/membrane.32.25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bolla, Jani Reddy, Chih-Chia Su, and Edward W. Yu. "Biomolecular membrane protein crystallization." Philosophical Magazine 92, no. 19-21 (July 2012): 2648–61. http://dx.doi.org/10.1080/14786435.2012.670734.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sowadski, Janusz M. "Crystallization of membrane proteins." Current Opinion in Structural Biology 4, no. 5 (October 1994): 761–64. http://dx.doi.org/10.1016/s0959-440x(94)90176-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Membrane crystallization"

1

Kulkarni, Chandrashekhar V. "In-Cubo Crystallization of Membrane Proteins." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508495.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Svang-Ariyaskul, Apichit. "Chiral separation using hybrid of preferential crystallization moderated by a membrane barrier." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33909.

Повний текст джерела
Анотація:
The major innovation of this work is an establishment of a novel chiral separation process using preferential crystallization coupled with a membrane barrier. This hybrid process was proved to be promising from a significant increase in product yield and purity compared to existing chiral separation processes. This work sets up a process design platform to extend the use of this hybrid process to a separation of other mixtures. This novel process especially is a promising alternative for chiral separation of pharmaceutical compounds which include more than fifty percent of approved drugs world-wide. A better performance chiral separation technique contributes to cut the operating cost and to reduce the price of chiral drugs.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Wei. "Membrane protein crystallization in the lipid cubic phase testing hypotheses relating to reconstitution /." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1196274127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kalakech, Carla. "Membrane crystallization by pervaporation for paracetamol production and polymorphism control." Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10300.

Повний текст джерела
Анотація:
La cristallisation est une opération unitaire cruciale en ingénierie des procédés, largement utilisée dans des secteurs tels que la chimie, la pharmacie et l'électronique. Malgré son importance, les méthodes actuelles de cristallisation rencontrent diverses limitations, affectant la qualité du produit final, la constance de la production et le contrôle de la forme polymorphique. Récemment, les procédés membranaires sont apparus comme une approche prometteuse pour améliorer le contrôle de la cristallisation, en particulier la pervaporation, qui utilise une membrane dense ou composite sélective. Appliquée à la cristallisation, cette méthode permet de retirer le solvant d'un mélange solvant/antisolvant, créant ainsi la sursaturation nécessaire pour initier la cristallisation. L'objectif principal de cette thèse est de contrôler le polymorphisme du paracétamol par la cristallisation sélective et la stabilisation de la forme métastable II en utilisant la cristallisation membranaire par pervaporation. La forme II du paracétamol est privilégiée pour sa haute solubilité et compressibilité par rapport à la forme I, plus stable, mais son instabilité pendant la cristallisation, notamment sa transformation rapide vers la forme I, pose des défis importants. Pour cela, la première étude a consisté à produire la forme II en petites quantités grâce à des cycles de chauffage et de refroidissement utilisant la calorimétrie différentielle à balayage (DSC), suivie de sa caractérisation à l’aide de diverses techniques analytiques. Un modèle prédictif de polymorphisme par spectroscopie infrarouge proche (FT-NIR) hors ligne, combiné à une technique chimiométrique telle que l'analyse discriminante par moindres carrés partiels (PLS-DA), a été développé et validé lors d'une cristallisation par refroidissement en batch avec ensemencement. La cristallisation sélective et la stabilisation de la forme II en cristallisation batch ensemencée ont été optimisées en contrôlant le niveau de sursaturation et la température de fonctionnement. Les résultats ont montré que maintenir une température basse (5-10°C) et des niveaux de sursaturation faibles (β = 1,25) prolongeait la stabilité de la forme II jusqu'à 30 min. Cependant, l'augmentation de la masse de semences n'a pas amélioré la stabilité, car le stress mécanique pendant la récupération des semences générait des impuretés de la forme I. L'application de la cristallisation membranaire par pervaporation pour le contrôle du polymorphisme du paracétamol a révélé que la forme I cristallisait lors des opérations non ensemencées à différents débits de perméation et rapports surface membranaire/volume d’alimentation (S/Vc), tandis que la stabilité de la forme II était d'environ 15 min en solution sursaturée, et que sa transition était ralentie à au moins 49 min pendant les opérations de cristallisation membranaire ensemencée avec un niveau de sursaturation βs=1,1, une température de fonctionnement de 5°C et une température de semis de 7,4°C. Cependant, comparée à la cristallisation batch ensemencée conventionnelle, la stabilité de la forme II n'a pas été améliorée, ce qui suggère une préférence pour la nucléation hétérogène de la forme I qui a accéléré la transition de la forme II. La stabilisation de la forme II s'est avérée dépendre principalement des températures de fonctionnement et de semence plutôt que du débit de perméation. D'autre part, la cristallisation membranaire par pervaporation a montré des rendements de cristallisation plus élevés que la cristallisation batch par refroidissement conventionnelle. L'augmentation du rapport S/Vc et du débit de perméation a conduit à une légère amélioration de la concentration en antisolvant d'environ 5 %, ce qui n'a pas affecté le polymorphisme du paracétamol mais a augmenté le rendement de cristallisation à 43 % sans détection de vieillissement notable de la membrane ni de colmatage irréversible après 13 utilisations de la membrane
Crystallization is a crucial unit operation in process engineering, widely utilized across industries such as chemical, pharmaceutical, and electronics. Despite its importance, current crystallization methods encounter various limitations, impacting the final product quality, production consistency, and the control over the polymorphic form. Recently, membrane processes have emerged as a promising approach to enhance crystallization control, particularly pervaporation, which employs a dense selective membrane. Applied to crystallization, this method allows for the removal of the solvent from a solvent/antisolvent mixture, creating the supersaturation needed for crystallization initiation. The primary goal of this PhD work is to control paracetamol polymorphism through the selective crystallization and stabilization of the metastable form II using membrane crystallization by pervaporation. Paracetamol form II is favored for its high solubility and compressibility compared to the most stable form I, but its instability during crystallization, particularly its rapid solvent-mediated phase transformation (SMPT) to form I, poses significant challenges. To do so, the initial investigation involved producing form II in small quantities through heating and cooling cycles using differential scanning calorimetry (DSC), followed by its characterization using numerous analytical techniques. An offline Fourier transform near infrared spectroscopy (FT-NIR) polymorphism prediction model supported by a chemometric technique like Partial Least Squares Discriminant Analysis (PLS-DA) was developed and validated during seeded batch cooling crystallization. The selective crystallization and stabilization of form II in seeded batch cooling crystallization was optimized by controlling the supersaturation level and the operational temperature. Results demonstrated that maintaining a low temperature (5-10°C) and low supersaturation levels (β = 1.25) extended form II stability for up to 30 min. However, increasing the seed mass did not improve stability, as mechanical stress during seed recuperation generated form I impurities. The application of membrane crystallization by pervaporation for paracetamol polymorphism control revealed that form I crystallized during unseeded operations at different permeation rates and membrane surface to feed volume S/Vc ratios whereas form II stability was around 15 min in supersaturated solution and the SMPT was slowed to at least 49 min during seeded membrane crystallization operations at a supersaturation level of βs=1.1, an operational temperature of 5°C and a seeding temperature of 7.4°C. However, when compared to conventional seeded batch cooling crystallization, form II stability was not improved suggesting a preference form I heterogeneous nucleation which accelerated form II SMPT. The stabilization of form II has been proven to be mainly dependent on the operational and seeding temperatures rather than the permeation rate. On the other hand, membrane crystallization by pervaporation exhibited higher crystallization yields than conventional batch cooling crystallization. The increase of the membrane surface to feed volume (S/Vc) ratio and the permeation rate led to a slight improvement in the antisolvent concentration of almost 5%, which did not affect paracetamol polymorphism but increased the crystallization yield to 43% with no noticeable membrane ageing and irreversible fouling detection for 13 membrane usages
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Clogston, Jeffrey. "Applications of the lipidic cubic phase from controlled release and uptake to in meso crystallization of membrane proteins /." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1117564268.

Повний текст джерела
Анотація:
Thesis (Ph.D.)--Ohio State University, 2005.
Title from first page of PDF file. Document formatted into pages; contains xxii, 352 p.; also includes graphics. Includes bibliographical references (p. 346-352). Available online via OhioLINK's ETD Center
Стилі APA, Harvard, Vancouver, ISO та ін.
6

McGregor, Clare-Louise. "Development of lipopeptide detergents for the solubilization and crystallization of membrane proteins." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0019/MQ54093.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Johnson, Jennifer Leigh. "The quest for a general co-crystallization strategy for macromolecules: lessons on the use of chaperones for membrane protein crystallization." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53886.

Повний текст джерела
Анотація:
Crystallization is often a major bottleneck to macromolecular structure determination. This is particularly true for membrane proteins, which have hydrophobic surfaces that cannot readily form crystal contacts. Of the roughly 109,000 protein structures in the PDB, only about 539 represent unique membrane proteins, despite immense interest in membrane proteins from both a biological and therapeutic standpoint. Membrane protein crystallization has been facilitated by the development of new detergents, lipidic cubic phase methods, soluble protein chimeras, and non-covalent protein complexes. The design process of protein fusion constructs and non-covalent antibody fragments specific for each target membrane protein, however, is costly and time-consuming. An improved, more general method of membrane protein co-crystallization is needed. This dissertation details the development of two approaches for cost-effective non-covalent crystallization chaperones: (1) Engineered hypercrystallizable Fab antibody fragment with high affinity for EYMPME (EE epitope), which form complexes with EE-tagged soluble and membrane proteins. (2) Engineered monomeric streptavidin (mSA2) for complexation with biotinylated membrane proteins. Both methods are generalizable through insertion of a short epitope into a surface-exposed loop of a membrane protein by site directed mutagenesis. Crystallization trials of representative chaperone-membrane protein complexes and possible difficulties with the approach are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Liu, Wei. "Membrane protein crystallization in the lipid cubic phase: testing hypotheses relating to reconsitution." The Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=osu1196274127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Misquitta, Yohann Reynold. "The rational design of monoacylglycerols for use as matrices for the crystallization of membrane proteins." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1141940412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rodríguez, Banqueri Arturo. "A random approach to stabilize a membrane transport protein for crystallization studies / Un enfoque aleatorio para estabilizar un transportador de membrana para estudios de cristalización." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/109040.

Повний текст джерела
Анотація:
X-ray crystallography is, now at days, one of the most powerful techniques to study proteins at the atomic level. Unfortunately, obtaining high quality crystals of membrane proteins for x-ray diffraction is a difficult task due to the hydrophobic nature of these proteins. The low stability in solution of these proteins and their tendency to form aggregates are the biggest problems during crystallization studies. One of the most common strategies to overcome these problems consists on working with functional mutants of these proteins. It has been reported that single point mutations of key residues (normally within transmembrane segments) leads to a remarkable increase in the stability of some membrane proteins after detergent solubilization and extraction from the membrane. In addition, a single mutation can stabilize a specific conformer of the protein, decreasing its heterogeneity in solution. Despite this, predicting what mutations are going to improve the stabilization of a protein is virtually impossible. The main purpose of this thesis is to build up a medium-high throughput experimental protocol with the objective to generate and characterize random mutants of a membrane protein with more stability in detergent-solubilized solution and, therefore with a better probability to crystallize. The combination of random mutagenesis with rapid and sensitive screening protocols of protein expression and stability seems to be the best approach for this goal. The use of the green fluorescent protein (GFP) as reporter has enormously facilitated the studies of expression, purification and stability of a membrane protein. Also, with the aim of minimizing undesired effects of full-length GFP, we optimized an assay based on a split GFP to build and characterized the random mutants library. Specifically we focus on SteT, a Bacillus subtillis transporter that exchanges L-threonine by L-serine. SteT is an excellent prokaryotic model (30% of amino acid identity) of the mammalian L-amino acid transporter (LAT) family. Genetic mutations of some LATs are the direct cause of two types of aminoaciduries. Moreover, a member of this family, LAT1, is overexpressed in tumor cells, although the physiological role of this is still unknown. Unfortunately, SteT wild type solubility and stability in detergent solutions is very low and completely incompatible with crystallization tests. Our results suggest that random mutagenesis combined with the GFP split assay, appears to be an excellent strategy to build robustness in membrane proteins for structural studies. So far, using this strategy we found a mutant of SteT that currently is undergoing for crystallization screenings to study the structure and mechanism of mammalian LATs.
La cristalografía de rayos X es, hoy en día, una de las técnicas más potentes para el estudio de las proteínas a nivel atómico. Desafortunadamente, la obtención de cristales de alta calidad de proteínas de membrana para la difracción de rayos X es un desafío debido a la naturaleza hidrofóbica de estas proteínas. La baja estabilidad en solución de estas proteínas y su tendencia a formar agregados son los mayores problemas durante los estudios de cristalización. Una de las estrategias más comunes para superar estos obstáculos consiste en trabajar con mutantes funcionales de estas proteínas. Se han publicado estudios sobre mutaciones en residuos clave en proteínas de membrana (normalmente dentro de los segmentos transmembrana) que conducen a un notable incremento de la estabilidad en solución, previa extracción de la membrana y solubilización en detergente. Además, una sola mutación puede estabilizar un confórmero específico de una proteína, disminuyendo su heterogeneidad en solución. A pesar de esto, predecir qué mutaciones van a mejorar la estabilidad de una proteína es prácticamente imposible. El principal objetivo de esta tesis es la construcción de un protocolo de alto rendimiento experimental con el objetivo de generar y caracterizar mutantes aleatorios de una proteína de membrana que presenten una estabilidad adecuada después de solubilizar la proteína en detergente y, por lo tanto, con mejores garantías de cristalizar. Para conseguir estos objetivos hemos combinado técnicas de mutaciones aleatorias con métodos de cribaje rápidos y sensibles. En este sentido, el uso de la proteína fluorescente verde (GFP) ha facilitado enormemente los estudios de expresión y purificación de proteínas de membrana. Con el objetivo de minimizar los efectos no deseados de la GFP, se creó y optimizó un ensayo basado en la complementación de la GFP (GFP split system) con un fin doble: seleccionar y caracterizar los componentes de la librería de mutantes aleatorios. Este protocolo se ha puesto a punto con SteT, un intercambiador de L-serina por L-treonina de Bacillus subtilis. SteT es un excelente modelo procariota (30% de identidad de aminoácidos) de la familia de transportadores de mamíferos de amino ácidos L (LAT). Mutaciones congénitas de algunos LATs son la causa directa de dos tipos de aminoacidurias. Además, un miembro de esta familia, LAT1, se sobreexpresa en células tumorales, aunque el papel fisiológico es aún desconocido. Desafortunadamente, SteT tiene una muy baja solubilidad junto a un gran inestabilidad en detergente, propiedades totalmente incompatibles con estudios de cristalización. Nuestros resultados indican que la mutagénesis aleatoria combinada con el ensayo basado en el “GFP split system”, es una estrategia excelente para aumentar la estabilidad de proteínas de membrana en estudios estructurales. Utilizando esta metodología hemos encontrado un mutante de SteT que actualmente está siendo cristalizado. Estos estudios serán clave para conocer mejor la estructura y el mecanismo de la familia de transportadores de mamífero LAT.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Membrane crystallization"

1

M, Bergfors Terese, ed. Protein crystallization. La Jolla, Calif: International University Line, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hartmut, Michel, ed. Crystallization of membrane proteins. Boca Raton: CRC Press, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

McGregor, Clare-Louise. Development of lipopeptide detergents for the solubilization and crystallization of membrane proteins. Ottawa: National Library of Canada, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Serysheva, Irina I. Structure and function of calcium release channels. London: Academic Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

service), ScienceDirect (Online, ed. Cryo-EM: Sample preparation and data collection. San Diego, Calif: Academic Press/Elsevier, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

A, Ducruix, and Giegé R, eds. Crystallization of nucleic acids and proteins: A practical approach. 2nd ed. Oxford: Oxford University Press, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Membrane protein crystallization. Burlington, Mass: Academic Press, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

DeLucas, Larry. Membrane Protein Crystallization. Elsevier Science & Technology Books, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Michel, Hartmut. Crystallization of Membrane Proteins. Edited by Hartmut Michel. CRC Press, 2018. http://dx.doi.org/10.1201/9781351071277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Drioli, E., Gianluca Di Profio, and Efrem Curcio. Membrane-Assisted Crystallization Technology. World Scientific Publishing Co Pte Ltd, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Membrane crystallization"

1

Di Profio, Gianluca. "Protein Crystallization by Membrane Crystallization." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_836-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Curcio, Efrem. "Membrane Crystallization (MCr)." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_826-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Di Profio, Gianluca. "Antisolvent Membrane Crystallization." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_834-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Di Profio, Gianluca. "Antisolvent Membrane Crystallization." In Encyclopedia of Membranes, 96–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_834.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Frappa, M., F. Macedonio, and E. Drioli. "Membrane Distillation, Membrane Crystallization, and Membrane Condenser." In Hollow Fiber Membrane Contactors, 253–70. First edition. | Boca Raton : Taylor and Francis, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429398889-23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Di Profio, Gianluca. "Solvent Evaporation Membrane Crystallization." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_835-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Di Profio, Gianluca. "Solvent Evaporation Membrane Crystallization." In Encyclopedia of Membranes, 1800–1801. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_835.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Michel, Hartmut. "Crystallization of Membrane Proteins." In Techniques and New Developments in Photosynthesis Research, 11–15. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-8571-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Müller, Florian G., and C. Roy D. Lancaster. "Crystallization of Membrane Proteins." In Methods in Molecular Biology, 67–83. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-487-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Michel, H. "Crystallization of membrane proteins." In International Tables for Crystallography, 94–99. Chester, England: International Union of Crystallography, 2006. http://dx.doi.org/10.1107/97809553602060000661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Membrane crystallization"

1

Caffrey, Martin. "Lipid Phase Behavior: Databases, Rational Design and Membrane Protein Crystallization." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192724.

Повний текст джерела
Анотація:
The relationship that exists between structure and function is a unifying theme in my varied biomembrane-based research activities. It applies equally well to the lipid as to the protein component of membranes. With a view to exploiting information that has been and that is currently being generated in my laboratory, as well as that which exists in the literature, a number of web-accessible, relational databases have been established over the years. These include databases dealing with lipids, detergents and membrane proteins. Those catering to lipids include i) LIPIDAT, a database of thermodynamic information on lipid phases and phase transitions, ii) LIPIDAG, a database of phase diagrams concerning lipid miscibility, and iii) LMSD, a lipid molecular structures database. CMCD is the detergent-based database. It houses critical micelle concentration information on a wide assortment of surfactants under different conditions. The membrane protein data bank (MPDB) was established to provide convenient access to the 3-D structure and related properties of membrane proteins and peptides. The utility and current status of these assorted databases will be described and recommendations will be made for extending their range and usefulness.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zheng, Y. F., and Weidong Chen. "Robot team forming of membrane proteins in crystallization." In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004. IEEE, 2004. http://dx.doi.org/10.1109/robot.2004.1308030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gulied, Mona, Sifani Zavahir, Tasneem Elmakki, Hazim Qiblawey, Bassim Hameed, and Dong Suk Han. "Membrane Distillation Crystallization Hybrid Process for Zero Liquid Discharge in QAFCO Plant." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2021. http://dx.doi.org/10.29117/quarfe.2021.0010.

Повний текст джерела
Анотація:
Qatar fertilizer company (QAFCO) is one of the world’s largest single site producer of ammonia and urea with production capacity of 12,900 metric tons per day. Currently, QAFCO faces major challenges in terms of water streams management that is generated from many processes such as wastewater from Harbor-Bosch process and brine solution from multi-stage flash (MSF) desalination process. To protect the environment; QAFCO has been making an effort to minimize the disposal of all types of water disposed into the sea. Here, this project proposes to develop a viable and economically effective process that can reach zero-liquid discharge (ZLD) of all processed water or wastewater from QAFCO facilities. The best method for ZLD is membrane distillation crystallization (MDC) hybrid process that concentrates and minimizes the volume of wastewater/brine streams to form solid through crystallizer. Membrane distillation (MD) is a thermally driven membrane process. It applies low-grade energy to create a thermal gradient across a microporous hydrophobic to vaporize water in the feed stream and condense the permeated vapor in the cold side. This research work aims to evaluate the performance of MDC for ZLD using commercial/fabricated electrospun nanofiber membrane (ENM) PVDF –base membranes at different type water streams. A general observation, higher water vapor flux and water recovery were exhibited at higher feed conductivity at 70°C. Moreover, the fabricated hydrophobic PVDF ENMs results confirmed the formation of nanofiber at the membrane surface using scanning electron microscopy (SEM). In addition, the water contact angle values of PVDF ENMs were greater than 100° and have stable mechanical and chemical properties. The ongoing research work will conduct a comparison between the optimum PVDF ENMs and the commercial MD membranes in terms of water recovery, salt rejection%, fouling/scaling, amount of collected solid and energy consumption at optimum operating conditions in MDC. In addition, it will perform a techno- economic feasibility assessment of the MDC hybrid process.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sasaki, Minoru, Takashi Sasaki, Kazuhiro Hane, and Hideo Miura. "Optically FlatMicromirror Designs Using Stretched Membrane with Crystallization-Induced Stress." In LEOS 2007. 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society. IEEE, 2007. http://dx.doi.org/10.1109/leos.2007.4382604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hsin-Jui Wu, Tamara Basta, Mary Morphew, D. C. Rees, Michael H. B. Stowell, and Y. C. Lee. "Microfluidic device for super-fast evaluation of membrane protein crystallization." In 2013 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2013. http://dx.doi.org/10.1109/nems.2013.6559687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sasaki, Minoru, Takashi Sasaki, Kazuhiro Hane, and Hideo Miura. "Optically Flat Micromirror Using Stretched Membrane with Crystallization-Induced Stress." In 2007IEEE/LEOS International Conference on Optical MEMS and Nanophotonics. IEEE, 2007. http://dx.doi.org/10.1109/omems.2007.4373823.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lackowska, Izabela, Brahim Benyahia, and Marijana Dragosavac. "Comparative Investigation of Membrane Systems for Crystallization and Spherical Agglomeration." In The 3rd International Online Conference on Crystals. Basel, Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/iocc_2022-12162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lackowska, Izabela, Brahim Benyahia, and Marijana Dragosavac. "Comparative Investigation of Membrane Systems for Crystallization and Spherical Agglomeration." In The 3rd International Online Conference on Crystals. Basel, Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/iocc_2022-12162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Muthusubramaniam, L., A. Peddi, Y. F. Zheng, V. Cherezov, and M. Caffrey. "Automating crystallization of membrane proteins by robot with soft coordinate measuring." In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004. IEEE, 2004. http://dx.doi.org/10.1109/robot.2004.1308028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Megasari, Kartini, Maulana Alfi Pradana, and Noor Anis Kundari. "Application of Polyvinylidene Fluoride (PVDF) membrane in improving high salinity brine treatment using Membrane Distillation Crystallization (MDCR) method." In THE 8TH INTERNATIONAL CONFERENCE ON TECHNOLOGY AND VOCATIONAL TEACHERS 2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0212103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії