Дисертації з теми "Mesenchymal stem cell therapy"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Mesenchymal stem cell therapy".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Che, Mohamad Che Anuar. "Human embryonic stem cell-derived mesenchymal stem cells as a therapy for spinal cord injury." Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/7047/.
Повний текст джерелаMead, Ben. "Mesenchymal stem cell therapy for traumatic and degenerative eye disease." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6295/.
Повний текст джерелаNili, Ahmadabadi Elham. "Development of a novel mesenchymal stromal cell (MSC) therapy for repairing the cornea." Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/122897/1/Elham_Nili%20Ahmadabadi_Thesis.pdf.
Повний текст джерелаNie, Yingjie. "Defective dendritic cells and mesenchymal stromal cells in systemic lupus erythematosus and the potential of mesenchymal stromal cells as cell-therapy." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43278681.
Повний текст джерелаWu, Pensée. "Muscular dystrophy cell therapy : an in utero approach using human fetal mesenchymal stem cells." Thesis, Imperial College London, 2009. http://hdl.handle.net/10044/1/4726.
Повний текст джерелаLoebinger, M. R. "Mesenchymal stem cells as vectors for anti-tumour therapy." Thesis, University College London (University of London), 2009. http://discovery.ucl.ac.uk/18556/.
Повний текст джерелаUllah, Mujib [Verfasser]. "Molecular characterization of human mesenchymal stem cell differentiation to identify biomarkers for quality assurance in stem cell therapy / Mujib Ullah." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2014. http://d-nb.info/1047579197/34.
Повний текст джерелаSong, Chao. "Using Mesenchymal Stem Cells As Vehicles for Anit-tumor Therapy." Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501407.
Повний текст джерелаSantos, José Luís da Silva. "Functionalization of dendrimers for improved gene delivery to mesenchymal stem cell." Doctoral thesis, Universidade da Madeira, 2009. http://hdl.handle.net/10400.13/29.
Повний текст джерелаOrientadores: Helena Maria Pires Gaspar Tomás e Pedro Lopes Granja
Yanai, Goichi. "Electrofusion of Mesenchymal Stem Cells and Islet Cells for Diabetes Therapy: A Rat Model." Kyoto University, 2015. http://hdl.handle.net/2433/200315.
Повний текст джерелаChacko, Simi M. "Stem Cell Therapy for Myocardial Infarction: Overcoming the Hypoxic Impediment to Enhance Cell-survival and Engraftment." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1243970807.
Повний текст джерелаSanders, Douglas N. "Autologous bone marrow-derived mesenchymal stem cell transplantation as a therapy for neuronal ceroid lipofuscinosis." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4830.
Повний текст джерелаThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. "August 2007" Includes bibliographical references.
Zachos, Terri A. "Gene-augmented mesenchymal stem cells in bone repair." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1146076285.
Повний текст джерелаMcMillan, Alexandra. "CONTROLLED PRESENTATION OF GENETIC MATERIAL WITHIN STEM CELL CONDENSATIONS FOR REGULATION OF CELL BEHAVIOR FOR BONE TISSUE ENGINEERING." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1522942029602827.
Повний текст джерелаSantiago-Torres, Juan E. "Fetal Mesenchymal Stem Cells Achieve Greater Gene Expression in Vitro, but Less Effective Osteoinduction in Vivo than Adult Mesenchymal Stem Cells." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1404561922.
Повний текст джерелаMurphy, Megan K. "Fibrin microthreads promote stem cell growth for localized delivery in regenerative therapy." Worcester, Mass. : Worcester Polytechnic Institute, 2008. http://www.wpi.edu/Pubs/ETD/Available/etd-090208-143505/.
Повний текст джерелаZhang, Wenbiao. "Biochemical modulation and stem cell therapy for irradiated mandible." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43224167.
Повний текст джерелаMorse, Zachary J. "Dose Response Analysis of Bone Marrow-Derived Mesenchymal Stem Cells for Treatment in Fascial Wound Repair." Youngstown State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1444052561.
Повний текст джерелаZhang, Wenbiao, and 張文彪. "Biochemical modulation and stem cell therapy for irradiated mandible." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43224167.
Повний текст джерелаRafiq, Qasim Ali. "Developing a standardised manufacturing process for the clinical-scale production of human mesenchymal stem cells." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12335.
Повний текст джерелаPesaresi, Martina 1991. "Exogenous expression of chemokine receptors improves mouse mesenchymal stem cell migration towards the degenerating retina." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2019. http://hdl.handle.net/10803/672991.
Повний текст джерелаLas retinopatías representan un grupo heterogéneo de enfermedades que causan, de forma inevitable, discapacidad visual y ceguera. En la actualidad no se dispone de una cura para estas enfermedades para las que la terapia celular podría ser una solución válida, en el caso de que ésta pudiera ser mejorada y optimizada. El presente estudio enfrenta el problema de la escasa e inadecuada migración de las células trasplantadas en el tejido diana. De hecho, la mayoría de las células trasplantadas en el globo ocular no consiguen llegar allí donde se las requiere; donde se encuentra la lesión. Por este motivo, se plantea la hipótesis de que mejorar la capacidad migratoria de las células podría resultar en una mejora substancial del resultado terapéutico de los trasplantes celulares. Después de identificar las quimiocinas más expresadas durante la degeneración de la retina, se ha procedido a sobre-expresar los receptores correspondientes en células madre mesenquimales de ratón. En general, los resultados obtenidos indican que la expresión exógena combinada de dos receptores específicos de quimiocinas mejoran significativamente la migración de células madre mesenquimales, tanto ex vivo como in vivo. La estrategia desarrollada en este estudio proporciona una forma de generar células madre con una mayor capacidad de respuesta a señales específicas de la retina. Tanto es así, que los hallazgos que en él se detallan podrían integrarse con otras estrategias de optimización, de forma que la terapia con células madre sea una opción factible y realista para el tratamiento de retinopatías.
Mikail, Philemon. "Translational Predictive Model for Heart Failure Recovery in LVAD Patients Receiving Stem Cell Therapy." Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/613398.
Повний текст джерелаConnick, Peter Vincent. "Autologous mesenchymal stem cells as a neuroprotective therapy for secondary progressive multiple sclerosis." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648163.
Повний текст джерелаNie, Yingjie, and 聶瑛潔. "Defective dendritic cells and mesenchymal stromal cells in systemic lupus erythematosus and the potential of mesenchymal stromal cells ascell-therapy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43278681.
Повний текст джерелаShafiee, Abbas. "Isolation and characterisation of primitive stem cell populations from placenta." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/95086/1/Abbas_Shafiee_Thesis.pdf.
Повний текст джерелаQin, Hong. "Co-culture of hepatocytes with mesenchymal stem cells for cellular therapy in liver disease." Thesis, King's College London (University of London), 2014. https://kclpure.kcl.ac.uk/portal/en/theses/coculture-of-hepatocytes-with-mesenchymal-stem-cells-for-cellular-therapy-in-liver-disease(7d1b05f4-343c-4f98-93fa-ae23a86788c2).html.
Повний текст джерелаLi, Xiang, and 李想. "Effects of human mesenchymal stem cells on cigarette smoke-induced lung damage." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49618209.
Повний текст джерелаpublished_or_final_version
Medicine
Master
Master of Philosophy
Morris, Timothy J. "Exploring the improvement of human cell cryopreservation." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/19279.
Повний текст джерелаPerruisseau-Carrier, Claire. "Neuronal commitment of Umbilical Cord Mesenchymal Stem Cells for brain regenerative medicine." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10192.
Повний текст джерелаNowadays, no effective prevention or cure of human brain diseases is available. Stem cells hold great promise for the repair and regeneration of damaged neural tissues. This thesis aims to evaluate the potency of human umbilical cord mesenchymal stem cells (hUC MSCs) to be committed to the neuronal lineage, for brain cell-based therapy. To achieve this goal, naive hUC MSCs were isolated, expanded, and characterized at the gene and protein level, while particularly focusing on the neuronal lineage and clinical-grade culture conditions. Then, several parameters were investigated for hUC MSCs proliferation and neuronal commitment, including media, coatings, 3D culture, hypoxia, chemicals and molecules. Growth curves drawings, qPCRs, and immunostainings were used among other methods for identifying the best conditions for hUC MSCs expansion, differentiation, culture in 3D, and microRNAs delivery. The results indicate that hUC MSCs better proliferate in serum-free media and brain's normoxia condition (1-5 % O2). Naive hUC MSCs appear primed for neuronal fate at gene and protein level, but not su_ciently to support their neuronal di_erentiation. microRNAs delivery requires further improvement to efficiently promote neuronal signaling pathways in hUC MSCs. Along this study we identified the best parameters for hUC MSCs expansion in clinical-grade conditions. However, a question still remains: are hUC MSCs capable of full transdifferentiation towards functional neurons despite all controversies? Additional work is needed, but this study is a first step towards answering this question, bringing more clues to make transplantation of hUC MSCs for brain regenerative medicine closer
Heathman, Thomas R. J. "Developing a process control strategy for the consistent and scalable manufacture of human mesenchymal stem cells." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/22174.
Повний текст джерелаWright, Elizabeth Joanne. "GLP-1 CellBead therapy for the prevention of left ventricular dysfunction in pigs." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/glp1-cellbead-therapy-for-the-prevention-of-left-ventricular-dysfunction-in-pigs(740704bb-46f1-44af-8eb2-22117a7efd05).html.
Повний текст джерелаKnoop, Kerstin. "Molecular imaging and radionuclide therapy in non-thyroidal tumors after mesenchymal stem cell- mediated sodium/iodide symporter (NIS) gene transfer." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-178550.
Повний текст джерелаPasian, Ana Carolina Picolo [UNESP]. "Contribuição do led 850 nm, pulsátil, na cultura de célula-tronco mesenquimal." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/153664.
Повний текст джерелаApproved for entry into archive by ROSANGELA APARECIDA LOBO null (rosangelalobo@btu.unesp.br) on 2018-04-23T13:24:13Z (GMT) No. of bitstreams: 1 pasian_acp_me_bot.pdf: 1930882 bytes, checksum: 397a91ec261857e9a2bea286ae3eeb52 (MD5)
Made available in DSpace on 2018-04-23T13:24:13Z (GMT). No. of bitstreams: 1 pasian_acp_me_bot.pdf: 1930882 bytes, checksum: 397a91ec261857e9a2bea286ae3eeb52 (MD5) Previous issue date: 2018-02-27
A medicina regenerativa é uma área em crescente expansão no Brasil e no mundo, a qual procura ampliar a capacidade natural de regeneração dos tecidos através da utilização de células, fatores de proliferação e biomateriais. Um dos ramos da medicina regenerativa é a terapia celular, vertente que utiliza células-tronco, visando a substituição de tecidos funcionalmente ou estruturalmente lesados, apresentando um caráter terapêutico. Na medicina LASERs e LEDs vem sendo estudados como ferramenta terapêutica, mostrando possuir capacidade bioestimulatória. Este campo é caracterizado por uma variedade de metodologias, que são utilizadas em uma gama considerável de aplicações. Na técnica de fotoestimulação, utiliza-se a luz para ativar moléculas e funções celulares, apresentando o potencial de afetar a proliferação e diferenciação e o metabolismo da célula, estimulando a fosforilação oxidativa e podendo reduzir a resposta inflamatória local. Entretanto para que essa resposta ocorra, inúmeros trabalhos afirmam sobre a importância da seleção de um comprimento de onda ideal, uma vez que a utilização de um comprimento inapropriado pode acarretar em resultados contrários aos esperados, como a bioinibição. Diante destes achados o presente trabalho propôs-se a avaliar a ação do LED 850nm, no regime pulsátil, nas doses de 3, 5 e 10J/cm² na cultura de célula-tronco mesenquimal (CTM) com Soro Fetal Bovino (SFB) e com Hormônios derivados de plaquetas (HDP), e na cultura de células de Linfoma linfoblástico tipo B, RAJI Cells na dose de 10J/cm². Em ambos experimentos de exposição a luz, o comprimento de onda 850 nm inibiu a proliferação celular. Na cultura de CTM o LED tornou o desdobramento celular mais lento e acarretou na diminuição da confluência celular, especialmente nas doses de 5 e 10J/cm². Na cultura de linfoma Linfoblástico tipo B, em apenas 1 semana de exposição o mesmo comportamento de bioinibição foi encontrado na dose de 10J/cm². O grupo não tratado apresentou 7,0 X 10 5 células, em média, por frasco enquanto que as células submetidas à irradiação sofreram diminuição do tempo de desdobramento sendo a concentração destas de 4,2X105 , em média, por frasco.
Regenerative medicine is a promising growing area worldwide, with the aim of restore and regenerate tissues and whole organs through the use of cells, proliferation factors and biomaterials. One branch of regenerative medicine is cell therapy, that uses stem cells, aiming at the substitution of functionally or structurally damaged tissues, presenting therapeutic fature. LASERs and LEDs are available as therapeutic tools, showing biostimulating ability. The photo-stimulation technique uses light to activate molecules and cellular functions, presenting potential to affect proliferation, cell differentiation and metabolism, stimulating oxidative phosphorylation and reducing the local inflammatory response. Data shows the importance of selecting an ideal wavelength, such as the use of an inappropriate choice, can lead to undisered results, such as bioinhibition. In the present work, we evaluated the action of LED 850nm, pulsatile, at the doses of 3, 5 and 10J/cm² in mesenchymal stem cells (CTM) with Bovine Fetal Serum (FBS) and with derived platelets – Hormones (HDP) and B-cell lymphoblastic cell culture, 10J /cm2 , RAJI cells. In all light exposure experiments, wavelength of 850 nm inhibited cell proliferation. CTM culture, LED had a low proliferation rate, resulting in a decrease in cellular confluence, especially at 5 and 10J/cm2 . Lymphoblastic lymphoma type B cells, in only one week of exposure presente the same behavior of bioinhibition at 10J/cm2 . The control group had 7.0 x 105 cells on per vial, while cells subjected to irradiation underwent the unfolding time at a concentration of 4.2 x 105 on average per vial.
Chan, Jerry Kok Yen. "Human fetal mesenchymal stem cells for intrauterine cellular/gene therapy using muscular dystrophy as a model." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.441391.
Повний текст джерелаEttey, Thywill. "An Investigation of Collagen, Platelet-Rich Plasma and Bone Marrow Derived Mesenchymal Stem Cells on Achilles Tendon Repair in a Rat Model." Youngstown State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1559127777520856.
Повний текст джерелаHoogduijn, Martin J., F. Popp, R. Verbeek, Mojgan Masoodi, Anna Nicolaou, C. Baan, and M.-H. Dehlke. "The immunomodulatory properties of messenchymal stem cells and their use for immunotherapy." Elsevier, 2010. http://hdl.handle.net/10454/4576.
Повний текст джерелаThere is growing interest in the use of mesenchymal stem cells (MSC) for immune therapy. Clinical trials that use MSC for treatment of therapy resistant graft versus host disease, Crohn's disease and organ transplantation have initiated. Nevertheless, the immunomodulatory effects of MSC are only partly understood. Clinical trials that are supported by basic research will lead to better understanding of the potential of MSC for immunomodulatory applications and to optimization of such therapies. In this manuscript we review some recent literature on the mechanisms of immunomodulation by MSC in vitro and animal models, present new data on the secretion of pro-inflammatory and anti-inflammatory cytokines, chemokines and prostaglandins by MSC under resting and inflammatory conditions and discuss the hopes and expectations of MSC-based immune therapy.
André, Emilie. "Combination of nano and microcarriers for stem cell therapy of Huntington's disease : new regenerative medicine strategy." Thesis, Angers, 2015. http://www.theses.fr/2015ANGE0047/document.
Повний текст джерелаThe combination of biomaterials and stem cells aims to protect damaged cells and slow the progression of neurodegenerative diseases such as Huntington's disease(HD). Mesenchymal stem cells, particularly a subpopulation known as MIAMI cells, have already demonstrated their effectiveness in Parkinson's disease. However, it is essential to improve their neuronal differentiation, survival, and to assess their secretome. The main objective of this work was to propose an innovative regenerative medicine strategy for HD by combining stemcells, micro and nano medicines. To perform this assessment, a new ex vivo animal model of HD has been set up. We then developed and optimized two nanovectors,lipid nanocapsules and solid SPAN nanoparticles,carrying an inhibitor of REST a transcription factor, which prevents neuronal differentiation. The transfection of this siREST showed an improvement in the neuronal phenotype. These modified cells were then induced into a GABAergic phenotype through growth factors. They were then associated with a 3D support, the pharmacologically active microcarriers (PAM) allowing a high rate of engraftment. The PAM are microspheres which have a biomimetic surface of laminin and release a trophic factor BDNF, brain derived neurotrophic factor (inducer of a neural phenotype and neuroprotective) in a controlled manner. Promising results were obtained, further encouraging continuing the evaluation of this strategy in vivo in genetic models of HD
Robinson, Nathalie J. "Low-temperature pausing : an alternative short-term preservation method for use in cell therapies." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/25183.
Повний текст джерелаTutter, Mariella [Verfasser], and Ernst [Akademischer Betreuer] Wagner. "Challenges and chances of the combination of hyperthermia with mesenchymal stem cell-mediated sodium iodide symporter gene therapy / Mariella Tutter ; Betreuer: Ernst Wagner." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2020. http://d-nb.info/1211957543/34.
Повний текст джерелаLegault-Coutu, Daniel. "Studies on mesenchymal stem cells: In vivo identity, cellular biochemistry and use in gene therapy and tissue engineering." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103509.
Повний текст джерелаEn 1868, le physiologiste expérimental Goujon démontre que la moelle osseuse peut se transplanter et possède des propriétés ostéogéniques. Près de cent ans plus tard, Friedenstein réussi à isoler les cellules de la moelle responsables de ces propriétés et démontre ainsi l'existence d'une cellule souche non-hématopoïétique résidant dans la moelle osseuse. Depuis, la recherche sur les cellules souches mésenchymateuses (CSM) a généré un nombre considérable d'articles évaluant les caractéristiques in vitro de ces cellules, leur expression de marqueurs de surface, essayant de définir leur identité et leur localisation in vivo, mais aussi testant leurs propriétés thérapeutiques chez les animaux. Ces recherches servirent de base à plus de 100 études cliniques chez l'humain enregistrées jusqu'à maintenant, utilisant les CSM pour traiter diverses maladies. Cependant, plusieurs questions restent non résolues concernant ces intrigantes cellules souches. C'est pourquoi la recherche actuelle sur les CSM tente de répondre à ces questions fondamentales, de manière à pouvoir mieux comprendre les CSM et ainsi à mieux les utiliser thérapeutiquement. On note quatre thèmes majeurs dans la recherche sur les CSM actuelle : 1) la caractérisation in vitro des CSM et l'identification de nouveaux marqueurs de surface, 2) la recherche de l'identité in vivo des CSM et de leur niche ou localisation, 3) l'élucidation des mécanismes cellulaires et moléculaires impliqués dans leurs propriétés thérapeutiques, et 4) la recherche préclinique et clinique utilisant les CSM pour traiter des maladies. Dans la thèse par manuscrits présentée ici, je présente trois articles de recherche couvrant l'ensemble de ces quatre thèmes. Au chapitre 2, j'identifie une famille de récepteurs membranaires qui est régulée de façon développementale dans les tissus osseux et dans les CSM : les récepteurs FGF. Je démontre que ces récepteurs peuvent être utilisés pour identifier les CSM dans différents compartiments osseux tels que le perichondrium, le periosteum et l'os trabéculaire, de manière à suggérer l'existence de CSM primitives dans le perichondrium. Nous verrons également comment l'activation des récepteurs FGF sur les CSM permet leur prolifération tout en inhibant leur sénescence, leur permettant ainsi de s'auto-renouveller. Au chapitre 3, je présente la caractérisation biochimique préliminaire de periostin, une protéine matricellulaire peu connue et abondamment produite par les CSM. J'identifie une modification post-traductionnelle sur periostin qui permettra de mieux comprendre ses divers rôles dans la différentiation des CSM, leur capacité de supporter l'hématopoïèse et de participer à la réparation des tissus endommagés. Finalement, au chapitre 4 je présente une étude visant à utiliser les CSM pour la thérapie génique de l'hémophilie B. Je démontre que la survie, la différentiation, l'auto-renouvellement et la production de protéines thérapeutiques par les CSM après transplantation nécessitent l'utilisation de techniques d'ingénierie tissulaire complexes. Plus spécifiquement, j'ai dû optimiser des biomatériaux 3D à l'échelle nano-, micro- et macroscopique pour permettre la survie et la production de protéine à long-terme par les CSM dans des souris hémophiles. En conclusion, les résultats présentés ici représentent plusieurs avancées significatives dans notre compréhension de la biologie fondamentale des CSM mais également de leurs propriétés thérapeutiques.
Mathieu, Myrielle. "Comparison between therapeutic efficiency of bone marrow derived mononuclear and mesenchymal stem cells in chronic myocardial infarction." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210138.
Повний текст джерелаBackground: Stem cell therapy can facilitate cardiac repair after healed myocardial infarction but the optimal cell type remains uncertain.
Aims: To investigate the pathophysiology of heart failure in a canine model of healed myocardial infarction and to compare the efficacy and the safety of autologous bone marrow mononuclear cell (BMNC) transfer and mesenchymal stem cell (MSC) transfer in this model. It was a blind, randomized and placebo control study.
Methods: Eleven weeks after coronary ligation, 24 dogs received intramyocardial injections of BMNC, MSC or Placebo (n = 8 per groups). Echocardiography, conductance method, magnetic resonance imaging, serum neurohormones, holter monitoring, macromorphometry, histology and real time quantitative polymerase chain reaction were used to assess cardiac performance, safety and remodelling in healthy animals, before cell transplantation and up to 16 weeks’ follow-up.
Results: The model was characterized by decreased left ventricular end-systolic elastance and ventricular-arterial uncoupling without alteration of compliance.
Four months after BMNC transfer, the regional systolic function measured at echocardiographic showed a sustained improvement. This improvement was associated with an improved left ventricular end-systolic elastance and a decreased infarct size. Although the left ventricular ejection fraction stayed unchanged, the serum level of N-terminal B-type natriuretic propeptide level decreased. Mononuclear cell transfer was also associated with increased left ventricular relative wall area, increased vascular density, intramyocardial vascular remodelling and upregulation of angiogenic factors gene expression. Mesenchymal stem cell transfer only improved lately and moderately the regional systolic function, without improvement of cardiac contractility or decreased infarct size.
Conclusions: In a canine model of chronic myocardial infarction, BMNC transfer is superior to MSC transfer in improvement of cardiac contractility and regional systolic function, and to reduce the infarct size and plasma N-terminal B-type natriuretic propeptide level. Functional improvement is associated with a favourable angiogenic environment and neovascularization.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Hagenhoff, Anna Maria [Verfasser], and Peter [Akademischer Betreuer] Nelson. "Engineered mesenchymal stem cells In tumor therapy : a comparison of three targeting strategies / Anna Maria Hagenhoff ; Betreuer: Peter Nelson." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2018. http://d-nb.info/1163200905/34.
Повний текст джерелаKnoop, Kerstin [Verfasser], and Ernst [Akademischer Betreuer] Wagner. "Molecular imaging and radionuclide therapy in non-thyroidal tumors after mesenchymal stem cell- mediated sodium/iodide symporter (NIS) gene transfer / Kerstin Knoop. Betreuer: Ernst Wagner." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2014. http://d-nb.info/1065180403/34.
Повний текст джерелаThieme, Sebastian, Sabine Stopp, Martin Bornhäuser, Fernando Ugarte, Manja Wobus, Matthias Kuhn, and Sebastian Brenner. "Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-178636.
Повний текст джерелаThieme, Sebastian, Sabine Stopp, Martin Bornhäuser, Fernando Ugarte, Manja Wobus, Matthias Kuhn, and Sebastian Brenner. "Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells." Ferrata Storti Foundation, 2013. https://tud.qucosa.de/id/qucosa%3A28908.
Повний текст джерелаSun, Jianan. "Protective Effects of Human iPS-Derived Retinal Pigmented Epithelial Cells in Comparison with Human Mesenchymal Stromal Cells and Human Neural Stem Cells on the Degenerating Retina in rd1 Mice." Kyoto University, 2016. http://hdl.handle.net/2433/215387.
Повний текст джерелаSchneider, Fabrice. "Remodelage de la paroi artérielle : étude des aspects de destruction et de reconstruction." Thesis, Paris Est, 2011. http://www.theses.fr/2011PEST0101/document.
Повний текст джерелаPas de résumé anglais
Valim, Vanessa de Souza. "Estudo sobre condições do cultivo de células-tronco mesenquimais para aplicações clínicas." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2012. http://hdl.handle.net/10183/61272.
Повний текст джерелаIntroduction: Mesenchymal stromal cells (MSC) have shown their benefits in graft-versus-host disease (GVHD), with three unsettled matters:(1) MSCs expansion in medium with Fetal Calf Serum (FCS) and its risk of xenoreaction; (2) The number of cells indicated for therapy is 2x106cells/Kg with the need to optimize expansion, number and time wise; and (3) the utilization of third party donors. Aims: This study was designed to compare the platelet lysate (LP) and FCS on the expansion of MSC, the optimal cell plating density and days between each pass, and to investigate if donor total nucleated cells (TNC) obtained from the washouts of hematopoietic stem cell transplantation (HSCT) explants can be expanded to be used at clinical grade. Methods: TNC were removed, plated and after the first passage were cultivated in different concentrations with FCS or PL and the number of days reach 80% of confluence was observed. Next, cultures with the same plating density were fed either with PL or FCS and after seven days counted to analyze how much they have grown in that period. Results: The proliferation of mesenchymal stromal cells in the presence of PL and SFB was averaged 11.88 and 2.5 times, respectively, in a period of 7 days. The highest concentration of plating cells using PL, took less time to reach confluence as compared with the three lower ones. This study suggests that the PL is the best choice as a supplement to expand MSC, and allows the proliferation of a sufficient number of donors MSC at P2 for clinical use.
Kucic, Terrence. "Exploiting the use of mesenchymal stromal cells genetically engineered to overexpress insulin-like growth factor-1 in gene therapy of chronic renal failure." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112527.
Повний текст джерелаBach, Martin. "Der Einfluss muriner mesenchymaler Stammzellen auf murine zytokin induzierte Killerzellen in der Kokultur." Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-149957.
Повний текст джерела