Статті в журналах з теми "Micro-Generators"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Micro-Generators.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Micro-Generators".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Wilson, Byron J. "Micro-Kipp gas generators." Journal of Chemical Education 68, no. 12 (December 1991): A297. http://dx.doi.org/10.1021/ed068pa297.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Raisigel, Hynek, Orphée Cugat, and Jérôme Delamare. "Permanent magnet planar micro-generators." Sensors and Actuators A: Physical 130-131 (August 2006): 438–44. http://dx.doi.org/10.1016/j.sna.2005.10.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yang, W. M., S. K. Chou, C. Shu, Z. W. Li, and H. Xue. "Research on micro-thermophotovoltaic power generators." Solar Energy Materials and Solar Cells 80, no. 1 (October 2003): 95–104. http://dx.doi.org/10.1016/s0927-0248(03)00135-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Scott, W. G. "Micro-turbine generators for distribution systems." IEEE Industry Applications Magazine 4, no. 3 (1998): 57–62. http://dx.doi.org/10.1109/2943.667911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Koukharenko, E., M. J. Tudor, S. P. Beeby, N. M. White, X. Li, and I. Nandhakumar. "Micro and Nanotechnologies for Thermoelectric Generators." Measurement and Control 41, no. 5 (June 2008): 138–42. http://dx.doi.org/10.1177/002029400804100501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Smith, Nigel, and Adam Harvey. "Electronic control of micro-hydro generators." Electronics Education 1994, no. 2 (1994): 15–17. http://dx.doi.org/10.1049/ee.1994.0045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

SUN Shao-chun, 孙韶春, and 石庚辰 SHI Geng-chen. "Design and fabrication of micro rotational generators." Optics and Precision Engineering 19, no. 6 (2011): 1306–12. http://dx.doi.org/10.3788/ope.20111906.1306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Beretta, D., M. Massetti, G. Lanzani, and M. Caironi. "Thermoelectric characterization of flexible micro-thermoelectric generators." Review of Scientific Instruments 88, no. 1 (January 2017): 015103. http://dx.doi.org/10.1063/1.4973417.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

DeArmon, James. "Improving random number generators on micro-computers." Computers & Operations Research 17, no. 3 (January 1990): 283–95. http://dx.doi.org/10.1016/0305-0548(90)90005-r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mahmoud, M. A. E., E. M. Abdel-Rahman, E. F. El-Saadany, and R. R. Mansour. "Electromechanical coupling in electrostatic micro-power generators." Smart Materials and Structures 19, no. 2 (January 14, 2010): 025007. http://dx.doi.org/10.1088/0964-1726/19/2/025007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Pelz, U., J. Jaklin, R. Rostek, F. Thoma, M. Kröner та P. Woias. "Fabrication Process for Micro Thermoelectric Generators (μTEGs)". Journal of Electronic Materials 45, № 3 (15 жовтня 2015): 1502–7. http://dx.doi.org/10.1007/s11664-015-4088-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Dunham, Marc T., Michael T. Barako, Saniya LeBlanc, Mehdi Asheghi, Baoxing Chen, and Kenneth E. Goodson. "Power density optimization for micro thermoelectric generators." Energy 93 (December 2015): 2006–17. http://dx.doi.org/10.1016/j.energy.2015.10.032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Chou, S. K., W. M. Yang, K. J. Chua, J. Li, and K. L. Zhang. "Development of micro power generators – A review." Applied Energy 88, no. 1 (January 2011): 1–16. http://dx.doi.org/10.1016/j.apenergy.2010.07.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Ma, Shan, Wuli Chu, Haoguang Zhang, Xiangjun Li, and Haiyang Kuang. "Effects of modified micro-vortex generators on aerodynamic performance in a high-load compressor cascade." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 233, no. 3 (July 29, 2018): 309–23. http://dx.doi.org/10.1177/0957650918790018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the current study, the effects of micro-vortex generators on the flow characteristics of a high-load compressor cascade are investigated, and four types of micro-vortex generators including “rectangular,” “curved rectangular,” “trapezoidal,” and “curved trapezoidal” are considered and named VGR, VGCR, VGT, and VGCT separately. The calculated results show that a rising reverse flow region, which is considered a main reason for occurring stall at +8° incidence, collapses rapidly from the leading edge in the cascade. Therefore, the micro-vortex generators are all mounted on the end-wall in front of the passage to suppress the development of the secondary flow, and the stall occurrence is delayed from +8° to +11° incidence by applying VGCT. At the design condition, the VGT can make the total pressure loss decrease by 0.54%. The modified micro-vortex generators show an obvious superiority when the range of incidence is between +3° and +8°. At the stall condition, the VGCT can make the total pressure loss decrease by 9.36%. Moreover, the reduction of the secondary flow loss is considered a main goal of the adoption of micro-vortex generators which is an achievement for decreasing the total pressure loss, and the highest reduction of the secondary flow loss reaches 34.6% at the stall condition in the cascade with VGCT.
15

Mahmoud, M., E. Abdel-Rahman, R. Mansour, and E. El-Saadany. "Out-of-Plane Continuous Electrostatic Micro-Power Generators." Sensors 17, no. 4 (April 16, 2017): 877. http://dx.doi.org/10.3390/s17040877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Allen, S. R., G. P. Hammond, H. A. Harajli, C. I. Jones, M. C. McManus, and A. B. Winnett. "Integrated appraisal of micro-generators: methods and applications." Proceedings of the Institution of Civil Engineers - Energy 161, no. 2 (May 2008): 73–86. http://dx.doi.org/10.1680/ener.2008.161.2.73.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Pelz, U., J. Jaklin, R. Rostek, M. Kröner та P. Woias. "Novel Fabrication Process for Micro Thermoelectric Generators (μTEGs)". Journal of Physics: Conference Series 660 (10 грудня 2015): 012084. http://dx.doi.org/10.1088/1742-6596/660/1/012084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Hoffmann, Daniel, Bernd Folkmer, and Yiannos Manoli. "Fabrication, characterization and modelling of electrostatic micro-generators." Journal of Micromechanics and Microengineering 19, no. 9 (August 26, 2009): 094001. http://dx.doi.org/10.1088/0960-1317/19/9/094001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Yang, ZhaoHui, Jing Wang, and JinWen Zhang. "Research and development of micro electret power generators." Science China Technological Sciences 55, no. 3 (January 7, 2012): 581–87. http://dx.doi.org/10.1007/s11431-011-4710-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Simmons, Scott Christopher, and William David Lubitz. "Archimedes screw generators for sustainable micro‐hydropower production." International Journal of Energy Research 45, no. 12 (June 14, 2021): 17480–501. http://dx.doi.org/10.1002/er.6893.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Chung, Kung-Ming, Kao-Chun Su, and Keh-Chin Chang. "Micro-Vortex Generators on Transonic Convex-Corner Flow." Aerospace 8, no. 9 (September 17, 2021): 268. http://dx.doi.org/10.3390/aerospace8090268.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A convex corner models the upper surface of a deflected flap and shock-induced boundary layer separation occurs at transonic speeds. This study uses micro-vortex generators (MVGs) for flow control. An array of MVGs (counter-rotating vane type, ramp type and co-rotating vane type) with a height of 20% of the thickness of the incoming boundary layer is installed upstream of a convex corner. The surface pressure distributions are similar regardless of the presence of MVGs. They show mild upstream expansion, a strong favorable pressure gradient near the corner’s apex and downstream compression. A corrugated surface oil flow pattern is observed in the presence of MVGs and there is an onset of compression moving downstream. The counter-rotating vane type MVGs produce a greater reduction in peak pressure fluctuations and the ramp type decreases the separation length. The presence of MVGs stabilizes the shock and shock oscillation is damped.
22

Singh, R., and V. Verma. "Performance Analysis and Comparison of Symmetrical and Asymmetrical Dual Stator Induction Generators for Wind Energy Conversion Systems." Engineering, Technology & Applied Science Research 8, no. 1 (February 20, 2018): 2464–70. http://dx.doi.org/10.48084/etasr.1689.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The emergence of micro/nano level wind generation has opened the research on induction generator (IG) topologies having easier and finer control available in multiphase generators. To establish the suitability of multiphase generators for wind generators the analysis of their performance based on the developed model for the same rating of six phase symmetrical (60˚) and asymmetrical (30˚) IGs is presented. A comparative performance evaluation of grid-excited six phase symmetrical and asymmetrical IGs also known as Dual Stator Induction Generators (DSIGs) is presented through simulation results in MATLAB/SIMULINK environment amidst load perturbations, limited variation of wind speed and perturbations in voltage and frequency of the non stiff micro-grid to which they are connected. Based on the performance indices like flux of direct and quadrature axis, speed variations, terminal voltage drop/rise, range of operational speed variation etc., a comparative analysis with the help of the results is drawn to establish the suitability of asymmetrical multiphase IGs for grid connected wind generators.
23

Peng, Zi Long, Yi Nan Li, and Z. L. Wang. "Study on the Characteristics of Discharge Waveform in Micro EDM Deposition Process." Materials Science Forum 697-698 (September 2011): 187–91. http://dx.doi.org/10.4028/www.scientific.net/msf.697-698.187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Based on the analysis of micro electrical discharge machining (micro EDM) principle, the process conditions of micro EDM deposition has been obtained. Micro EDM deposition is a new EDM method, in which the process conditions includes selecting air as working medium, short pulse duration, long pulse interval, low discharge current and setting the tool electrode as anode. In micro EDM deposition experiments, two types pulse generators of transistor type and RC type are applied respectively. The characteristics of discharge waveforms using each type pulse generator are researched. Results show that both two types pulse generators can be applied in the micro EDM deposition process. The transistor type is easy to obtain the same single discharge energy, but short circuit will damage the deposited material. While RC type can adjust discharge energy according to the discharge gap state, which is well used in micro EDM deposition process with the high deposition rate.
24

ZEMTSOV, Artem I. "POWER SUPPLY EFFICIENCY INCREASE OF THE GAS-COMPRESSOR WORKSHOP DUE TO MICROGRID FORMATION ON THE BASIS OF OWN NEED GAS-DISTRIBUTING UNITS GENERATORS." Urban construction and architecture 9, no. 3 (September 15, 2019): 175–80. http://dx.doi.org/10.17673/vestnik.2019.03.22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The possibility of the direct current use in the enterprise intra shop power supply systems for the electric power loss reduction purpose, the power supply reliability and the electromagnetic compatibility problem solution is considered. The structural direct current micro network scheme on the basis of own need generators, equipping gas-distributing units for gas-compressor workshop electrical generating system, is suggested. The use of these generators at changeable shaft speed is analyzed, with a possibility of regulation of gas-distributing unit capacity for the transporting gas optimization mode. The own need generators combination in the micro network for the purpose of energy surplus use for the gas air coolers power supply is essential.
25

Takahashi, Susumu, Tohru murai, and Yukio Ito. "0402 Generation processes of micro-bubbles for swirling flow-type micro-bubble-generators." Proceedings of the Fluids engineering conference 2010 (2010): 123–24. http://dx.doi.org/10.1299/jsmefed.2010.123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Lu, F., H. P. Lee, and S. P. Lim. "Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications." Smart Materials and Structures 13, no. 1 (November 25, 2003): 57–63. http://dx.doi.org/10.1088/0964-1726/13/1/007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Alba, David, Horace W. Crater, and Luca Lusanna. "On the relativistic micro-canonical ensemble and relativistic kinetic theory for N relativistic particles in inertial and non-inertial rest frames." International Journal of Geometric Methods in Modern Physics 12, no. 04 (April 2015): 1550049. http://dx.doi.org/10.1142/s0219887815500498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new formulation of relativistic classical mechanics allows a reconsideration of old unsolved problems in relativistic kinetic theory and in relativistic statistical mechanics. In particular a definition of the relativistic micro-canonical partition function is given strictly in terms of the Poincaré generators of an interacting N-particle system both in the inertial and non-inertial rest frames. The non-relativistic limit allows a definition of both the inertial and non-inertial micro-canonical ensemble in terms of the Galilei generators.
28

Kao, Pin-Hsu, Po-Jen Shih, Ching-Liang Dai, and Mao-Chen Liu. "Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators." Sensors 10, no. 2 (February 9, 2010): 1315–25. http://dx.doi.org/10.3390/s100201315.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Panaras, Argyris G., and Frank K. Lu. "Micro-vortex generators for shock wave/boundary layer interactions." Progress in Aerospace Sciences 74 (April 2015): 16–47. http://dx.doi.org/10.1016/j.paerosci.2014.12.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Li, Wei, Hsi-wen Lo, and Yu-Chong Tai. "Optimal Capacitive Load Matching of Micro Electret Power Generators." ECS Transactions 11, no. 32 (December 19, 2019): 215–22. http://dx.doi.org/10.1149/1.2992505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Aristov, Yu V., I. V. Grekhov, S. V. Korotkov, and A. G. Lyublinsky. "Dynistor Switches for Micro- and Nanosecond Power Pulse Generators." Acta Physica Polonica A 115, no. 6 (June 2009): 1031–33. http://dx.doi.org/10.12693/aphyspola.115.1031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Sadullaev, Nasullo, Shukhrat Nematov, and Farid Sayliev. "Analysis of multipolar generators operating efficiently in low-speed water and wind flows using ANSYS MAXWELL program." E3S Web of Conferences 288 (2021): 01057. http://dx.doi.org/10.1051/e3sconf/202128801057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The article analyses generators generating efficient electricity at low speed water and wind flows. High rotating speed generators are used in wind farms and micro-hydropower. Reduction gears are used to provide the generators with the required number of rotations. The use of reduction gears in the power system leads to a decrease in the efficiency of the system and additional capital costs. The study analyzed multipolar synchronous generators. Both generators used a permanent magnet to generate electromotive force, and the generators are distinguished by the radial and axial placement of the permanent magnets. In order to analyze the generators, virtual models were created and analyzed in the Ansys Maxwell program. The Ansys Maxwell program is used to analyze electric machines in the electromagnetic field. The use of these programs in determining the optimal size of new devices is of great importance in saving time and improving cost-effectiveness.
33

Ma, Xiaoqin, Hui Lv, and Wenjuan Xiao. "Fault characteristics of Inverter-Interfaced Distributed Generation." E3S Web of Conferences 237 (2021): 02020. http://dx.doi.org/10.1051/e3sconf/202123702020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Distributed generations can be divided into traditional synchronous generators and inverter interfaced distributed generations (IIDG) according to their different operation mode. While the fault characteristics of IIDG is different from traditional Distributed Generators, the in-depth analysis on output characteristics and fault characteristics of IIDG are the foundation of micro grid protection. The mathematical models under P/Q and V/F control strategy are discussed. After simplifying its model, the fault characteristics of IIDG under P/Q and V/F control strategy are studied using the simulation of PSCAD/EMTDC. The analysis on the fault characteristics of IIDG that lays the theoretical foundation for the micro-grid relay protection.
34

Hsu, Nai-Feng, Tien-Kan Chung, Ming Chang, and Hong-Jun Chen. "Rapid Synthesis of Piezoelectric ZnO-Nanostructures for Micro Power-Generators." Journal of Materials Science & Technology 29, no. 10 (October 2013): 893–97. http://dx.doi.org/10.1016/j.jmst.2013.07.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Lin, John C., Stephen K. Robinson, Robert J. McGhee, and Walter O. Valarezo. "Separation control on high-lift airfoils via micro-vortex generators." Journal of Aircraft 31, no. 6 (November 1994): 1317–23. http://dx.doi.org/10.2514/3.46653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Jang, Bongkyun, Seungwoo Han, and Jeong-Yup Kim. "Optimal design for micro-thermoelectric generators using finite element analysis." Microelectronic Engineering 88, no. 5 (May 2011): 775–78. http://dx.doi.org/10.1016/j.mee.2010.06.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Vaidya, Jay, and Earl Gregory. "Generators and Controllers for Micro Power Based Distributed Power Systems." Cogeneration & Distributed Generation Journal 19, no. 1 (January 2004): 69–79. http://dx.doi.org/10.1080/15453660409509035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Schmidt, Steffen J., and Dmitriy Likhachev. "Control effect of micro vortex generators on attached cavitation instability." Physics of Fluids 31, no. 6 (June 2019): 064102. http://dx.doi.org/10.1063/1.5099089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Yashodhar, V., G. Humrutha, M. Kaushik, and S. A. Khan. "CFD Studies on Triangular Micro-Vortex Generators in Flow Control." IOP Conference Series: Materials Science and Engineering 184 (March 2017): 012007. http://dx.doi.org/10.1088/1757-899x/184/1/012007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Zhang, Wenhua, Juekuan Yang, and Dongyan Xu. "Development and optimization of high power density micro-thermoelectric generators." Journal of Physics: Conference Series 1052 (July 2018): 012009. http://dx.doi.org/10.1088/1742-6596/1052/1/012009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Arav, B., R. Shulman, and V. Dooun. "Basic Concepts for Forcing of Low-Power Micro Turbine Generators." Procedia Engineering 150 (2016): 1384–90. http://dx.doi.org/10.1016/j.proeng.2016.07.333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Wenming, Yang, Chou Siawkiang, Shu Chang, Xue Hong, and Li Zhiwang. "Research on micro-thermophotovoltaic power generators with different emitting materials." Journal of Micromechanics and Microengineering 15, no. 9 (August 15, 2005): S239—S242. http://dx.doi.org/10.1088/0960-1317/15/9/s11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Sun, Zhengzhong. "Micro Vortex Generators for Boundary Layer Control: Principles and Applications." International Journal of Flow Control 7, no. 1-2 (June 2015): 67–86. http://dx.doi.org/10.1260/1756-8250.7.1-2.67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

TANIWAKI, Mitsuhiro, Sinichi HONDA, Kenji UEDA, Kyoji YAMAMOTO, and Shinichiro YANASE. "4220 Interference of two facing swirl-type micro-bubble generators." Proceedings of the JSME annual meeting 2006.2 (2006): 441–42. http://dx.doi.org/10.1299/jsmemecjo.2006.2.0_441.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Karmacharya, S., G. Putrus, C. P. Underwood, K. Mahkamov, S. McDonald, and A. Alexakis. "Simulation of energy use in buildings with multiple micro generators." Applied Thermal Engineering 62, no. 2 (January 2014): 581–92. http://dx.doi.org/10.1016/j.applthermaleng.2013.09.039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Allen, S. R., and G. P. Hammond. "Thermodynamic and carbon analyses of micro-generators for UK households." Energy 35, no. 5 (May 2010): 2223–34. http://dx.doi.org/10.1016/j.energy.2010.02.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Arab, M., A. Zegaoui, H. Allouache, M. Kellal, P. Petit, and M. Aillerie. "Micro-controlled Pulse Width Modulator Inverter for Renewable Energy Generators." Energy Procedia 50 (2014): 832–40. http://dx.doi.org/10.1016/j.egypro.2014.06.102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Wenming, Yang, Chou Siawkiang, Shu Chang, Xue Hong, and Li Zhiwang. "Effect of wall thickness of micro-combustor on the performance of micro-thermophotovoltaic power generators." Sensors and Actuators A: Physical 119, no. 2 (April 2005): 441–45. http://dx.doi.org/10.1016/j.sna.2004.10.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Al-Asadi, Mushtaq T., Hussein A. Mohammed, and Mark C. T. Wilson. "Heat Transfer Characteristics of Conventional Fluids and Nanofluids in Micro-Channels with Vortex Generators: A Review." Energies 15, no. 3 (February 8, 2022): 1245. http://dx.doi.org/10.3390/en15031245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An effective way to enhance the heat transfer in mini and micro electronic devices is to use different shapes of micro-channels containing vortex generators (VGs). This attracts researchers due to the reduced volume of the electronic micro-chips and increase in the heat generated from the devices. Another way to enhance the heat transfer is using nanofluids, which are considered to have great potential for heat transfer enhancement and are highly suited to application in practical heat transfer processes. Recently, several important studies have been carried out to understand and explain the causes of the enhancement or control of heat transfer using nanofluids. The main aim upon which the present work is based is to give a comprehensive review on the research progress on the heat transfer and fluid flow characteristics of nanofluids for both single- and two- phase models in different types of micro-channels. Both experimental and numerical studies have been reviewed for traditional and nanofluids in different types and shapes of micro-channels with vortex generators. It was found that the optimization of heat transfer enhancement should consider the pumping power reduction when evaluating the improvement of heat transfer.
50

Kotin, Denis, Ilya Ivanov, and Sofya Shtukkert. "Modified Permanent Magnet Synchronous Generators for Using in Energy Supply System for Autonomous Consumer." Energies 14, no. 21 (November 2, 2021): 7196. http://dx.doi.org/10.3390/en14217196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, the possibility of using synchronous generators with magnetoelectric excitation for the autonomous consumers’ supply with the use of renewable energy sources is considered. To eliminate a number of the disadvantages associated with the difficulty of energy-efficient regulation of the generated parameters, such as the generated current and voltage, the use of modified multi-winding synchronous generators with permanent magnets is proposed. It allows solving the problem of controlling this type of generator. In addition, the use of this type of generator helps to increase the amount of energy generated. The authors have proposed several synchronous generators with permanent magnets of various supply network architectures: single-phase, two-phase and traditional three-phase types. This will simplify the design of architecture for several cases of consumer power supply systems. It will also help to eliminate the need to organize a balanced distribution of loads in phases to prevent accidents, damage and/or disabling of consumers themselves. Here, we considered mathematical descriptions of several types of generators that differ in their assembling, in particular, the number of phases (one-, two- and three-phase generators), the number of pairs of permanent magnet poles on the rotor, and the method of switching the generator windings among themselves. Using the developed mathematical descriptions that describe the operation of every single winding of the generator, their mathematical models were developed in the SimInTech mathematical modeling environment. The results of the mathematical modeling of these generators were presented; their interpretation for use with renewable energy sources was made; and the methods of using these generators were described. The developed mathematical descriptions of synchronous generators with permanent magnets can be used for further study of their operation. It can also help for the development of control systems and power systems for micro-grid energy complexes that use renewable energy sources to increase the energy efficiency of micro-grid systems.

До бібліографії