Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Microarrays.

Статті в журналах з теми "Microarrays"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Microarrays".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Aparna, G. M., and Kishore K. R. Tetala. "Recent Progress in Development and Application of DNA, Protein, Peptide, Glycan, Antibody, and Aptamer Microarrays." Biomolecules 13, no. 4 (2023): 602. http://dx.doi.org/10.3390/biom13040602.

Повний текст джерела
Анотація:
Microarrays are one of the trailblazing technologies of the last two decades and have displayed their importance in all the associated fields of biology. They are widely explored to screen, identify, and gain insights on the characteristics traits of biomolecules (individually or in complex solutions). A wide variety of biomolecule-based microarrays (DNA microarrays, protein microarrays, glycan microarrays, antibody microarrays, peptide microarrays, and aptamer microarrays) are either commercially available or fabricated in-house by researchers to explore diverse substrates, surface coating, i
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Paredes, Carlos J., Ryan S. Senger, Iwona S. Spath, Jacob R. Borden, Ryan Sillers, and Eleftherios T. Papoutsakis. "A General Framework for Designing and Validating Oligomer-Based DNA Microarrays and Its Application to Clostridium acetobutylicum." Applied and Environmental Microbiology 73, no. 14 (2007): 4631–38. http://dx.doi.org/10.1128/aem.00144-07.

Повний текст джерела
Анотація:
ABSTRACT While DNA microarray analysis is widely accepted as an essential tool for modern biology, its use still eludes many researchers for several reasons, especially when microarrays are not commercially available. In that case, the design, construction, and use of microarrays for a sequenced organism constitute substantial, time-consuming, and expensive tasks. Recently, it has become possible to construct custom microarrays using industrial manufacturing processes, which offer several advantages, including speed of manufacturing, quality control, no up-front setup costs, and need-based mic
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chiodi, Elisa, Allison M. Marn, Matthew T. Geib, and M. Selim Ünlü. "The Role of Surface Chemistry in the Efficacy of Protein and DNA Microarrays for Label-Free Detection: An Overview." Polymers 13, no. 7 (2021): 1026. http://dx.doi.org/10.3390/polym13071026.

Повний текст джерела
Анотація:
The importance of microarrays in diagnostics and medicine has drastically increased in the last few years. Nevertheless, the efficiency of a microarray-based assay intrinsically depends on the density and functionality of the biorecognition elements immobilized onto each sensor spot. Recently, researchers have put effort into developing new functionalization strategies and technologies which provide efficient immobilization and stability of any sort of molecule. Here, we present an overview of the most widely used methods of surface functionalization of microarray substrates, as well as the mo
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Handley, Daniel, Nicoleta Serban, David G. Peters, and Clark Glymour. "Concerns About Unreliable Data from Spotted cDNA Microarrays Due to Cross-Hybridization and Sequence Errors." Statistical Applications in Genetics and Molecular Biology 3, no. 1 (2004): 1–2. http://dx.doi.org/10.2202/1544-6115.1091.

Повний текст джерела
Анотація:
We discuss our concerns regarding the reliability of data generated by spotted cDNA microarrays. Two types of error we highlight are cross-hybridization artifact due to sequence homologies and sequence errors in the cDNA used for spotting on microarrays. We feel that statisticians who analyze microarray data should be aware of these sources of unreliability intrinsic to cDNA microarray design and use.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fesseha, Haben, and Hiwot Tilahun. "Principles and Applications of Deoxyribonucleic Acid Microarray: A Review." Pathology and Laboratory Medicine – Open Journal 3, no. 1 (2021): 1–9. http://dx.doi.org/10.17140/plmoj-3-109.

Повний текст джерела
Анотація:
Deoxyribonucleic acid (DNA) microarrays are collections of DNA probes arranged on a base pair and the latest commercialized molecular diagnostic technologies that offer high throughput results, more sensitive and require less time. It is the most reliable and widely accepted tool facilitating the simultaneous identification of thousands of genetic elements even a single gene. Microarrays are powerful new tools for the investigation of global changes in gene expression profiles in cells and tissues. The different types of DNA microarray or DNA chip devices and systems are described along with t
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Whipple, Mark Eliot, and Winston Patrick Kuo. "DNA Microarrays in Otolaryngology-Head and Neck Surgery." Otolaryngology–Head and Neck Surgery 127, no. 3 (2002): 196–204. http://dx.doi.org/10.1067/mhn.2002.127383.

Повний текст джерела
Анотація:
OBJECTIVES: Our goal was to review the technologies underlying DNA microarrays and to explore their use in otolaryngology-head and neck surgery. STUDY DESIGN: The current literature relating to microarray technology and methodology is reviewed, specifically the use of DNA microarrays to characterize gene expression. Bioinformatics involves computational and statistical methods to extract, organize, and analyze the huge amounts of data produced by microarray experiments. The means by which these techniques are being applied to otolaryngology-head and neck surgery are outlined. RESULTS: Microarr
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Korbelik, J., M. Cardeno, J. P. Matisic, A. C. Carraro, and C. MacAulay. "Cytology Microarrays." Analytical Cellular Pathology 29, no. 5 (2007): 435–42. http://dx.doi.org/10.1155/2007/258297.

Повний текст джерела
Анотація:
The use of high throughput genetic and expression platforms are generating many candidate diagnostic markers and therapeutic targets for a wide variety of clinical conditions. Tissue microarrays can be used for the evaluation of the utility of many of these markers. However, tissue microarrays can suffer from the limitations associated with sampling and sectioning tissues. We introduce a novel microarray technique based on cell suspensions. Multiple slides can be made, all of which are equally representative of the initial sample. A robotic device was designed that can deposit 60 distinct spot
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wilson, K. J., and E. de la Vega. "The potential of microarrays to assist shrimp breeding and production: a review." Australian Journal of Experimental Agriculture 45, no. 8 (2005): 901. http://dx.doi.org/10.1071/ea05060.

Повний текст джерела
Анотація:
The shrimp aquaculture industry is a relatively new livestock industry, having developed over the past 30 years. Thus, it is poised to take advantage of new technologies from the outset of selective breeding programs. This contrasts with long established livestock industries, where there are already highly specialised breeds. This review focuses specifically on the potential application of microarrays to shrimp breeding. Potential applications of microarrays in selective breeding programs are summarised. Microarrays can be used as a rapid means to generate molecular markers for genetic linkage
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Trost, Brett, Catherine A. Moir, Zoe E. Gillespie, Anthony Kusalik, Jennifer A. Mitchell, and Christopher H. Eskiw. "Concordance between RNA-sequencing data and DNA microarray data in transcriptome analysis of proliferative and quiescent fibroblasts." Royal Society Open Science 2, no. 9 (2015): 150402. http://dx.doi.org/10.1098/rsos.150402.

Повний текст джерела
Анотація:
DNA microarrays and RNA sequencing (RNA-seq) are major technologies for performing high-throughput analysis of transcript abundance. Recently, concerns have been raised regarding the concordance of data derived from the two techniques. Using cDNA libraries derived from normal human foreskin fibroblasts, we measured changes in transcript abundance as cells transitioned from proliferative growth to quiescence using both DNA microarrays and RNA-seq. The internal reproducibility of the RNA-seq data was greater than that of the microarray data. Correlations between the RNA-seq data and the individu
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Raczynski, Lech, Krzysztof Wozniak, Tymon Rubel, and Krzysztof Zaremba. "Application of Density Based Clustering to Microarray Data Analysis." International Journal of Electronics and Telecommunications 56, no. 3 (2010): 281–86. http://dx.doi.org/10.2478/v10177-010-0037-9.

Повний текст джерела
Анотація:
Application of Density Based Clustering to Microarray Data AnalysisIn just a few years, gene expression microarrays have rapidly become a standard experimental tool in the biological and medical research. Microarray experiments are being increasingly carried out to address the wide range of problems, including the cluster analysis. The estimation of the number of clusters in datasets is one of the main problems of clustering microarrays. As a supplement to the existing methods we suggest the use of a density based clustering technique DBSCAN that automatically defines the number of clusters. T
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Berthuy, Ophélie I., Sinan K. Muldur, François Rossi, Pascal Colpo, Loïc J. Blum, and Christophe A. Marquette. "Multiplex cell microarrays for high-throughput screening." Lab on a Chip 16, no. 22 (2016): 4248–62. http://dx.doi.org/10.1039/c6lc00831c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Coughlan, Sean J., Vikas Agrawal, and Blake Meyers. "A Comparison of Global Gene Expression Measurement Technologies inArabidopsis thaliana." Comparative and Functional Genomics 5, no. 3 (2004): 245–52. http://dx.doi.org/10.1002/cfg.397.

Повний текст джерела
Анотація:
Microarrays and tag-based transcriptional profiling technologies represent diverse but complementary data types. We are currently conducting a comparison of high-densityin situsynthesized microarrays and massively-parallel signature sequencing (MPSS) data in the model plant,Arabidopsis thaliana. The MPSS data (available at http://mpss.udel.edu/at) and the microarray data have been compiled using the same RNA source material. In this review, we outline the experimental strategy that we are using, and present preliminary data and interpretations from the transcriptional profiles ofArabidopsislea
Стилі APA, Harvard, Vancouver, ISO та ін.
13

KATHLEEN KERR, M., and GARY A. CHURCHILL. "Statistical design and the analysis of gene expression microarray data." Genetical Research 77, no. 2 (2001): 123–28. http://dx.doi.org/10.1017/s0016672301005055.

Повний текст джерела
Анотація:
Gene expression microarrays are an innovative technology with enormous promise to help geneticists explore and understand the genome. Although the potential of this technology has been clearly demonstrated, many important and interesting statistical questions persist. We relate certain features of microarrays to other kinds of experimental data and argue that classical statistical techniques are appropriate and useful. We advocate greater attention to experimental design issues and a more prominent role for the ideas of statistical inference in microarray studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Marjani, Sadie L., Daniel Le Bourhis, Xavier Vignon, et al. "Embryonic gene expression profiling using microarray analysis." Reproduction, Fertility and Development 21, no. 1 (2009): 22. http://dx.doi.org/10.1071/rd08217.

Повний текст джерела
Анотація:
Microarray technology enables the interrogation of thousands of genes at one time and therefore a systems level of analysis. Recent advances in the amplification of RNA, genome sequencing and annotation, and the lower cost of developing microarrays or purchasing them commercially, have facilitated the analysis of single preimplantation embryos. The present review discusses the components of embryonic expression profiling and examines current research that has used microarrays to study the effects of in vitro production and nuclear transfer.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Smith, David F., Richard D. Cummings, and Xuezheng Song. "History and future of shotgun glycomics." Biochemical Society Transactions 47, no. 1 (2019): 1–11. http://dx.doi.org/10.1042/bst20170487.

Повний текст джерела
Анотація:
Abstract Glycans in polysaccharides and glycoconjugates of the hydrophilic exterior of all animal cells participate in signal transduction, cellular adhesion, intercellular signaling, and sites for binding of pathogens largely through protein–glycan interactions. Microarrays of defined glycans have been used to study the binding specificities of biologically relevant glycan-binding proteins (GBP), but such arrays are limited by their lack of diversity or relevance to the GBP being investigated. Shotgun glycan microarrays are made up of structurally undefined glycans that were released from nat
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Kostrzynska, M., and A. Bachand. "Application of DNA microarray technology for detection, identification, and characterization of food-borne pathogens." Canadian Journal of Microbiology 52, no. 1 (2006): 1–8. http://dx.doi.org/10.1139/w05-105.

Повний текст джерела
Анотація:
DNA microarrays represent the latest advance in molecular technology. In combination with bioinformatics, they provide unparalleled opportunities for simultaneous detection of thousands of genes or target DNA sequences and offer tremendous potential for studying food-borne microorganisms. This review provides an up-to-date look at the application of DNA microarray technology to detect food-borne pathogenic bacteria, viruses, and parasites. In addition, it covers the advantages of using microarray technology to further characterize microorganisms by providing information for specific identifica
Стилі APA, Harvard, Vancouver, ISO та ін.
17

ZHANG, YONG. "INTEGRATION OF NANOPARTICLES WITH PROTEIN MICROARRAYS." International Journal of Nanoscience 05, no. 02n03 (2006): 189–94. http://dx.doi.org/10.1142/s0219581x0600422x.

Повний текст джерела
Анотація:
A variety of DNA, protein or cell microarray devices and systems have been developed and commercialized. In addition to the biomolecule related analysis, they are also being used for pharmacogenomic research, infectious and genetic disease and cancer diagnostics, and proteomic and cellular analysis.1 Currently, microarray is fabricated on a planar surface; this limits the amount of biomolecules that can be bounded on the surface. In this work, a planar protein microarray chip with nonplanar spot surface was fabricated to enhance the chip performance. A nonplanar spot surface was created by fir
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zhao, Jianmei, Xuecang Li, Jincheng Guo, et al. "ReCirc: prediction of circRNA expression and function through probe reannotation of non-circRNA microarrays." Molecular Omics 15, no. 2 (2019): 150–63. http://dx.doi.org/10.1039/c8mo00252e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Wullschleger, Stan D., and Stephen P. Difazio. "Emerging Use of Gene Expression Microarrays in Plant Physiology." Comparative and Functional Genomics 4, no. 2 (2003): 216–24. http://dx.doi.org/10.1002/cfg.277.

Повний текст джерела
Анотація:
Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies tha
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Lederman, Lynne. "Microarrays." BioTechniques 44, no. 6 (2008): 729–33. http://dx.doi.org/10.2144/000112852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Lederman, Lynne. "Microarrays." BioTechniques 47, no. 2 (2009): 659–61. http://dx.doi.org/10.2144/000113213.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Tuma, Rabiya S. "Microarrays." Oncology Times 25, no. 14 (2003): 48–51. http://dx.doi.org/10.1097/01.cot.0000289312.60141.d6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Plomin, Robert, and Leonard C. Schalkwyk. "Microarrays." Developmental Science 10, no. 1 (2007): 19–23. http://dx.doi.org/10.1111/j.1467-7687.2007.00558.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Christie, Jason D. "Microarrays." Critical Care Medicine 33, Suppl (2005): S449—S452. http://dx.doi.org/10.1097/01.ccm.0000186078.26361.96.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Speed, Terry, and Hongyu Zhao. "Microarrays." Statistical Methods in Medical Research 18, no. 6 (2009): 531–32. http://dx.doi.org/10.1177/0962280209352042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

McKay, David. "Microarrays." Trends in Biotechnology 19, no. 6 (2001): 203. http://dx.doi.org/10.1016/s0167-7799(01)01675-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Rao, J. Sunil, and Meredith Bond. "Microarrays." Circulation Research 88, no. 12 (2001): 1226–27. http://dx.doi.org/10.1161/hh1201.093165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Fathallah-Shaykh, Hassan M. "Microarrays." Archives of Neurology 62, no. 11 (2005): 1669. http://dx.doi.org/10.1001/archneur.62.11.1669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Kusi-Appiah, A. E., T. W. Lowry, E. M. Darrow, et al. "Quantitative dose–response curves from subcellular lipid multilayer microarrays." Lab on a Chip 15, no. 16 (2015): 3397–404. http://dx.doi.org/10.1039/c5lc00478k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Campanero-Rhodes, María Asunción, Enrique Llobet, José Antonio Bengoechea, and Dolores Solís. "Bacteria microarrays as sensitive tools for exploring pathogen surface epitopes and recognition by host receptors." RSC Advances 5, no. 10 (2015): 7173–81. http://dx.doi.org/10.1039/c4ra14570d.

Повний текст джерела
Анотація:
We have developed a readily adaptable microarray technology for high-throughput screening of pathogen-binding biomolecules and inhibitors of pathogen–counter-receptor interactions, based on the generation of bacteria microarrays.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Campbell, A. Malcolm, Mary Lee S. Ledbetter, Laura L. M. Hoopes, et al. "Genome Consortium for Active Teaching: Meeting the Goals of BIO2010." CBE—Life Sciences Education 6, no. 2 (2007): 109–18. http://dx.doi.org/10.1187/cbe.06-10-0196.

Повний текст джерела
Анотація:
The Genome Consortium for Active Teaching (GCAT) facilitates the use of modern genomics methods in undergraduate education. Initially focused on microarray technology, but with an eye toward diversification, GCAT is a community working to improve the education of tomorrow's life science professionals. GCAT participants have access to affordable microarrays, microarray scanners, free software for data analysis, and faculty workshops. Microarrays provided by GCAT have been used by 141 faculty on 134 campuses, including 21 faculty that serve large numbers of underrepresented minority students. An
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Jack, Philippa, and David Boyle. "DNA microarrays for pathogen detection and characterisation." Microbiology Australia 27, no. 2 (2006): 68. http://dx.doi.org/10.1071/ma06068.

Повний текст джерела
Анотація:
DNA microarrays have three main potential diagnostic uses in clinical microbiology: detection of known pathogens, pathogen typing and novel pathogen discovery. Although DNA microarray platforms offer the ability to screen for a large number of agents in parallel, sensitivity is dependent on the ability to obtain adequate amounts of pathogen nucleic acids from collected samples. In general, high levels of sensitivity require a PCR amplification step using specific primer sets, subsequently reducing the overall scope of the microarray assay. At present, relatively high costs, restricted sample t
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Wellhausen, Robert, and Harald Seitz. "Facing Current Quantification Challenges in Protein Microarrays." Journal of Biomedicine and Biotechnology 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/831347.

Повний текст джерела
Анотація:
The proteome is highly variable and differs from cell to cell. The reasons are posttranslational modifications, splice variants, and polymorphisms. Techniques like next-generation sequencing can only give an inadequate picture of the protein status of a cell. Protein microarrays are able to track these changes on the level they occur: the proteomic level. Therefore, protein microarrays are powerful tools for relative protein quantification, to unveil new interaction partners and to track posttranslational modifications. This papers gives an overview on current protein microarray techniques and
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Khalid, Sabah, Daniela Grazio, Ping Wang, Xiaohui Liu, and Su-Ling Li. "DESIGNING CUSTOMISED GENE EXPRESSION ARRAYS BASED ON SPECIFIC BIOLOGICAL QUESTIONS OR FUNCTIONS." Journal of Integrated Design and Process Science: Transactions of the SDPS, Official Journal of the Society for Design and Process Science 11, no. 3 (2007): 69–83. http://dx.doi.org/10.3233/jid-2007-11306.

Повний текст джерела
Анотація:
The declaration "DNA microarrays serve as powerful tools for the global characterization of gene expression" is widely accepted by the scientific community exploiting microarray technology. With the inherent ability to distinguish between the expression levels of genes, microarrays have the power to provide the researcher with a direction for further exploration. However, the immediate results from microarray experiments require further mining to determine the genes, which have been differentially expressed. This narrows down the dataset to those genes that are of most interest to the research
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Shao, Weiping, Zhimin Zhou, Isabelle Laroche, et al. "Optimization of Rolling-Circle Amplified Protein Microarrays for Multiplexed Protein Profiling." Journal of Biomedicine and Biotechnology 2003, no. 5 (2003): 299–307. http://dx.doi.org/10.1155/s1110724303209268.

Повний текст джерела
Анотація:
Protein microarray-based approaches are increasingly being used in research and clinical applications to either profile the expression of proteins or screen molecular interactions. The development of high-throughput, sensitive, convenient, and cost-effective formats for detecting proteins is a necessity for the effective advancement of understanding disease processes. In this paper, we describe the generation of highly multiplexed, antibody-based, specific, and sensitive protein microarrays coupled with rolling-circle signal amplification (RCA) technology. A total of 150 cytokines were simulta
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Yu, Xiaobo, Nicole Schneiderhan-Marra, and Thomas O. Joos. "Protein Microarrays for Personalized Medicine." Clinical Chemistry 56, no. 3 (2010): 376–87. http://dx.doi.org/10.1373/clinchem.2009.137158.

Повний текст джерела
Анотація:
Abstract Background: Over the last 10 years, DNA microarrays have achieved a robust analytical performance, enabling their use for analyzing the whole transcriptome or for screening thousands of single-nucleotide polymorphisms in a single experiment. DNA microarrays allow scientists to correlate gene expression signatures with disease progression, to screen for disease-specific mutations, and to treat patients according to their individual genetic profiles; however, the real key is proteins and their manifold functions. It is necessary to achieve a greater understanding of not only protein fun
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Liu, Yan. "Neoglycolipid (NGL)-based oligosaccharide microarrays and highlights of their recent applications in studies of the molecular basis of pathogen–host interactions." Biochemical Society Transactions 38, no. 5 (2010): 1361–67. http://dx.doi.org/10.1042/bst0381361.

Повний текст джерела
Анотація:
Carbohydrate microarray technologies are new developments at the frontier of glycomics that are showing great promise as tools for high-throughput analysis of carbohydrate-mediated interactions and the elucidation of carbohydrate ligands involved not only in endogenous receptor systems, but also pathogen–host interactions. The main advantage of microarray analysis is that a broad range of glycan sequences can be immobilized on solid matrices as minute spots and simultaneously interrogated. Different methodologies have emerged for constructing carbohydrate microarrays. The NGL (neoglycolipid)-b
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Анисимов, Д. С., and D. S. Anisimov. "Projection to Latent Structures as a Strategy for Peptides Microarray Data Analysis." Mathematical Biology and Bioinformatics 12, no. 2 (2017): 435–45. http://dx.doi.org/10.17537/2017.12.435.

Повний текст джерела
Анотація:
Currently various microarrays platforms containing nucleotides, proteins, peptides, glycans and other molecules are used in biomedical research. Number and density of immobilized molecules on microarrays are constantly increasing. Microarray data handling requires optimization of methods for their analysis. Peptide microarrays data analysis has certain characteristics that require non-conventional statistical methods. In this paper we present the results of antibody repertoire analysis in breast cancer patients sera utilizing microchips containing 330,000 peptides. We investigated methods for
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Bae, Jin-Woo, Sung-Keun Rhee, Ja Ryeong Park, et al. "Development and Evaluation of Genome-Probing Microarrays for Monitoring Lactic Acid Bacteria." Applied and Environmental Microbiology 71, no. 12 (2005): 8825–35. http://dx.doi.org/10.1128/aem.71.12.8825-8835.2005.

Повний текст джерела
Анотація:
ABSTRACT The genome-probing microarray (GPM) was developed for quantitative, high-throughput monitoring of community dynamics in lactic acid bacteria (LAB) fermentation through the deposit of 149 microbial genomes as probes on a glass slide. Compared to oligonucleotide microarrays, the specificity of GPM was remarkably increased to a species-specific level. GPM possesses about 10- to 100-fold higher sensitivity (2.5 ng of genomic DNA) than the currently used 50-mer oligonucleotide microarrays. Since signal variation between the different genomes was very low compared to that of cDNA or oligonu
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Miller, Melissa B., and Yi-Wei Tang. "Basic Concepts of Microarrays and Potential Applications in Clinical Microbiology." Clinical Microbiology Reviews 22, no. 4 (2009): 611–33. http://dx.doi.org/10.1128/cmr.00019-09.

Повний текст джерела
Анотація:
SUMMARY The introduction of in vitro nucleic acid amplification techniques, led by real-time PCR, into the clinical microbiology laboratory has transformed the laboratory detection of viruses and select bacterial pathogens. However, the progression of the molecular diagnostic revolution currently relies on the ability to efficiently and accurately offer multiplex detection and characterization for a variety of infectious disease pathogens. Microarray analysis has the capability to offer robust multiplex detection but has just started to enter the diagnostic microbiology laboratory. Multiple mi
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Gryadunov, D. A., B. L. Shaskolskiy, T. V. Nasedkina, A. Yu Rubina, and A. S. Zasedatelev. "The EIMB Hydrogel Microarray Technology: Thirty Years Later." Acta Naturae 10, no. 4 (2018): 4–18. http://dx.doi.org/10.32607/20758251-2018-10-4-4-18.

Повний текст джерела
Анотація:
Biological microarrays (biochips) are analytical tools that can be used to implement complex integrative genomic and proteomic approaches to the solution of problems of personalized medicine (e.g., patient examination in order to reveal the disease long before the manifestation of clinical symptoms, assess the severity of pathological or infectious processes, and choose a rational treatment). The efficiency of biochips is predicated on their ability to perform multiple parallel specific reactions and to allow one to study the interactions of biopolymer molecules, such as DNA, proteins, glycans
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ulyashova, Mariya M., Galina V. Presnova, Anna A. Filippova, Vitaly G. Grigorenko, Alexey M. Egorov та Maya Yu Rubtsova. "Multiplex Microarrays in 96-Well Plates Photoactivated with 4-Azidotetrafluorobenzaldehyde for the Identification and Quantification of β-Lactamase Genes and Their RNA Transcripts". Current Issues in Molecular Biology 46, № 1 (2023): 53–66. http://dx.doi.org/10.3390/cimb46010005.

Повний текст джерела
Анотація:
Antibiotic-resistant bacteria represent a global issue that calls for novel approaches to diagnosis and treatment. Given the variety of genetic factors that determine resistance, multiplex methods hold promise in this area. We developed a novel method to covalently attach oligonucleotide probes to the wells of polystyrene plates using photoactivation with 4-azidotetrafluorobenzaldehyde. Then, it was used to develop the technique of microarrays in the wells. It consists of the following steps: activating polystyrene, hybridizing the probes with biotinylated target DNA, and developing the result
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Gryadunov, Dmitry, Boris Shaskolskiy, Tatyana Nasedkina, Alla Rubina, and Alexander Zasedatelev. "The EIMB Hydrogel Microarray Technology: Thirty Years Later." Acta Naturae 10, no. 39(4) (2018): 4–18. https://doi.org/10.5281/zenodo.2553175.

Повний текст джерела
Анотація:
Biological microarrays (biochips) are analytical tools that can be used to implement complex integrative genomic and proteomic approaches to the solution of problems of personalized medicine (e.g., patient examination in order to reveal the disease long before the manifestation of clinical symptoms, assess the severity of pathological or infectious processes, and choose a rational treatment). The efficiency of biochips is predicated on their ability to perform multiple parallel specific reactions and to allow one to study the interactions of biopolymer molecules, such as DNA, proteins, glycans
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Vengesai, Arthur, Maritha Kasambala, Hamlet Mutandadzi, Tariro L. Mduluza-Jokonya, Takafira Mduluza, and Thajasvarie Naicker. "Scoping review of the applications of peptide microarrays on the fight against human infections." PLOS ONE 17, no. 1 (2022): e0248666. http://dx.doi.org/10.1371/journal.pone.0248666.

Повний текст джерела
Анотація:
Introduction This scoping review explores the use of peptide microarrays in the fight against infectious diseases. The research domains explored included the use of peptide microarrays in the mapping of linear B-cell and T cell epitopes, antimicrobial peptide discovery, immunosignature characterisation and disease immunodiagnostics. This review also provides a short overview of peptide microarray synthesis. Methods Electronic databases were systematically searched to identify relevant studies. The review was conducted using the Joanna Briggs Institute methodology for scoping reviews and data c
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Chagovetz, Alexander, and Steve Blair. "Real-time DNA microarrays: reality check." Biochemical Society Transactions 37, no. 2 (2009): 471–75. http://dx.doi.org/10.1042/bst0370471.

Повний текст джерела
Анотація:
DNA microarrays are plagued with inconsistent quantifications and false-positive results. Using established mechanisms of surface reactions, we argue that these problems are inherent to the current technology. In particular, the problem of multiplex non-equilibrium reactions cannot be resolved within the framework of the existing paradigm. We discuss the advantages and limitations of changing the paradigm to real-time data acquisition similar to real-time PCR methodology. Our analysis suggests that the fundamental problem of multiplex reactions is not resolved by the real-time approach itself.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

A Abdo, M., and P. J Hudson. "Protein microarrays in clinical microbiology." Microbiology Australia 27, no. 2 (2006): 78. http://dx.doi.org/10.1071/ma06078.

Повний текст джерела
Анотація:
Clinical microbiology laboratories have, in the past, broadly adopted new molecular biology techniques and automation. In the near future, the adoption of protein microarray technology has the potential to revolutionise the field in a manner similar to that of polymerase chain reaction (PCR). With the advantages of far greater sensitivity, parallel experimentation, reduced sample consumption and cost-per-test, the development of protein microarrays has come about through the realisation that mRNA levels do not necessarily correlate with protein expression.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Lacroix, M., N. Zammatteo, J. Remacle, and G. Leclercq. "A Low-Density DNA Microarray for Analysis of Markers in Breast Cancer." International Journal of Biological Markers 17, no. 1 (2002): 5–23. http://dx.doi.org/10.1177/172460080201700102.

Повний текст джерела
Анотація:
Breast cancer remains a major cause of death in women from Western countries. In the near future, advances in both nucleic acids technology and tumor biology should be widely exploited to improve the diagnosis, prognosis, and outcome prediction of this disease. The DNA microarray, also called biochip, is a promising tool for performing massive, simultaneous, fast, and standardized analyses of multiple molecular markers in tumor samples. However, most currently available microarrays are expensive, which is mainly due to the amount (several thousands) of different DNA capture sequences that they
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Schmidberger, Markus, Esmeralda Vicedo, and Ulrich Mansmann. "affyPara—a Bioconductor Package for Parallelized Preprocessing Algorithms of Affymetrix Microarray Data." Bioinformatics and Biology Insights 3 (January 2009): BBI.S3060. http://dx.doi.org/10.4137/bbi.s3060.

Повний текст джерела
Анотація:
Microarray data repositories as well as large clinical applications of gene expression allow to analyse several hundreds of microarrays at one time. The preprocessing of large amounts of microarrays is still a challenge. The algorithms are limited by the available computer hardware. For example, building classification or prognostic rules from large microarray sets will be very time consuming. Here, preprocessing has to be a part of the cross-validation and resampling strategy which is necessary to estimate the rule's prediction quality honestly. This paper proposes the new Bioconductor packag
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Garosi, Paola, Carlotta De Filippo, Marjan van Erk, Philippe Rocca-Serra, Susanna-Assunta Sansone, and Ruan Elliott. "Defining best practice for microarray analyses in nutrigenomic studies." British Journal of Nutrition 93, no. 4 (2005): 425–32. http://dx.doi.org/10.1079/bjn20041385.

Повний текст джерела
Анотація:
Microarrays represent a powerful tool for studies of diet–gene interactions. Their use is, however, associated with a number of technical challenges and potential pitfalls. The cost of microarrays continues to drop but is still comparatively high. This, coupled with the complex logistical issues associated with performing nutritional microarray studies, often means that compromises have to be made in the number and type of samples analysed. Additionally, technical variations between array platforms and analytical procedures will almost inevitably lead to differences in the transcriptional resp
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Mezzasoma, Letizia, Tito Bacarese-Hamilton, Manlio Di Cristina, Ruggero Rossi, Francesco Bistoni, and Andrea Crisanti. "Antigen Microarrays for Serodiagnosis of Infectious Diseases." Clinical Chemistry 48, no. 1 (2002): 121–30. http://dx.doi.org/10.1093/clinchem/48.1.121.

Повний текст джерела
Анотація:
Abstract Background: Progress in robotic printing technology has allowed the development of high-density nucleic acid and protein arrays that have increased the throughput of a variety of assays. We generated protein microarrays by printing microbial antigens to simultaneously determine in human sera antibodies directed against Toxoplasma gondii, rubella virus, cytomegalovirus (CMV), and herpes simplex virus (HSV) types 1 and 2 (ToRCH antigens). Methods: The antigens were printed on activated glass slides with high-speed robotics. The slides were incubated first with serum samples and subseque
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!