Добірка наукової літератури з теми "Mixing losses"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mixing losses".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Mixing losses"
Rose, M. G., and N. W. Harvey. "Turbomachinery Wakes: Differential Work and Mixing Losses." Journal of Turbomachinery 122, no. 1 (February 1, 1999): 68–77. http://dx.doi.org/10.1115/1.555429.
Повний текст джерелаZdobnov, M. I., N. A. Lavrov, and V. V. Shishov. "Analysis of losses in the mixing section of the central air conditioner using the entropy-statistical method." MATEC Web of Conferences 324 (2020): 03005. http://dx.doi.org/10.1051/matecconf/202032403005.
Повний текст джерелаGao, J., Q. Zheng, G. Yue, and L. Sun. "Control of shroud leakage flows to reduce mixing losses in a shrouded axial turbine." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226, no. 5 (October 3, 2011): 1263–77. http://dx.doi.org/10.1177/0954406211423324.
Повний текст джерелаKasumova, Rena J. "Four wave mixing and compensating losses in metamaterials." Superlattices and Microstructures 121 (September 2018): 86–91. http://dx.doi.org/10.1016/j.spmi.2018.07.013.
Повний текст джерелаArbel, A., A. Shklyar, D. Hershgal, M. Barak, and M. Sokolov. "Ejector Irreversibility Characteristics." Journal of Fluids Engineering 125, no. 1 (January 1, 2003): 121–29. http://dx.doi.org/10.1115/1.1523067.
Повний текст джерелаSchobeiri, M. T., and K. Pappu. "Optimization of Trailing Edge Ejection Mixing Losses: A Theoretical and Experimental Study." Journal of Fluids Engineering 121, no. 1 (March 1, 1999): 118–25. http://dx.doi.org/10.1115/1.2821991.
Повний текст джерелаMoore, J., and R. Y. Adhye. "Secondary Flows and Losses Downstream of a Turbine Cascade." Journal of Engineering for Gas Turbines and Power 107, no. 4 (October 1, 1985): 961–68. http://dx.doi.org/10.1115/1.3239842.
Повний текст джерелаLlobet, J. R., R. J. Gollan, and I. H. Jahn. "Effect of scramjet inlet vortices on fuel plume elongation and mixing rate." Aeronautical Journal 123, no. 1265 (June 21, 2019): 1032–52. http://dx.doi.org/10.1017/aer.2019.45.
Повний текст джерелаJackson, D. J., K. L. Lee, P. M. Ligrani, and P. D. Johnson. "Transonic Aerodynamic Losses Due to Turbine Airfoil, Suction Surface Film Cooling." Journal of Turbomachinery 122, no. 2 (February 1, 1999): 317–26. http://dx.doi.org/10.1115/1.555455.
Повний текст джерелаSchobeiri, T. "Optimum Trailing Edge Ejection for Cooled Gas Turbine Blades." Journal of Turbomachinery 111, no. 4 (October 1, 1989): 510–14. http://dx.doi.org/10.1115/1.3262301.
Повний текст джерелаДисертації з теми "Mixing losses"
Gilson, Laura (Laura Marie). "Mitigation of losses from hydrodynamic mixing in a hydrogen bromine Laminar flow battery." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103462.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 63-64).
The hydrogen bromine laminar flow battery is a promising technology for grid-scale energy storage. It dispenses with the expensive membrane used in traditional flow batteries, instead using laminar flow to maintain the separation of fluid streams. It also takes advantage of powerful, inexpensive chemical reactants. However, mixing between the fluid streams within the battery reduces its single-pass performance and cyclability. Conditions at the inlet junction where oxidant and electrolyte streams come together are thought to influence mixing. This work investigates the relationship between fluid flow at the inlet junction, mixing, and battery performance. Matching electrolyte- and oxidant-stream flow rates or velocities is predicted to cause less mixing than employing hydrodynamic focusing of the oxidant stream. When hydrodynamic focusing is used in channels with heights on the order 500 [mu]m or less, numerical simulations show recirculating flows at the inlet junction and experimental results show a decrease in limiting current. However, for matching inlet velocities or flow rates experimental results show limiting current consistent with predictions that assume no mixing. This result shows a path forward achieving higher power density in the hydrogen bromine laminar flow battery by prioritizing symmetry of the inlet flow conditions as the channel height is decreased.
by Laura M. Gilson.
S.M.
Casey, Timothy. "The aerodynamic losses with the addition of film cooling in a high-speed annular cascade." Honors in the Major Thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1375.
Повний текст джерелаBachelors
Engineering and Computer Science
Mechanical Engineering
Firrito, Alessio. "Caractérisation de la turbulence et du mélange dans le canal inter-turbine." Thesis, Toulouse, ISAE, 2022. http://www.theses.fr/2022ESAE0004.
Повний текст джерелаReducing fuel consumption in aeronautics is one of the main areas of research, in order to reduce the environmental footprint of aviation, but also to reduce aircraft operational cost. In addition to studying disruptive technologies, engine manufacturers are also working on the incremental optimisation of turbomachinery to increase efficiency, reduce weight and facilitate integration.Turbines are both the heaviest engine components and those whose efficiency has the greatest impact on specific fuel consumption. The link between the high-pressure and the low-pressure turbine is provided by the inter-turbine duct, studied in this thesis.During the last twenty years, academics and companies have been trying to optimise this component, in order to make it shorter and more aerodynamically efficient. This optimisation process is constrained by two main difficulties. Firstly, the lack of knowledge of the high-pressure turbine outlet flow, which prevent accuracy on non-homogeneities (distortion) of the inlet flow quantification. Secondly, divergent shape of the walls amplifies these inlet distortions, increasing the mixing losses.The studies carried out aim at error quantification on the prediction of the inter-turbine duct performances by numerical simulations, induced by an improper modelling of mixing losses.In a first step, an industrial configuration of a test bench is analysed, in order to demonstrate the impact of an incorrect description of the flow distortions on the performances of the inter-turbine duct. Several steady and unsteady RANS numerical simulations have been performed to answer this question, and compared to experiments. The calculated mixing losses show a strong dependence of the different mechanisms on the distortion itself, and on the inlet turbulence. Thus, a more complete understanding of the interaction mechanism between distortion and turbulence is necessary for the proper design of the component. However, these are two flow characteristics that are poorly known at high-pressure turbine outlet, due to measuring difficulties in such environments.Once the main mechanism has been identified, two simplifications of the geometry will be proposed, in order to study separately the effects of the divergence of the external walls (diffusion) and of the deflection of the blade, on the mixing losses.Concerning diffusion, the evolution of a wake in a divergent has been studied on an academic case to better understand and quantify the mixing in such environments. The simulations highlight the link between losses and inlet turbulence. A LES simulation allows a better understanding of this interaction phenomenon, and to verify the validity of the two-equation models used in RANS approach, for which anisotropic turbulence behaviour is not modelled.Concerning the influence of the deviation, the evolution of the mixing losses, which decrease or increase with the deviation, has been an open debate since the 1950s in turbine environments. Until now, the scientific community has tried to answer this question through complex and time-resolved analyses of conventional turbines. The originality and simplicity of the approach proposed in this work is based on a comparison of two co- and contra-rotating turbine geometries, studing the wake in its own generation frame, without using complex post-processing.Finally, the results and knowledge gained from the simplified configurations will be applied to the industrial geometry, and will result in recommendations for the sizing of the inter-turbine channel
NOBRE, CAMILA SEABRA. "MEASUREMENT OF POLARIZATION DEPENDENT LOSS USING FREQUENCY MIXING IN PHOTODIODES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25739@1.
Повний текст джерелаCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Este trabalho apresenta um método teórico e experimental para medir Perda Dependente de Polarização (PDL) em sistemas ópticos. Este método basea-se na forma como duas componentes de polarização ortogonais da luz moduladas em amplitude por duas frequências distintas são acopladas no detector após a transmissão pelo dispositivo sob caracterização. No presente trabalho é realizado um estudo acerca das propriedades da luz e das técnicas tradicionais utlizadas para medir PDL. Antes da caracterização das medidas de PDL, foi realizado o alinhamento do dispositivo de teste (DUT), ou seja, do sistema que vai emular a PDL, a fim de garantir que o mesmo estivesse com as perdas ópticas minimizadas. Em seguida, conectou-se o DUT à configuração montada no laboratório, sendo realizado os ajustes de polarização e supressão das portadoras ópticas. Neste método é possível calcular o valor da PDL e da na orientação na Esfera de Poincaré.
This work presents a theoretic and experimental method for Polarization Dependent Loss (PDL) measurement in optical systems. This method is based on how two orthogonal polarization components both modulated in amplitude by two different frequency are coupled in the detector. In this present work a study is performed about light properties and traditional techniques used to peform PDL measurement. Before the characterization of PDL measures the alignment of the device under test (DUT) was performed to make sure that optical losses were minimized in the system which will emulate the PDL. Then, the DUT was connected to the experimental setup to optical carriers suppression and polarization alignment. In this method is possible to calculate the PDL value and its orientation on the Poincaré sphere.
Pavlíček, David. "CFD modelování mísení kapalin v potrubí." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-387733.
Повний текст джерелаMennesson, Stéphane. "Les droits sur choses de genre." Thesis, La Réunion, 2017. http://www.theses.fr/2017LARE0041/document.
Повний текст джерелаThe purpose of this study is to demonstrate the possibility of existence of rights over generic things, i.e things whose constitution is determined in consideration of generic features, and to present its implications. Property law has, historically, never admitted the fact that a right could be established on things other than those which are individually determined, and can be refered to as "this" thing. Rights over generic things are, nevertheless, a reality and therefore deserved to be recognized. They have two main characteristics. First of all, they have the ability to survive the mixing of their object with other identical things. They can also, in a rather important number of cases, survive the material or juridical loss of their object
Fiore, Maxime. "Influence of cavity flow on turbine aerodynamics." Thesis, Toulouse, ISAE, 2019. http://www.theses.fr/2019ESAE0013/document.
Повний текст джерелаIn order to deal with high temperatures faced by the components downstreamof the combustion chamber, some relatively cold air is bled at the compressor.This air feeds the cavities under the turbine main annulus and cool down the rotordisks ensuring a proper and safe operation of the turbine. This thesis manuscriptintroduces a numerical study of the effect of the cavity flow close to the turbine hubon its aerodynamic performance. The interaction phenomena between the cav-ity andmain annulus flow are not currently fully understood. The study of these phenomenais performed based on different numerical approaches (RANS, LES and LES-LBM)applied to two configurations for which experimental results are avail-able. A linearcascade configuration with an upstream cavity and various rim seal geometries(interface between rotor and stator platform) and cavity flow rate avail-able. Arotating configuration that is a two stage turbine including cavities close to realisticindustrial configurations. Additional losses incurred by the cavity flow are measuredand studied using a method based on exergy (energy balance in the purpose togenerate work)
Kosmata, Marcel. "Elastische Rückstoßatomspektrometrie leichter Elemente mit Subnanometer-Tiefenauflösung." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-84041.
Повний текст джерелаIn this thesis the QQDS magnetic spectrometer that is used for high resolution ion beam analysis (IBA) of light elements at the Helmholtz-Zentrum Dresden-Rossendorf is presented for the first time. In addition all parameters are investigated that influence the analysis. Methods and models are presented with which the effects can be minimised or calculated. There are five focal points of this thesis. The first point is the construction and commissioning of the QQDS magnetic spectrometer, the corresponding scattering chamber with all the peripherals and the detector, which is specially developed for high resolution elastic recoil detection. Both the reconstructed spectrometer and the detector were adapted to the specific experimental conditions needed for high-resolution Ion beam analysis of light elements and tested for routine practice. The detector consists of two compo-nents. At the back end of the detector a Bragg ionization chamber is mounted, which is used for the particle identification. At the front end, directly behind the entrance window a proportional counter is mounted. This proportional counter includes a high-resistance anode. Thus, the position of the particles is determined in the detector. The following two points concern fundamental studies of ion-solid interaction. By using a magnetic spectrometer the charge state distribution of the particles scattered from the sample after a binary collision is both possible and necessary for the analysis. For this reason the charge states are measured and compared with existing models. In addition, a model is developed that takes into account the charge state dependent energy loss. It is shown that without the application of this model the depth profiles do not correspond with the quantitative measurements by conventional IBA methods and with the thickness obtained by transmission electron microscopy. The second fundamental ion-solid interaction is the damage and the modification of the sample that occurs during heavy ion irradiation. It is shown that the used energies occur both electronic sputtering and electronically induced interface mixing. Electronic sputtering is minimised by using optimised beam parameters. For most samples the effect is below the detection limit for a fluence sufficient for the analysis. However, the influence of interface mixing is so strong that it has to be included in the analysis of the layers of the depth profiles. It is concluded from these studies that at the Rossendorf 5 MV tandem accelerator chlorine ions with an energy of 20 MeV deliver the best results. In some cases, such as the analysis of boron, the energy must be reduced to 6.5 MeV in order to retain the electronic sputtering below the detection limit. The fourth focus is the study of the influence of specific sample properties, such as surface roughness, on the shape of a measured energy spectra and respectively on the analysed depth profile. It is shown that knowledge of the roughness of a sample at the surface and at the interfaces for the analysis is needed. In addition, the contribution parameters limiting the depth resolution are calculated and compared with the conventional ion beam analysis. Finally, a comparison is made between the high-resolution ion beam analysis and complementary methods published by other research groups. The fifth and last focus is the analysis of light elements in ultra thin layers. All models presented in this thesis to reduce the influence of beam damage are taken into account. The dynamic non-equilibrium charge state is also included for the quantification of elements. Depth profiling of multilayer systems is demonstrated for systems consisting of SiO2-Si3N4Ox-SiO2 on silicon, boron implantation profiles for ultra shallow junctions and ultra thin oxide layers, such as used as high-k materials
Fernandes, Gil Gonçalo Martins. "Optical and digital signal processing in space-division multiplexing transmission systems." Doctoral thesis, 2018. http://hdl.handle.net/10773/28329.
Повний текст джерелаA presente tese tem por objectivo o desenvolvimento de técnicas de processamento ótico e digital de sinal para sistemas coerentes de transmissão ótica com multiplexagem por diversidade espacial. De acordo com a magnitude de diafonia espacial, estes sistemas podem ser agrupados em sistemas com e sem seletividade espacial, alterando drasticamente o seu princípio de funcionamento. Em sistemas com seletividade espacial, o acoplamento modal é negligenciável e, portanto, um canal espacial arbitrário pode ser encaminhado de forma independente através da rede ótica e pós-processado no recetor ótico coerente. Em sistemas sem seletividade espacial, o acoplamento modal tem um papel fulcral pelo que os canais espaciais são transmitidos e pós-processados conjuntamente. Perante este cenário, foram desenvolvidas técnicas de comutação entre canais espaciais para sistemas com seletividade espacial, ao passo que para sistemas sem seletividade espacial, foram desenvolvidas técnicas digitais de desmultiplexagem espacial. O efeito acústico-ótico foi analisado em fibras com alguns modos (FMF) e em fibras com múltiplos núcleos (MCF) com o intuito de desenvolver técnicas de comutação de sinal no domínio ótico. Em FMF, demonstrou-se numérica e experimentalmente a comutação do sinal entre dois modos de propagação arbitrários através de ondas acústicas transversais ou longitudinais, enquanto, em MCF, a comutação entre dois núcleos arbitrários é mediada por um processo de acoplamento duplamente ressonante induzido por ondas acústicas transversais. Ainda neste contexto, analisou-se a propagação do sinal no regime multimodal não linear. Foi deduzida a equação não linear de Schrödinger na presença de acoplamento modal, posteriormente usada na análise do processo multimodal de mistura de quatro ondas. Nas condições adequadas, é demonstrado que este processo permite a comutação ótica de sinal entre dois modos de propagação distintos. A representação de sinal em esferas de Poincaré de ordem superior é introduzida e analisada com o objetivo de desenvolver técnicas de processamento digital de sinal. Nesta representação, um par arbitrário de sinais tributários é representado numa esfera de Poincaré onde as amostras surgem simetricamente distribuídas em torno de um plano de simetria. Com base nesta propriedade, foram desenvolvidas técnicas de desmultiplexagem espacial e de compensação das perdas dependentes do modo de propagação, as quais são independentes do formato de modulação, não necessitam de sequências de treino e tendem a ser robustas aos desvios de frequência e às flutuações de fase. As técnicas referidas foram validadas numericamente, e o seu desempenho é avaliado mediante a penalidade remanescente na relação sinal-ruído do sinal pós-processado. Por fim, a complexidade destas é analiticamente descrita em termos de multiplicações reais por amostra.
Programa Doutoral em Engenharia Eletrotécnica
Zhen, Yurong. "Plasmonic properties and applications of metallic nanostructures." Thesis, 2013. http://hdl.handle.net/1911/72071.
Повний текст джерелаКниги з теми "Mixing losses"
Riggins, David W. Analysis of losses in supersonic mixing and reacting flows. Washington, D. C: American Institute of Aeronautics and Astronautics, 1991.
Знайти повний текст джерелаCenter, Goddard Space Flight, ed. Abundance anomalies of carbon and nitrogen in the IUE spectra of Algol-type interacting binaries: Final status report, NASA grant NAG 5-1107, 1 December 1988 - 30 November 1990. [Greenbelt, Md.]: NASA Goddard Space Flight Center, 1990.
Знайти повний текст джерелаMufwene, Salikoko, and Anna Maria Escobar, eds. The Cambridge Handbook of Language Contact. Cambridge University Press, 2022. http://dx.doi.org/10.1017/9781009105965.
Повний текст джерелаЧастини книг з теми "Mixing losses"
Steward, Dwight. "Case Study 2: Truck Driver v. Concrete Mixing Company." In Economic Losses and Mitigation after an Employment Termination, 101–5. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88364-5_10.
Повний текст джерелаChambart, P., and Ph Schnoebelen. "Mixing Lossy and Perfect Fifo Channels." In CONCUR 2008 - Concurrency Theory, 340–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85361-9_28.
Повний текст джерелаMaasoumi, Esfandiar. "Mixing Forecasts in Linear Simultaneous Equations Under Quadratic Loss." In Contributions to Consumer Demand and Econometrics, 176–88. London: Palgrave Macmillan UK, 1992. http://dx.doi.org/10.1007/978-1-349-12221-9_10.
Повний текст джерелаHollowell, David, and Icko Iben. "Nucleosynthesis and mixing in low- and intermediate-mass AGB stars." In Atmospheric Diagnostics of Stellar Evolution: Chemical Peculiarity, Mass Loss, and Explosion, 38–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0034548.
Повний текст джерелаDeddy Hermawan, Yulius, Dedy Kristanto, and Hariyadi. "Oil Losses Problem in Oil and Gas Industries." In Crude Oil - New Technologies and Recent Approaches [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97553.
Повний текст джерелаCohen, Andrew S. "The Physical Environment of Lakes." In Paleolimnology. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195133530.003.0007.
Повний текст джерела"Challenges for Diadromous Fishes in a Dynamic Global Environment." In Challenges for Diadromous Fishes in a Dynamic Global Environment, edited by Heidi K. Swanson and Karen A. Kidd. American Fisheries Society, 2009. http://dx.doi.org/10.47886/9781934874080.ch29.
Повний текст джерела"Rotenone in Fisheries: Are the Rewards Worth the Risks?" In Rotenone in Fisheries: Are the Rewards Worth the Risks?, edited by Charles W. Thompson, Craig L. Clyde, Douglas K. Sakaguchi, and Leo D. Lentsch. American Fisheries Society, 2001. http://dx.doi.org/10.47886/9781888569339.ch10.
Повний текст джерелаKrainoi, Apinya, Jobish Johns, Ekwipoo Kalkornsurapranee, and Yeampon Nakaramontri. "Carbon Nanotubes Reinforced Natural Rubber Composites." In Carbon Nanotubes - Redefining the World of Electronics [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95913.
Повний текст джерелаBurch, William R., Gary E. Machlis, and Jo Ellen Force. "Introduction." In The Structure and Dynamics of Human Ecosystems. Yale University Press, 2017. http://dx.doi.org/10.12987/yale/9780300137033.003.0001.
Повний текст джерелаТези доповідей конференцій з теми "Mixing losses"
Rose, Martin G., and Neil W. Harvey. "Turbomachinery Wakes: Differential Work and Mixing Losses." In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-025.
Повний текст джерелаRIGGINS, D., and C. MCCLINTON. "Analysis of losses in supersonic mixing and reacting flows." In 27th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-2266.
Повний текст джерелаSchlüß, Daniel, and Christian Frey. "Mixing Losses in Steady and Unsteady Simulations of Turbomachinery Flows." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75524.
Повний текст джерелаPappu, K. R., and M. T. Schobeiri. "Optimization of Trailing Edge Ejection Mixing Losses: A Theoretical and Experimental Study." In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-523.
Повний текст джерелаEl-Dosoky, M. F., A. Rona, and J. P. Gostelow. "An Analytical Model for Over-Shroud Leakage Losses in a Shrouded Turbine Stage." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27786.
Повний текст джерелаPraisner, T. J., J. P. Clark, T. C. Nash, M. J. Rice, and E. A. Grover. "Performance Impacts Due to Wake Mixing in Axial-Flow Turbomachinery." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90666.
Повний текст джерелаJackson, D. J., K. L. Lee, P. M. Ligrani, P. D. Johnson, and F. O. Soechting. "Transonic Aerodynamic Losses due to Turbine Airfoil, Suction Surface Film Cooling." In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-260.
Повний текст джерелаLyall, M. Eric, Paul I. King, and Rolf Sondergaard. "Endwall Loss and Mixing Analysis of a High Lift Low Pressure Turbine Cascade." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68709.
Повний текст джерелаPopov, Alexander K., Sergey A. Myslivets, Thomas F. George, and Vladimir M. Shalaev. "Compensating Losses in Doped Negative-Index Metamaterials via Four-Wave Mixing and Quantum Control." In Frontiers in Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/fio.2007.fwj4.
Повний текст джерелаYoung, J. B., and R. C. Wilcock. "Modelling the Air-Cooled Gas Turbine: Part 1 — General Thermodynamics." In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0385.
Повний текст джерелаЗвіти організацій з теми "Mixing losses"
Deb, Robin, Paramita Mondal, and Ardavan Ardeshirilajimi. Bridge Decks: Mitigation of Cracking and Increased Durability—Materials Solution (Phase III). Illinois Center for Transportation, December 2020. http://dx.doi.org/10.36501/0197-9191/20-023.
Повний текст джерелаPetrov, M. P., R. Bell, R. V. Budny, N. N. Gorelenkov, S. S. Medley, and S. J. ,. PPPL Zweben. Global Confinement, Sawtooth Mixing, and Stochastic Diffusion Ripple Loss of Fast ICRF-driven H+ Minority Ions in TFTR. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/289897.
Повний текст джерелаSinghvi, Punit, Javier García Mainieri, Hasan Ozer, and Brajendra Sharma. Rheology-Chemical Based Procedure to Evaluate Additives/Modifiers Used in Asphalt Binders for Performance Enhancements: Phase 2. Illinois Center for Transportation, June 2021. http://dx.doi.org/10.36501/0197-9191/21-020.
Повний текст джерела