Добірка наукової літератури з теми "Model at runtime"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Model at runtime".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Model at runtime"
Dokulil, Jiri. "Consistency model for runtime objects in the Open Community Runtime." Journal of Supercomputing 75, no. 5 (November 14, 2018): 2725–60. http://dx.doi.org/10.1007/s11227-018-2681-2.
Повний текст джерелаMaoz, Shahar. "Using Model-Based Traces as Runtime Models." Computer 42, no. 10 (October 2009): 28–36. http://dx.doi.org/10.1109/mc.2009.336.
Повний текст джерелаAl-Sayeh, Hani, Stefan Hagedorn, and Kai-Uwe Sattler. "A gray-box modeling methodology for runtime prediction of Apache Spark jobs." Distributed and Parallel Databases 38, no. 4 (March 10, 2020): 819–39. http://dx.doi.org/10.1007/s10619-020-07286-y.
Повний текст джерелаZhao, Yuhong, and Franz Rammig. "Model-based Runtime Verification Framework." Electronic Notes in Theoretical Computer Science 253, no. 1 (October 2009): 179–93. http://dx.doi.org/10.1016/j.entcs.2009.09.035.
Повний текст джерелаBouhamed, Mohammed Mounir, Gregorio Díaz, Allaoua Chaoui, Oussama Kamel, and Radouane Nouara. "Models@Runtime: The Development and Re-Configuration Management of Python Applications Using Formal Methods." Applied Sciences 11, no. 20 (October 19, 2021): 9743. http://dx.doi.org/10.3390/app11209743.
Повний текст джерелаRicks, Trenton M., Thomas E. Lacy, Brett A. Bednarcyk, Annika Robens-Radermacher, Evan J. Pineda, and Steven M. Arnold. "Solution of the Nonlinear High-Fidelity Generalized Method of Cells Micromechanics Relations via Order-Reduction Techniques." Mathematical Problems in Engineering 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/3081078.
Повний текст джерелаJi-Wei, Liu, and Mao Xin-Jun. "Towards Dynamic Evolution of Runtime Variability Based on Computational Reflection." International Journal of Software Engineering and Knowledge Engineering 28, no. 03 (March 2018): 259–85. http://dx.doi.org/10.1142/s0218194018500092.
Повний текст джерелаLi, Qiuying, Minyan Lu, Tingyang Gu, and Yumei Wu. "Runtime Software Architecture-Based Reliability Prediction for Self-Adaptive Systems." Symmetry 14, no. 3 (March 16, 2022): 589. http://dx.doi.org/10.3390/sym14030589.
Повний текст джерелаYu, Haichao, Haoxiang Li, Humphrey Shi, Thomas S. Huang, and Gang Hua. "Any-Precision Deep Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (May 18, 2021): 10763–71. http://dx.doi.org/10.1609/aaai.v35i12.17286.
Повний текст джерелаBúr, Márton, Gábor Szilágyi, András Vörös, and Dániel Varró. "Distributed graph queries over models@run.time for runtime monitoring of cyber-physical systems." International Journal on Software Tools for Technology Transfer 22, no. 1 (September 26, 2019): 79–102. http://dx.doi.org/10.1007/s10009-019-00531-5.
Повний текст джерелаДисертації з теми "Model at runtime"
Werner, Christopher, Hendrik Schön, Thomas Kühn, Sebastian Götz, and Uwe Aßmann. "Role-based Runtime Model Synchronization." IEEE, 2018. https://tud.qucosa.de/id/qucosa%3A75310.
Повний текст джерелаSaller, Karsten. "Model-Based Runtime Adaptation of Resource Constrained Devices." Phd thesis, Universitäts- und Landesbibliothek Darmstadt, 2015. https://tuprints.ulb.tu-darmstadt.de/4322/1/thesis_final_ULB.pdf.
Повний текст джерелаMendonça, Danilo Filgueira. "Dependability verification for contextual/runtime goal modelling." reponame:Repositório Institucional da UnB, 2015. http://dx.doi.org/10.26512/2015.02.D.18158.
Повний текст джерелаSubmitted by Ana Cristina Barbosa da Silva (annabds@hotmail.com) on 2015-04-27T15:56:38Z No. of bitstreams: 1 2015_DaniloFilgueiraMendonça.pdf: 15442097 bytes, checksum: 3fd8f92515216f0962560e658342894f (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2015-05-14T19:16:39Z (GMT) No. of bitstreams: 1 2015_DaniloFilgueiraMendonça.pdf: 15442097 bytes, checksum: 3fd8f92515216f0962560e658342894f (MD5)
Made available in DSpace on 2015-05-14T19:16:39Z (GMT). No. of bitstreams: 1 2015_DaniloFilgueiraMendonça.pdf: 15442097 bytes, checksum: 3fd8f92515216f0962560e658342894f (MD5)
Um contexto de operação estático não é a realidade para muitos sistemas de software atualmente. Variações de contextos impõe novos desafios ao desenvolvimento de sistemas seguros, o que inclui a ativação de falhas apenas em contextos específicos de operação. A engenharia de requisitos orientada a objetivos (GORE) explicita o ‘por quê’ dos requisitos de um sistema, isto é, a intencionalidade por trás de objetivos do sistema e os meios de se atingi-los. Um Runtime goal model (RGM) adiciona especificação de comportamento ao modelo de objetivos convencional, enquanto um Contextual goal model (CGM) especifica efeitos de contextos sobre objetivos, meios e métricas de qualidade. Visando uma verificação formal da dependabilidade de um Contextual-Runtime goal model (CRGM), nesse trabalho é proposta uma nova abordagem para a análise de dependabilidade orientada a objetivos baseada na técnica de verificação probabilística de modelos. Em particular, são definidas regras para a transformação de um CRGM para um modelo cadeia de Makov de tempo discreto (DTMC) com o qual se possa verificar a confiabilidade de se satisfazer um ou mais objetivos do sistema. Adicionalmente, para diminuir o esforço de análise e aumentar a usabilidade de nossa proposta, um gerador automatizado de código CRGM para DTMC foi implementado e integrado com sucesso à ferramenta gráfica que dá suporte às fases de modelagem e análise de objetivos da metodologia TROPOS. A verificação contextual de dependabilidade resultante reflete os requisitos no CRGM, que podem representar: o projeto de um sistema, cuja verificação ocorreria em fase de projetos; ou um sistema em execução, cujo comportamento pode ser verificado em tempo de execução como parte de uma análise de auto-adaptação com foco em dependabilidade.
A static and stable operation environment is not a reality for many systems nowadays. Context variations impose many threats to systems safety, including the activation of context specific failures. Goal-oriented requirements engineering (GORE) brings forward the ‘why’ of system requirements, i.e., the intentionality behind system goals and the means to meet then. A runtime goal model adds a behaviour specification layer to a conventional design goal model, and a contextual goal model specifies the context effects over system goals, means and qualitative metrics. In order to formally verify the dependability of a CRGM, we propose a new goal-oriented dependability analysis based on the probabilistic model checking technique. In particular, we define rules for the transformation of a CRGM into a DTMC model that can be verified for the reliability of the fulfilment of one or more system goals. Also, to mitigate the analysis overhead and increase the usability of our proposal, we have successfully implemented and integrated a CRGM to DTMC code generator to the graphical tool that supports the goal modelling and analysis phases of the TROPOS development methodology. The resulting contextual dependability verification reflects the system requirements in a CRGM, which may represent: a system-to-be, whose verification would take place at design-time; or a running system, whose behaviour can be verified at runtime as part of a self-adaptation analysis targeting dependability.
Jäkel, Tobias, Martin Weißbach, Kai Herrmann, Hannes Voigt, and Max Leuthäuser. "Position paper: Runtime Model for Role-based Software Systems." IEEE, 2016. https://tud.qucosa.de/id/qucosa%3A75302.
Повний текст джерелаNödtvedt, Sebastian. "CM model view transformations To support runtime forward/backward compatibility." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-442392.
Повний текст джерелаKotrajaras, Vishnu. "Towards an improved memory model for Java." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272386.
Повний текст джерелаZhang, Minjia. "Efficient Runtime Support for Reliable and Scalable Parallelism." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1469557197.
Повний текст джерелаVogel, Thomas, and Holger Giese. "Model-driven engineering of adaptation engines for self-adaptive software : executable runtime megamodels." Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6382/.
Повний текст джерелаDie Entwicklung selbst-adaptiver Software erfordert die Konstruktion einer sogenannten "Adaptation Engine", die mittels Feedbackschleifen die unterliegende Software steuert und anpasst. Die Anpassung selbst wird häufig mittels Laufzeitmodellen, die die laufende Software repräsentieren, und Aktivitäten wie beispielsweise Analyse und Planung, die diese Laufzeitmodelle nutzen, beschrieben. Um das Zusammenspiel zwischen Laufzeitmodellen und Aktivitäten systematisch zu erfassen, wurden Megamodelle zur Laufzeit für selbst-adaptive Software vorgeschlagen. Ein Megamodell zur Laufzeit ist ein spezielles Laufzeitmodell, dessen Elemente Aktivitäten und andere Laufzeitmodelle sind. Folglich erfasst ein Megamodell das Zusammenspiel zwischen verschiedenen Laufzeitmodellen und zwischen Aktivitäten und Laufzeitmodellen als auch die Aktivierung und Ausführung der Aktivitäten. Darauf aufbauend präsentieren wir in diesem Artikel eine Modellierungssprache für ausführbare Megamodelle zur Laufzeit, EUREMA genannt, die aufgrund eines modellgetriebenen Ansatzes die Entwicklung selbst-adaptiver Software erleichtert. Der Ansatz umfasst eine domänen-spezifische Modellierungssprache und einen Laufzeit-Interpreter für Adaptation Engines, insbesondere für Feedbackschleifen. EUREMA Megamodelle werden über die Spezifikationsphase hinaus explizit zur Laufzeit genutzt, um mittels Interpreter Feedbackschleifen direkt auszuführen. Zusätzlich können Megamodelle zur Laufzeit dynamisch geändert werden, um Feedbackschleifen anzupassen. Daher unterstützt EUREMA die Entwicklung selbst-adaptiver Software durch die explizite Spezifikation von Feedbackschleifen, der verwendeten Laufzeitmodelle, und Adaptionsaktivitäten auf einer höheren Abstraktionsebene. Darüber hinaus ermöglicht EUREMA komplexe Lösungskonzepte, die mehrere Feedbackschleifen und deren Interaktion wie auch die hierarchische Komposition von Feedbackschleifen umfassen. Dies unterstützt schließlich das integrierte Zusammenspiel von Selbst-Adaption und Wartung für die Evolution der Software.
Hallou, Nabil. "Runtime optimization of binary through vectorization transformations." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S120/document.
Повний текст джерелаIn many cases, applications are not optimized for the hardware on which they run. This is due to backward compatibility of ISA that guarantees the functionality but not the best exploitation of the hardware. Many reasons contribute to this unsatisfying situation such as legacy code, commercial code distributed in binary form, or deployment on compute farms. Our work focuses on maximizing the CPU efficiency for the SIMD extensions. The first contribution is a lightweight binary translation mechanism that does not include a vectorizer, but instead leverages what a static vectorizer previously did. We show that many loops compiled for x86 SSE can be dynamically converted to the more recent and more powerful AVX; as well as, how correctness is maintained with regards to challenges such as data dependencies and reductions. We obtain speedups in line with those of a native compiler targeting AVX. The second contribution is a runtime auto-vectorization of scalar loops. For this purpose, we use open source frame-works that we have tuned and integrated to (1) dynamically lift the x86 binary into the Intermediate Representation form of the LLVM compiler, (2) abstract hot loops in the polyhedral model, (3) use the power of this mathematical framework to vectorize them, and (4) finally compile them back into executable form using the LLVM Just-In-Time compiler. In most cases, the obtained speedups are close to the number of elements that can be simultaneously processed by the SIMD unit. The re-vectorizer and auto-vectorizer are implemented inside a dynamic optimization platform; it is completely transparent to the user, does not require any rewriting of the binaries, and operates during program execution
Kabir, Sohag, I. Sorokos, K. Aslansefat, Y. Papadopoulos, Y. Gheraibia, J. Reich, M. Saimler, and R. Wei. "A Runtime Safety Analysis Concept for Open Adaptive Systems." Springer, 2019. http://hdl.handle.net/10454/17416.
Повний текст джерелаIn the automotive industry, modern cyber-physical systems feature cooperation and autonomy. Such systems share information to enable collaborative functions, allowing dynamic component integration and architecture reconfiguration. Given the safety-critical nature of the applications involved, an approach for addressing safety in the context of reconfiguration impacting functional and non-functional properties at runtime is needed. In this paper, we introduce a concept for runtime safety analysis and decision input for open adaptive systems. We combine static safety analysis and evidence collected during operation to analyse, reason and provide online recommendations to minimize deviation from a system’s safe states. We illustrate our concept via an abstract vehicle platooning system use case.
This conference paper is available to view at http://hdl.handle.net/10454/17415.
Книги з теми "Model at runtime"
Saddek, Bensalem, and Peled Doron 1962-, eds. Runtime verification: 9th international workshop, RV 2009, Grenoble, France, June 26-28, 2009 : selected papers. Berlin: Springer, 2009.
Знайти повний текст джерелаModeling And Verification Using Uml Statecharts A Working Guide To Reactive System Design Runtime Monitoring And Executionbased Model Checking. Newnes, 2006.
Знайти повний текст джерелаDrusinsky, Doron. Modeling and Verification Using UML Statecharts: A Working Guide to Reactive System Design, Runtime Monitoring and Execution-Based Model Checking. Elsevier Science & Technology Books, 2006.
Знайти повний текст джерелаDrusinsky, Doron. Modeling and Verification Using UML Statecharts: A Working Guide to Reactive System Design, Runtime Monitoring and Execution-Based Model Checking. Elsevier Science & Technology Books, 2011.
Знайти повний текст джерелаCenter, Goddard Space Flight, ed. AEOSS runtime manual for system analysis on Advanced Earth-Orbital Spacecraft Systems. Greenbelt, MD: National Aeronautics and Space Administration, Goddard Space Flight Center, 1990.
Знайти повний текст джерелаЧастини книг з теми "Model at runtime"
Legay, Axel, Benoît Delahaye, and Saddek Bensalem. "Statistical Model Checking: An Overview." In Runtime Verification, 122–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16612-9_11.
Повний текст джерелаLeucker, Martin. "Sliding between Model Checking and Runtime Verification." In Runtime Verification, 82–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35632-2_10.
Повний текст джерелаBulychev, Peter, Alexandre David, Kim G. Larsen, Axel Legay, Guangyuan Li, and Danny Bøgsted Poulsen. "Rewrite-Based Statistical Model Checking of WMTL." In Runtime Verification, 260–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35632-2_25.
Повний текст джерелаShankar, Saumya, Antoine Rollet, Srinivas Pinisetty, and Yliès Falcone. "Bounded-Memory Runtime Enforcement." In Model Checking Software, 114–33. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15077-7_7.
Повний текст джерелаKejstová, Katarína, Petr Ročkai, and Jiří Barnat. "From Model Checking to Runtime Verification and Back." In Runtime Verification, 225–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67531-2_14.
Повний текст джерелаHansen, Jeffery P., Sagar Chaki, Scott Hissam, James Edmondson, Gabriel A. Moreno, and David Kyle. "Input Attribution for Statistical Model Checking Using Logistic Regression." In Runtime Verification, 185–200. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46982-9_12.
Повний текст джерелаDesai, Ankush, Tommaso Dreossi, and Sanjit A. Seshia. "Combining Model Checking and Runtime Verification for Safe Robotics." In Runtime Verification, 172–89. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67531-2_11.
Повний текст джерелаKyle, David, Jeffery Hansen, and Sagar Chaki. "Statistical Model Checking of Distributed Adaptive Real-Time Software." In Runtime Verification, 269–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23820-3_17.
Повний текст джерелаNouri, Ayoub, Balaji Raman, Marius Bozga, Axel Legay, and Saddek Bensalem. "Faster Statistical Model Checking by Means of Abstraction and Learning." In Runtime Verification, 340–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11164-3_28.
Повний текст джерелаShijubo, Junya, Masaki Waga, and Kohei Suenaga. "Efficient Black-Box Checking via Model Checking with Strengthened Specifications." In Runtime Verification, 100–120. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88494-9_6.
Повний текст джерелаТези доповідей конференцій з теми "Model at runtime"
Szvetits, Michael, and Uwe Zdun. "Reusable event types for models at runtime to support the examination of runtime phenomena." In 2015 ACM/IEEE 18th International Conference on Model Driven Engineering Languages and Systems (MODELS). IEEE, 2015. http://dx.doi.org/10.1109/models.2015.7338230.
Повний текст джерелаÅkesson, Alfred, Görel Hedin, Niklas Fors, Rene Schöne, and Johannes Mey. "Runtime modeling and analysis of IoT systems." In MODELS '20: ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3417990.3421397.
Повний текст джерелаKirsch, Christoph M., Luis Lopes, Eduardo R. B. Marques, and Ana Sokolova. "Runtime Programming through Model-Preserving, Scalable Runtime Patches." In 2011 11th International Conference on Application of Concurrency to System Design (ACSD). IEEE, 2011. http://dx.doi.org/10.1109/acsd.2011.28.
Повний текст джерелаKrikava, Filip, Romain Rouvoy, and Lionel Seinturier. "Infrastructure as runtime models: Towards Model-Driven resource management." In 2015 ACM/IEEE 18th International Conference on Model Driven Engineering Languages and Systems (MODELS). IEEE, 2015. http://dx.doi.org/10.1109/models.2015.7338240.
Повний текст джерелаBrand, Thomas, and Holger Giese. "Modeling Approach and Evaluation Criteria for Adaptable Architectural Runtime Model Instances." In 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS). IEEE, 2019. http://dx.doi.org/10.1109/models.2019.00006.
Повний текст джерелаZhou, Liang, and Jian Cao. "Runtime Configurable Service Process Model." In 2010 IEEE 13th International Conference on Computational Science and Engineering (CSE). IEEE, 2010. http://dx.doi.org/10.1109/cse.2010.55.
Повний текст джерелаJordan, Herbert, Thomas Heller, Philipp Gschwandtner, Peter Zangerl, Peter Thoman, Dietmar Fey, and Thomas Fahringer. "The AllScale Runtime Application Model." In 2018 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2018. http://dx.doi.org/10.1109/cluster.2018.00088.
Повний текст джерелаMayerhofer, Tanja, Philip Langer, and Gerti Kappel. "A runtime model for fUML." In the 7th Workshop. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2422518.2422527.
Повний текст джерелаWerner, Christopher, Hendrik Schon, Thomas Kuhn, Sebastian Gotz, and Uwe Assmann. "Role-Based Runtime Model Synchronization." In 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). IEEE, 2018. http://dx.doi.org/10.1109/seaa.2018.00057.
Повний текст джерелаBencomo, Nelly, and Luis H. Garcia Paucar. "RaM: Causally-Connected and Requirements-Aware Runtime Models using Bayesian Learning." In 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS). IEEE, 2019. http://dx.doi.org/10.1109/models.2019.00005.
Повний текст джерелаЗвіти організацій з теми "Model at runtime"
Yu, Haichao, Haoxiang Li, Honghui Shi, Thomas S. Huang, and Gang Hua. Any-Precision Deep Neural Networks. Web of Open Science, December 2020. http://dx.doi.org/10.37686/ejai.v1i1.82.
Повний текст джерелаBaader, Franz, and Marcel Lippmann. Runtime Verification Using a Temporal Description Logic Revisited. Technische Universität Dresden, 2014. http://dx.doi.org/10.25368/2022.203.
Повний текст джерелаBorgwardt, Stefan, and Barbara Morawska. Finding Finite Herbrand Models. Technische Universität Dresden, 2011. http://dx.doi.org/10.25368/2022.182.
Повний текст джерелаChowdhury, Omar, Limin Jia, Deepak Garg, and Anupam Datta. Temporal Mode-Checking for Runtime Monitoring of Privacy Policies. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada609113.
Повний текст джерелаMichalakes, J. Runtime system library for parallel finite difference models with nesting. Office of Scientific and Technical Information (OSTI), March 1997. http://dx.doi.org/10.2172/471385.
Повний текст джерелаGao, Guang, Benoit Meister, David Padua, and Andres Marquez. Final Project Report, DynAX Innovations in Programming Models, Compilers and Runtime Systems for Dynamic Adaptive Event Driven Execution Models. Office of Scientific and Technical Information (OSTI), December 2015. http://dx.doi.org/10.2172/1238249.
Повний текст джерела