Добірка наукової літератури з теми "Molecularly Imprinted Polymers (MIP)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Molecularly Imprinted Polymers (MIP)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Molecularly Imprinted Polymers (MIP)":

1

Vu, Hoang Yen, and A. N. Zyablov. "Determination of preservatives in liquids by piezosensors." Аналитика и контроль 26, no. 2 (2022): 134–40. http://dx.doi.org/10.15826/analitika.2022.26.2.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the current study, piezosensors based on the molecularly imprinted polyimides with imprints of potassium sorbate and sodium benzoate were obtained. Molecularly Imprinted Polymers (MIPs) were synthesized using a polyimide and a non-covalent imprinting technique. It was established that the use of 0.1 g/mL template concentration at the thermochemical stage led to the formation of the maximum number of molecular imprints on the film surface. Using the scanning force microscopy, it was found that the reference polymer film had a uniform surface with a small height difference from 1.4 to 2.6 nm (including 88.94 % of pores with a radius of up to 10 nm) and had good film thickness reproducibility. The surface morphology of films of molecularly imprinted polymers with imprints of potassium sorbate and sodium benzoate had more developed surface, which was associated with the peculiarities of the formation of imprints. In this work, imprinting factor (IF) and selectivity coefficient (k) of the sensor were calculated. Molecularly imprinted polymers had better selectivity, sensitivity, and ability to recognize target template molecules than the reference polymers (non-imprinted polymers). Molecularly imprinted polymer-modified piezoelectric sensors (MIP sensors) have been used to analyze potassium sorbate and sodium benzoate in non-alcoholic drinks. The linear concentration range was identified to be 5 - 500 mg/L and the limit of detection for potassium sorbate and sodium benzoate were 1.6 mg/L and 2 mg/L, respectively. The determination of potassium sorbate and sodium benzoate in non-alcoholic drinks was carried out by MIP sensors and spectrophotometry method. The results obtained by the sensors and the spectrophotometry method were in good agreement. The concentration of preservatives for the potassium sorbate and the sodium benzoate in non-alcoholic drinks was 130 - 176 mg/L and 129 - 146 mg/L, respectively.
2

Bhawani, Showkat Ahmad, Nur'Izzah Binti Juarah, Salma Bakhtiar, Rachel Marcella Roland, Mohamad Nasir Mohamad Ibrahim, Khalid Mohammed Alotaibi, and Abdul Moheman. "Synthesis of Molecularly Imprinted Polymer Nanoparticles for Removal of Sudan III Dye." Asian Journal of Chemistry 34, no. 12 (2022): 3269–74. http://dx.doi.org/10.14233/ajchem.2022.24052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Molecularly imprinted polymer (MIP) nanoparticles of Sudan III dye as template were synthesized by using non-covalent approach. The molecularly imprinted polymers were synthesized in a microemulsion contained Sudan III as a template, acrylic acid (AA) as a monomer, 1,4-butanediol dimethacrylate as a cross-linker and 2,2-azo-bisisobutyronitrile (AIBN) as an initiator. The synthesized beads were characterized by TEM and FTIR. The TEM results revealed the nanosize beads of polymers were produced. The efficiency of imprinted and non-imprinted polymers was evaluated by batch binding studies. The results showed that the MIP 3 (0.1: 6: 10, Sudan III: AA: 1,4-butanediol dimethacrylate) was best among all polymers with highest rebinding efficiency. The removal efficiency of selected MIP 3 in the spiked Sudan III dye river water sample was about 80%. This study was conducted to produce nanosized molecularly imprinted polymers by using microemulsion polymerization technique.
3

Shumyantseva, V. V., T. V. Bulko, I. Kh Baychorov, and A. I. Archakov. "Molecularly imprinted polymers in electro analysis of proteins." Biomeditsinskaya Khimiya 61, no. 3 (2015): 325–31. http://dx.doi.org/10.18097/pbmc20156103325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the review the main approaches to creation of recognition materials capable of competing with biological specific receptors, (polymeric analogs of antibodies or molecularly imprinted polymers, MIP) for the electro analysis of functionally significant proteins such as a myoglobin, troponin T, albumin, human ferritin, calmodulin are considered. The main types of monomers for MIP fabrication, and methods for MIP/protein interactions, such as a surface plasmon resonance (SPR), nanogravimetry with use of the quartz crystal resonator (QCM), spectral and electrochemical methods are discussed. Experimental data on electrochemical registration of a myoglobin using MIP/electrode are presented. For a development of electrochemical sensor systems based on MIPs, o-phenylenediamine (1,2-diaminobenzene was used as a monomer. It was shown that the imprinting factor Imax(MIP)/Imax(NIP), calculated as a myoglobin signal ratio when embedding in MIP to a myoglobin signal when embedding in the polymer received without molecular template (NIP) corresponds 2-4.
4

Wolska, Joanna, and Nasim Jalilnejad Falizi. "Membrane Emulsification Process as a Method for Obtaining Molecularly Imprinted Polymers." Polymers 13, no. 16 (August 23, 2021): 2830. http://dx.doi.org/10.3390/polym13162830.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The membrane emulsification process (ME) using a metallic membrane was the first stage for preparing a spherical and monodisperse thermoresponsive molecularly imprinted polymer (TSMIP). In the second step of the preparation, after the ME process, the emulsion of monomers was then polymerized. Additionally, the synthesized TSMIP was fabricated using as a functional monomer N-isopropylacrylamide, which is thermosensitive. This special type of polymer was obtained for the recognition and determination of trace bisphenol A (BPA) in aqueous media. Two types of molecularly imprinted polymers (MIPs) were synthesized using amounts of BPA of 5 wt.% (MIP-2) and 7 wt.% (MIP-1) in the reaction mixtures. Additionally, a non-imprinted polymer (NIP) was also synthesized. Polymer MIP-2 showed thermocontrolled recognition for imprinted molecules and a higher binding capacity than its corresponding non-imprinted polymer and higher than other molecularly imprinted polymer (MIP-1). The best condition for the sorption process was at a temperature of 35 °C, that is, at a temperature close to the phase transition value for poly(N-isopropylacrylamide). Under these conditions, the highest levels of BPA removal from water were achieved and the highest adsorption capacity of MIP-2 was about 0.5 mmol g−1 (about 114.1 mg g−1) and was approximately 20% higher than for MIP-1 and NIP. It was also observed that during the kinetic studies, under these temperature conditions, MIP-2 sorbed BPA faster and with greater efficiency than its non-imprinted analogue.
5

Ramanavičius, Simonas, Inga Morkvėnaitė-Vilkončienė, Urtė Samukaitė-Bubnienė, Vilma Ratautaitė, Ieva Plikusienė, Roman Viter, and Arūnas Ramanavičius. "Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors." Sensors 22, no. 3 (February 8, 2022): 1282. http://dx.doi.org/10.3390/s22031282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This review is dedicated to the development of molecularly imprinted polymers (MIPs) and the application of MIPs in sensor design. MIP-based biological recognition parts can replace receptors or antibodies, which are rather expensive. Conducting polymers show unique properties that are applicable in sensor design. Therefore, MIP-based conducting polymers, including polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polyaniline and ortho-phenylenediamine are frequently applied in sensor design. Some other materials that can be molecularly imprinted are also overviewed in this review. Among many imprintable materials conducting polymer, polypyrrole is one of the most suitable for molecular imprinting of various targets ranging from small organics up to rather large proteins. Some attention in this review is dedicated to overview methods applied to design MIP-based sensing structures. Some attention is dedicated to the physicochemical methods applied for the transduction of analytical signals. Expected new trends and horizons in the application of MIP-based structures are also discussed.
6

Hasanah, Aliya Nur, Nisa Safitri, Aulia Zulfa, Neli Neli, and Driyanti Rahayu. "Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials." Molecules 26, no. 18 (September 16, 2021): 5612. http://dx.doi.org/10.3390/molecules26185612.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Molecular imprinting is a technique for creating artificial recognition sites on polymer matrices that complement the template in terms of size, shape, and spatial arrangement of functional groups. The main advantage of Molecularly Imprinted Polymers (MIP) as the polymer for use with a molecular imprinting technique is that they have high selectivity and affinity for the target molecules used in the molding process. The components of a Molecularly Imprinted Polymer are template, functional monomer, cross-linker, solvent, and initiator. Many things determine the success of a Molecularly Imprinted Polymer, but the Molecularly Imprinted Polymer component and the interaction between template-monomers are the most critical factors. This review will discuss how to find the interaction between template and monomer in Molecularly Imprinted Polymer before polymerization and after polymerization and choose the suitable component for MIP development. Computer simulation, UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Proton-Nuclear Magnetic Resonance (1H-NMR) are generally used to determine the type and strength of intermolecular interaction on pre-polymerization stage. In turn, Suspended State Saturation Transfer Difference High Resolution/Magic Angle Spinning (STD HR/MAS) NMR, Raman Spectroscopy, and Surface-Enhanced Raman Scattering (SERS) and Fluorescence Spectroscopy are used to detect chemical interaction after polymerization. Hydrogen bonding is the type of interaction that is becoming a focus to find on all methods as this interaction strongly contributes to the affinity of molecularly imprinted polymers (MIPs).
7

Dong, Hong Xing, Qiu Li Jiang, Fei Tong, Zhen Xing Wang, and Jin Yong Tang. "Preparation of Imprinted Polymer with D-Phenylalanin on Silica Surface." Key Engineering Materials 419-420 (October 2009): 541–44. http://dx.doi.org/10.4028/www.scientific.net/kem.419-420.541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Silica gel was modified with polymerizable double bonds on the surface. Then the molecular imprinting polymer imprinted with D-Phenylalanin was grafted on the surface of modified silica gel. The molecularly imprinted polymer (MIP) based on the surface of silica gel was characterized by IR and scanning electron microscopy (SEM). The adsorption property of D-Phenylalanin by MIP was mearsured. The MIP with the combined functional monomers exhibited better adsorption properties and selectivity compared with the corresponding non-imprinted polymers or MIP with the single functional monomer. The material could be used in separation research field, such as packing material of high performance liquid chromatography, solid-phase extraction and so on.
8

Zhou, Qingqing, Zhigang Xu, and Zhimin Liu. "Molecularly Imprinting–Aptamer Techniques and Their Applications in Molecular Recognition." Biosensors 12, no. 8 (July 29, 2022): 576. http://dx.doi.org/10.3390/bios12080576.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Molecular imprinting–aptamer techniques exhibit the advantages of molecular imprinting and aptamer technology. Hybrids of molecularly imprinted polymer–aptamer (MIP–aptamer) prepared by this technique have higher stability, binding affinity and superior selectivity than conventional molecularly imprinted polymers or aptamers. In recent years, molecular imprinting–aptamer technologies have attracted considerable interest for the selective recognition of target molecules in complex sample matrices and have been used in molecular recognition such as antibiotics, proteins, viruses and pesticides. This review introduced the development of molecular imprinting–aptamer-combining technologies and summarized the mechanism of MIP–aptamer formation. Meanwhile, we discussed the challenges in preparing MIP–aptamer. Finally, we summarized the application of MIP–aptamer to the molecular recognition in disease diagnosis, environmental analysis, food safety and other fields.
9

Baek, In-Hyuk, Hyung-Seop Han, Seungyun Baik, Volkhard Helms, and Youngjun Kim. "Detection of Acidic Pharmaceutical Compounds Using Virus-Based Molecularly Imprinted Polymers." Polymers 10, no. 9 (September 1, 2018): 974. http://dx.doi.org/10.3390/polym10090974.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Molecularly imprinted polymers (MIPs) have proven to be particularly effective chemical probes for the molecular recognition of proteins, DNA, and viruses. Here, we started from a filamentous bacteriophage to synthesize a multi-functionalized MIP for detecting the acidic pharmaceutic clofibric acid (CA) as a chemical pollutant. Adsorption and quartz crystal microbalance with dissipation monitoring experiments showed that the phage-functionalized MIP had a good binding affinity for CA, compared with the non-imprinted polymer and MIP. In addition, the reusability of the phage-functionalized MIP was demonstrated for at least five repeated cycles, without significant loss in the binding activity. The results indicate that the exposed amino acids of the phage, together with the polymer matrix, create functional binding cavities that provide higher affinity to acidic pharmaceutical compounds.
10

Le Noir, M., B. Guieysse, and B. Mattiasson. "Removal of trace contaminants using molecularly imprinted polymers." Water Science and Technology 53, no. 11 (May 1, 2006): 205–12. http://dx.doi.org/10.2166/wst.2006.354.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work was conducted to study the potential of molecularly imprinted polymers (MIPs) for the removal of oestradiol at trace concentrations (1 ppm–1 ppb). An MIP synthesised with 17β-oestradiol as template was compared to non-imprinted polymers (NIP) synthesised under the same conditions but without template, a commercial C18 extraction phase and granulated activated carbon. At 1 ppb oestradiol was recovered by 98±2% when using the MIP, compared to 90±1, 79±1, and 84±2% when using the NIP, a C18 phase, or granulated activated carbon, respectively. According to these levels, the MIP was capable of producing an effluent with a quality 5–10 times higher than the other materials. The same levels of oestradiol recovery were achieved with the MIP when supplying 17β-oestradiol at 0.1 ppm. Phenolic compounds added as interferences bound less to the MIP than to the NIP, confirming the selectivity of the MIP. Oestradiol biodegradation was also demonstrated at high concentrations (50 ppm), showing the pollutants can be safely destructed after being enriched by molecular extraction. This study demonstrates the potential of molecular imprinted polymers as a highly efficient specific adsorbent for the removal of trace contaminants.

Дисертації з теми "Molecularly Imprinted Polymers (MIP)":

1

Wagner, Sabine. "Sensory molecularly imprinted polymer (MIP) coatings for nanoparticle- and fiber optic-based assays." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/19808.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Für den Nachweis dieser Schadstoffe in niedrigen Konzentrationsbereichen sind schnelle und empfindliche Analysemethoden erforderlich. Molekular geprägte Polymere (MIPs) wurden als synthetische Materialien entwickelt, um die molekulare Erkennung von natürlichen Rezeptoren nachzuahmen, aufgrund ihrer Fähigkeit, selektiv eine Vielzahl von Analyten zu erkennen, ihre Stabilität und ihrer einfachen Herstellung. Sie sind zunehmend in der chemischen Sensorik als Rezeptormaterial für den Nachweis bestimmter Analyten bei niedrigen Konzentrationen zu finden, insbesondere in Kombination mit Fluoreszenz aufgrund dessen hoher Empfindlichkeit. Ziel dieser Arbeit war die Entwicklung von optischen Sensormaterialien unter Verwendung von MIPs als Erkennungselemente im Zusammenhang mit Fluoreszenz zum sensitiven Nachweis von Herbiziden und Antibiotika in Wasser- und Lebensmittelproben and deren Kombination mit verschiedenen Vorrichtungsformaten für die zukünftige Detektion einer breiten Palette von wichtigen Analyten.
For the detection of these contaminants in low concentration ranges fast and sensitive analytical tools are required. Molecularly imprinted polymers (MIPs) have been used as synthetic materials mimicking molecular recognition by natural receptors due to their ability to recognize selectively a wide range of analytes, their stability and ease of synthesis. They have gained more and more attention in chemical sensing as receptor material for the detection of suitable groups of analytes at low concentrations especially in combination with fluorescence due to the latter’s high sensitivity. This work aimed the development of optical sensor materials using MIPs as recognition elements connected with fluorescence for the sensitive detection of herbicides and antibiotics in water and food samples and their combination with various device formats for the future detection of a wide range of analytes.
2

Li, Bin. "Molecularly imprinted polymers for applications in cosmetology." Thesis, Compiègne, 2013. http://www.theses.fr/2013COMP2083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Un polymère à empreintes moléculaires (MIP) est un récepteur synthétique supramoléculaire, un matériau possédant des cavités pouvant reconnaître spécifiquement une molécule cible. Il est synthétisé en mettant en contact la molécule cible, avec un mélange de monomères fonctionnels et réticulants qui permettent d'obtenir un réseau polymérique tridimensionnel rigide. L'élimination de la molécule empreinte laissera des sites vides complémentaires de cette dernière. Ces cavités sont maintenant capables de la recapturer spécifiquement. Ces polymères sont utilisés dans les domaines tels que l’extraction en phase solide, la chromatographie d’affinité, la catalyse enzymatique, les biocapteurs et la vectorisation des médicaments. Bien que le concept des MIPs a pour origine les travaux réalisés sur des matériaux sol-gel imprimés dans les années 1930, ces derniers sont restés dans l’ombre jusqu’à l'introduction de polymères organiques imprimés plus versatiles. Par rapport aux MIPs organiques, les MIPs sol-gel présentent quelques avantages comme une plus grande stabilité thermique, une meilleure compatibilité avec l'eau et une plus grande porosité. Dans cette thèse, nous avons développé des MIPs organiques et des MIPs sol-gel pour leur application en cosmétologie et pour la vectorisation de médicaments. Dans la première partie, nous présentons des MIPs pouvant adsorber d’une façon spécifique l’acide oléique (OA), un biomarqueur de l’état pelliculaire sur le cuir chevelu. Pour la préparation des MIPs organiques, nous avons employé plusieurs monomères basiques dont l’acryloylaminobenzamidine (AB), que nous avons tout spécialement synthétisé. Tous les MIPs pouvaient lier l’OA mais beaucoup d’interaction non-spécifique était observé. D’autre part, les MIPs sol-gel présentaient une bonne reconnaissance spécifique et une capacité élevée pour OA; par exemple, un MIP de composition OA:APTES:TEOS = 1:1.6:1.7 pouvait adsorber 625 μmol.g-1 de OA dans le sébum artificiel. Des tests pour capturer l’OA sur le stratum corneum et la peau reconstruite (Episkin) ont également été effectués. La pénétration de l’OA sur les deux types de peau était plus faible en présence de MIP que de NIP. Les MIPs comme matériaux désodorisants font l’objet de la deuxième partie de cette thèse. Des MIPs pouvant adsorber les précurseurs de molécules malodorantes comme les conjugués glutamine des acides (E)-3-méthyl-2-hexénoïque (3M2H) et 3-hydroxy-3-méthyl-hexanoïque (3H3MH) ont été préparés. Le N-hexanoyl glutamine et le N-hexanoyl glutamate ont été utilisés comme template. Nous observons que le MIP synthétisé avec AB comme monomère fonctionnel possède la plus grande capacité d'adsorption pour le N-hexanoyl glutamine, ainsi que pour les précurseurs glutamines des molécules malodorantes. Des résultats préliminaires et très prometteurs ont également été obtenus dans la sueur. La dernière partie de cette thèse concerne des MIPs pour la vectorisation de médicaments. L'acide salicylique (SA) est un médicament efficace utilisé dans le traitement de l’acné. Des MIPs organiques et sol-gel contre SA ont été synthétisés. Les MIPs sol-gel ont une plus grande capacité d’adsorption, 180 μmol.g-1, que les MIPs organiques et ils lient le SA sept fois plus que le NIP. Les tests de relargage du SA ont été effectués dans plusieurs milieux, avec la plus grande efficacité dans l’eau pure. En conclusion, les applications de MIPs en cosmétologie et en vectorisation de médicaments ont étés étudiés. Nos résultats montrent que les MIPs sol-gel sont les plus appropriés pour ce type de travail
Molecularly imprinted polymers (MIPs) are tailor-made synthetic receptors possessing specific cavities for a given target molecule. They are produced by introducing, into the polymer precursors, guest molecules that act as templates at the molecular level. Interacting and cross-linking monomers are then copolymerized to form a cast-like shell. After removal of the template, cavities complementary to the template in size, shape and position of functional groups are revealed in the polymer, which can now specifically bind the template. Thanks to these specific molecular recognition properties, MIPs have found applications in areas like bio sensors, solid phase extraction, affinity chromatography, catalysis, and drug delivery. Although the MIP concept originated from imprinted silica in the 1930s, imprinted sol-gel materials received little attention afterwards due to the introduction of the more versatile organic polymers as imprinting matrix. However, compared to organic polymers, sol-gels possess higher thermal stability, better water compatibility and larger inner surface area. There have been many applications to biomolecules in aqueous conditions with sol-gel imprinting materials. In this thesis, we have developed organic and silica sol-gel MIPs for applications in cosmetics and drug delivery. MIPs able to adsorb the dandruff-inducing molecule oleic acid (OA) were produced via both the organic and inorganic routes. In the organic MIPs synthesis, different positively charged monomers were used, one of which, acryloyl aminobenzamidine, was specifically synthesized. Although some binding of oleic acid was obtained, specificity and capacity of these polymers were not satisfying. Sol-gel MIPs, on the other hand, exhibited good specific recognition and high binding capacity for OA. A MIP of the composition OA:APTES:TEOS= 1:1.6:1.7 yielded a capacity of 625 μmol.g-1 in artificial sebum. Furthermore, tests were carried out to capture OA on stratum corneum and reconstructed skin (Episkin). Less penetration of OA was observed in the presence of a MIP than with a non-imprinted control polymer. Deodorant materials are another topic of this thesis. MIPs that are able to adsorb certain precursors of odorant molecules, the glutamine conjugates of (E)-3-methyl-2-hexenoic acid (3M2H) and 3-hydroxy-3-methyl-hexanoic acid (3H3MH) were prepared. N-hexanoyl glutamine and N-hexanoyl glutamate were used as templates. After optimization of the MIP composition, we found that MIPs synthesized with acryloyl aminobenzamidine as functional monomer had the highest adsorption capacity for N-hexanoyl glutamine, and also recognised the glutamine targets of 3M2H and 3H3MH. Some preliminary promising binding results were obtained in artificial sweat. The third part of this work concerns a drug delivery MIP. Salicylic acid (SA) is a drug used to treat acne. SA-imprinted polymers were prepared via both organic imprinting and the sol-gel process.Compared to organic MIPs, sol-gel MIPs have a higher capacity, 180 μmol.g-1, and 7 times higher binding than to a non-imprinted control polymer was observed. Release tests were carried out in different aqueous media, the most efficient drug release was observed in pure water. In conclusion, applications of molecularly imprinted polymers for cosmetics and drug delivery have been investigated. Our results demonstrate the great potential of in particular sol-gel MIPs for these purposes
3

Leibl, Nadja. "Development of molecularly imprinted polymers for chemical sensors." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2446.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse propose une approche rationnelle pour le design de polymères à empreintes moléculaires (MIPs) pour la détection de nitro-explosifs. Les polymères à empreintes moléculaires qui miment la reconnaissance moléculaire biologique, ont l’avantage d’être stables dans des environnements sévères et peuvent adopter différentes formes physiques pour le couplage avec des transducteurs. Leur synthèse est basée sur la co-polymérisation de monomères fonctionnels et réticulants en présence de la molécule cible, ou comme dans cette thèse, d’un analogue ayant une structure proche de celle de la molécule cible. Cela conduit à la formation d’un réseau polymérique tridimensionnel rigide avec des sites de liaison complémentaires en taille, forme et position des groupes fonctionnels de la molécule cible ou de l’analogue. Pour identifier le meilleur monomère fonctionnel pour notre molécule cible, une approche rationnelle basée sur la modélisation moléculaire, la résonance magnétique nucléaire (RMN) et le titrage par calorimétrie isotherme (ITC) a été utilisée. Elle permet d’optimiser le mélange de pré-polymérisation pour identifier le monomère fonctionnel interagissant le plus fortement avec la molécule cible. Les résultats obtenus ont été confrontés à des études de liaison à partir de polymères synthétisés. La formulation polymérique ainsi conçue est intégrée aux surfaces du transducteur sous forme de nanoparticules, de films et de nanoparticules incorporés dans des films de polydopamine électropolymérisés. En plus des polymères traditionnels obtenus par polymérisation radicalaire classique sous forme de particules, des films de MIP à base de polydopamine électropolymérisés ont été étudiés en tant qu'approche alternative pour la détection électrochimique de nitro-explosifs
This thesis proposes a rational design approach towards molecularly imprinted polymers (MIPs) for sensing nitro-explosives. Molecularly imprinted polymers are mimicking biological molecular recognition. They have the advantage to be stable in harsh environments and can be tailored into different physical forms for interfacing with transducers. Their synthesis is based on the co-polymerization of functional and cross-linking monomers in the presence of the target analyte or, as in this thesis, with a structural analogue leading to a rigid three-dimensional polymer network with binding sites complementary to the template in size, shape and position of the functional groups. The choice of the functional monomer was carried out with a rational design approach combining molecular modelling, nuclear magnetic resonance (NMR) and isothermal calorimetry (ITC) studies. This allows to optimize the pre-polymerization mixture in order to get strong complexation between the functional monomer and the template. The obtained results were confronted with binding studies performed on synthesized polymers. The thus designed polymer formulation was interfaced with transducer surfaces in form of nanoparticles, films and nanoparticles embedded into electro-polymerized polydopamine films. In addition to the traditional MIPs by free radical polymerization, molecularly imprinted in-situ electro-polymerized polydopamine films were investigated as an alternative approach for sensing nitro-explosives electrochemically
4

Krstulja, Aleksandra. "Development of molecularly imprinted polymers for the recognition of urinary nucleoside cancer biomarkers." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce rapport de thèse présente l’étude de la technologie des empreintes moléculaires pour le développement de polymères spécifiques et sélectifs envers des biomarqueurs urinaires nucléosidiques du cancer colorectal chez l’Homme. L’objectif principal était de développer des polymères à empreintes moléculaires compatibles aux milieux aqueux en utilisant la technique du « dummy template », l’approche non-covalente and la polymérisation radicalaire en masse. Nous nous sommes concentrés principalement sur la qualité des polymères à partir de leur formulation, c’est-à-dire la spécificité et la sélectivité. Cela a été mené de façon empirique d’abord par la production de poudres issues de polymères monolithiques. Ainsi, pour atteindre les objectifs fixés, nous avons exploré le choix de la molécule « template ». Une étude de modèle est présentée au chapitre 3, en utilisant trois nucléosides 2’,3’,5’-peracétylés comme molécule empreinte dans une approche « dummy template ». Ensuite, en s’appuyant sur la connaissance apportée par le chapitre 3, nous avons développé des polymères à empreintes moléculaires (MIPs) sélectifs de la pseudouridine et de la N7-méthylguanosine dans les chapitres 4 et 5, respectivement, en utilisant la 2’,3’,5’-tri-O-acétylpseudouridine et la 2’,3’,5’-tri-O-acétylguanosine comme templates. L’étude de la rétention des nucléosides recherchés et de leurs analogues structuraux menée par chromatographie en phase liquide et par analyse frontale a permis de déterminer la capacité des différents polymères et de connaître leur comportement dans de l’urine synthétique. Finalement, pour évaluer la possible application de ces polymères dans un échantillon réel, l’urine humaine, la technique de l’extraction sur phase solide à empreintes moléculaires ou MISPE a été développée. Ainsi, une purification sélective des biomarqueurs cibles, tels que la pseudouridine et la N7-méthylguanosine, dans des échantillons d’urines a pu être démontrée
This thesis report presents the exploration of molecularly imprinted polymer (MIP) technology for developing of a sensitive and selective polymers used in urinary nucleoside biomarker recognition. The main goal was to develop water compatible MIPs prepared by a “dummy template” imprinting technology, using a non-covalent approach and radical-polymerization in bulk. We were focusing mostly on the polymer quality in the formulation (rigidity, stability and repeatability). This was chosen empirically first by production of powders from monolithic MIP. Thus, to accomplish the stated goals, we have explored the choice of the template molecule. A model study presented by Chapter 3, using three 2’3’5’-tri-Operacylateduridine nucleosides as templates in a “dummy” template approach was first developed. Then, applying the knowledge of the type of template choice, we developed a selective MIP for recognition of pseudouridine and N7-methylguanosine in the studies presented in Chapter 4 and Chapter 5 respectively. By using 2’3’5’-tri-O-acetylpseudouridine and 2’3’5’-tri-O-acetylguanosine as templates. Chromatographic methods like HPLC retention and frontal analysis were used in the interest of determining the binding capacity of synthesized polymers, and the behavior in synthetic urine. Finally, to evaluate the possible application of these polymers in urine, molecularly imprinted solid phase extraction (MISPE) was developed. Selective purification of urine samples containing pseudouridine and N7-methylguanosine obtained in the end
5

Nestora, Sofia. "Molecularly imprinted polymers as selective sorbents for recognition in complex aqueous samples." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2346/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans cette thèse, nous avons démontré la faisabilité de la préparation de polymères à empreinte moléculaires (MIP) hautement sélectifs pour la reconnaissance dans des matrices aqueuses complexes avec des applications dans les cosmétiques et en technologie alimentaire. Les MIP (de l'anglais molecularly imprinted polymers) sont des récepteurs synthétiques comparables aux anticorps, qui sont synthétisés par co-polymérisation de monomères fonctionnels et réticulants en présence d'un gabarit moléculaire. Leurs propriétés de reconnaissance moléculaire, associées à leur grande stabilité, robustesse mécanique, faible coût et leur synthèse facile les rendent extrêmement intéressants comme matériaux de capture sélective, avec des applications dans les séparations analytiques, la détection et la vectorisation des médicaments. Cependant, leur reconnaissance sélective dans des milieux aqueux reste toujours problématique et c'est l'une des raisons de leur expansion commerciale restreinte. Dans une première partie, nous avons développé un MIP fonctionnant en milieu aqueux pour son application comme ingrédient actif dans un déodorant. Les odeurs corporelles sont principalement dues à des acides gras volatils générés à partir de leurs précurseurs, des conjugués de glutamine par des enzymes hydrolytiques produites à partir de bactéries présentes sur la peau. La plupart des anti-transpirants et des déodorants actuellement commercialisés contiennent des sels d'aluminium et des agents antibactériens non spécifiques, respectivement. Cependant, l'utilisation extrêmement étendue de ces produits nécessite des solutions alternatives en ce qui concerne divers problèmes (environnement, respect de l'écosystème de la peau, toxicité, etc.). Pour cette raison, un MIP a été synthétisé pour capturer les précurseurs conjugués de glutamine afin qu'ils ne soient plus disponibles aux bactéries, empêchant ainsi leur transformation en composés malodorants. Afin de générer des liaisons sélectifs dans des environnements aqueux, un monomère à base d'amidinium qui peut former une interaction électrostatique stoechiométrique forte avec les groupes carboxyle sur le gabarit moléculaire a été synthétisé. Le MIP, mélangé dans une formulation dermo-cosmétique, pourrait capter sélectivement les précurseurs conjugués de glutamine, au milieu d'une multitude d'autres molécules présentes dans la sueur humaine. En outre, le MIP n’affecte pas les bactéries de la peau, ouvrant la voie à des déodorants innovateurs de nouvelle génération, moins problématiques pour la santé. Dans une deuxième partie, nous avons développé une procédure rapide et efficace basée sur l'extraction en phase solide à empreinte moléculaire (MISPE) pour la purification sélective de la bétanine et de son stéréoisomère l’isobétanine à partir d'extraits de betterave. La bétanine est un pigment naturel ayant un fort pouvoir antioxydant et dont les propriétés pharmacologiques sont de plus en plus étudiées. Ce pigment est actuellement utilisé comme simple colorant alimentaire. Dans notre étude, l'acide dipicolinique a été utilisé comme gabarit moléculaire pour la synthèse de MIP, en raison de sa similarité structurelle avec le groupe chromophore de la bétanine. Les procédures MISPE ont été optimisées permettant l'élimination presque complète des glucides issus de la matrice végétale ainsi que la majorité des protéines, ce qui permet d'obtenir un rendement élevé d'extraction de la bétanine / isobétanine en une seule étape. De plus, toute la procédure d'extraction a été réalisée dans des solvants respectueux de l'environnement, tels que l'éthanol ou l'eau. Pour conclure, nous sommes convaincus que ce travail pave le chemin au développement d'une nouvelle génération des MIP fonctionnant en milieu aqueux avec des propriétés de reconnaissance améliorées dans des environnements complexes, qui pourra s'appliquer également à d'autres domaines biotechnologiques et biomédicaux
In this thesis, we have demonstrated the feasibility of preparing highly selective molecularly imprinted polymers (MIPs) for recognition in complex aqueous matrices with applications in cosmetics and food technology. MIPs are synthetic tailor-made receptors, with binding affinities and specificities comparable to those of natural antibodies. Their molecular recognition properties, combined with their high stability, mechanical robustness, low cost and easy synthesis make them extremely attractive as selective capture materials with applications in analytical and preparative separations, sensing and drug delivery, among others. However, their selective recognition in aqueous samples still remains problematic and is one of the reasons for their so far lilited commercial expansion. In the first part, we developed a water compatible MIP for its application as an active ingredient in a deodorant. Body odors are mainly due to volatile fatty acids generated from their glutamine conjugate precursors by hydrolytic enzymes from bacteria present on the skin. Most currently marketed anti-perspirants and deodorants contain, respectively aluminum salts and unspecific antibacterials. However, the extremely wide use of these products requires alternative solutions with regard to various problems (environmental, respect of skin ecosystem, toxicity, etc.). For this reason, a MIP was developed to capture the glutamine conjugate precursors so that they are no longer available to the bacteria, thus preventing their transformation to malodorous compounds. In order to generate binding selectivity in aqueous environments, an amidinium-based monomer which can form a strong stoichiometric electrostatic interaction with the carboxyl groups on the template, was synthesized. The MIP, blended in a dermo-cosmetic formulation, could capture selectively the glutamine precursors, amidst a multitude of other molecules present in human sweat. Furthermore, the MIP did not affect the skin bacteria, paving the way to an innovative and 'safer ' future-generation deodorant. In the second part, we developed a fast and efficient procedure based on molecularly imprinted solid­ phase extraction (MISPE) for the selective clean-up of betanin and its stereoisomer isobetanin from red beetroot extracts. Betanin is a natural pigment with significant antioxidant and biological activities currently used as food colorant. Dipicolinic acid was used as template for the MIP synthesis, because of its structural similarity to the chromophore group of betanin The MISPE procedures were optimized allowing the almost complete removal of carbohydrates and the majority of proteins, resulting in high extraction recovery of betanin / isobetanin in a single step. Moreover, the whole extraction procedure was performed in environmentally friendly solvents with either ethanol or water. To conclude, we believe that this study paves the way towards the development of a new generation of water compatible MIPs with improved recognition properties in highly complex aqueous environments, and should be applicable to other biotechnological and biomedical areas as well
6

Zhao, Yi. "Degradable molecularly imprinted polymers-synthetic antibody mimics for the vectorization of active molecules." Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les polymères à empreintes moléculaires (MIP) sont des matériaux synthétiques capables de mimer les anticorps biologiques. En effet, ils possèdent deux des principales caractéristiques de ces derniers, à savoir : la capacité de reconnaître et de se lier spécifiquement à des molécules cibles. De plus, leur synthèse facile, leur bas coût de production, leur haute spécificité et stabilité par rapport aux anticorps naturels font des MIP une alternative intéressante. En effet, les propriétés de reconnaissance moléculaire des MIP permettent d'envisager leur utilisation dans une vaste gamme d’applications. Ils sont ainsi largement exploités dans les sciences séparatives pour l'analyse d'échantillons environnementaux ou agro-alimentaires, ou comme élément de reconnaissance dans des biocapteurs. Récemment, des applications de ces matériaux dans les domaines biologiques et biomédicaux ont émergé comme pour la détection, l'extraction et l"élimination de molécules indésirables dans l'organisme, la vectorisation ou l'administration contrôlée des médicaments. Dans nos recherches, nous avons développé des MIP dégradables par voie biochimique ou enzymatique, ayant une application potentielle en tant que système de libération contrôlé de molécules. En général, les MIPs sont synthétisés par polymérisation radicalaire libre en utilisant une formulation composée de monomères fonctionnels, d'agents de réticulation, et d'une molécule cible servant à réaliser l'empreinte moléculaire. Dans ce travail de thèse, nous avons utilisé pour la synthèse de MIP dégradable des agents de réticulation clivables contenant, soit une fonction chimique dégradable par voie chimique ou enzymatique (ponts disulfures et phosphatediester), soit un disaccharide issus d'agro-ressources et pouvant être naturellement hydrolysé par des enzymes. En présence d'un réactif spécifique (agent réducteur ou enzyme), les liaisons dites "sensibles" aux réactifs chimiques ou enzymatiques peuvent être clivées, ce qui entraîne une dégradation de la matrice polymérique. Le polymère perdra alors sa capacité de reconnaissance et de liaison à la molécule cible et permettra la libération de celle-ci. Nous pensons donc, que les nouveaux MIP dégradables pourraient avoir un énorme potentiel comme vecteurs "intelligents" dans des applications médicales tels que les systèmes de libération contrôlée de médicament. Finalement, nous avons étudié la dégradation par des microorganismes de la structure de base de ce type de polymères, en utilisant comme modèles des chaines linéaires et réticulées
Molecularly imprinted polymers (MIPs) are biomimetic synthetic receptors that possess two of the most important features of biological antibodies – the ability to recognize and bind specific target molecules. Owing to their easier preparation, lower cost, higher specifity and stability compared to antibodies, they have the potential to be widely applied for environemental and food analysis. Recently, MIPs also emerged in the biochemical field as diagnostic tools, chemicals traps to remove undesirable substance from the body, or drug delivery systems, where usually the combination of biocompatibility and degradability after its use is desirable. Here, we developed biochemically or enzymatically degradable MIPs, which have potential applications as activation-modulated drug delivery systems. In general, MIPs are prepared by radical polymerization of functional monomers and cross-linkers in the presence of a target molecule acting as template. Degradable MIPs were synthesized using cleavable cross-linkers containing a degradable group (disulfide bond or phosphate ester bond) or derived from a natural disaccharide. In the presence of a cleaving reagent (reducing agent or enzyme), the chemo or enzyme-sensitive bond could be cleaved, resulting in the degradation of the polymer matrix. The degraded polymers looses the binding sites structure resulting in the loss of recognition and binding capacity towards the target molecules, and thus in the release of bound molecules. These degradable MIPs provide new opportunities as “smart” vectors for controlled delivery of active molecules in biomedical applications. Finally, the biodegradation of the polymer backbone by bacteria was investigated
7

Tsai, Mei-Hsuan. "Boron containing molecular imprinted polymer (MIP) templates from symmetric and asymmetric diboration of olefins and other boron containing functional polymers." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kaya, Zeynep. "Controlled and localized synthesis of molecularly imprinted polymers for chemical sensors." Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les polymères à empreintes moléculaires (MIP), également appelés "anticorps en plastique", sont des récepteurs biomimétiques synthétiques qui sont capables de reconnaître et lier une molécule cible avec une affinité et une spécificité comparables à celles des récepteurs naturels tels que des enzymes ou des anticorps. En effet, les MIP sont utilisés comme éléments de reconnaissance synthétiques dans les biocapteurs et biopuces pour la détection de petits analytes et les protéines. La technique d'impression moléculaire est basée sur la formation de cavités de reconnaissance spécifiques dans des matrices polymères par un procédé de moulage à l'échelle moléculaire. Pour la conception de capteurs et biopuces, une cinétique d'adsorption et une réponse du capteur rapide, l'intégration des polymères avec des transducteurs, et une haute sensibilité de détection sont parmi les principaux défis. Dans cette thèse, ces problèmes ont été abordés par le développement de nanocomposites MIP / d'or via le greffage du MIP sur les surfaces en utilisant des techniques de polymérisation dédiées comme l'ATRP qui est une technique de polymérisation radicalaire contrôlée (CRP). Ces techniques CRP sophistiquées sont en mesure d'améliorer considérablement les matériaux polymères. L'utilisation de l'ATRP dans le domaine de MIP a été limitée jusqu'à présent en raison de son incompatibilité inhérente avec des monomères acides comme l'acide méthacrylique (MAA), qui est de loin le monomère fonctionnel le plus largement utilisé dans les MIP. Ici, un nouveau procédé est décrit pour la synthèse de MIP par ATRP photo-initiée utilisant fac-[Ir(Ppy)3] comme catalyseur. La synthèse est possible à température ambiante et est compatible avec des monomères acides. Cette étude élargit considérablement la gamme de monomères fonctionnels et de molécules empreintes qui peuvent être utilisés lors de la synthèse de MIP par ATRP. La méthode proposée a été utilisée pour la fabrication de nanocomposites hiérarchiquement organisés sur des surfaces métalliques nanostructurés avec des nano-trous et nano-ilots, présentant des effets plasmoniques pour l'amplification du signal. La synthèse de films de MIP à l'échelle du nanomètre localisés sur la surface d'or a été démontrée. Des méthodes de transduction optiques, à savoir la résonance de plasmons de surface localisée (LSPR) et la spectroscopie Raman exaltée par effet de surface (SERS) ont été exploitées. Ces techniques se sont montrées prometteuses pour l'amélioration de la limite de détection dans la détection d'analytes biologiquement pertinents, y compris les protéines et le médicament propranolol
Molecularly imprinted polymers (MIPs), also referred to as plastic antibodies, are synthetic biomimetic receptors that are able to bind target molecules with similar affinity and specificity as natural receptors such as enzymes or antibodies. Indeed, MIPs are used as synthetic recognition elements in biosensors and biochips for the detection of small analytes and proteins. The molecular imprinting technique is based on the formation of specific recognition cavities in polymer matrices by a templating process at the molecular level. For sensor and biochip development, fast binding kinetics of the MIP for a rapid sensor response, the integration of the polymers with transducers, and a high sensitivity of detection are among the main challenges. In this thesis, the above issues are addressed by developing MIP/gold nanocomposites by grafting MIPs on surfaces, using dedicated techniques like atom transfer radical polymerization (ATRP) which is a versatile controlled radical polymerization (CRP) technique. Theses ophisticated CRP techniques, are able to greatly improve the polymeric materials. The use of ATRP in the MIP field has been limited so far due to its inherent incompatibility with acidic monomers like methacrylic acid (MAA), which is by far the most widely used functional monomer. Herein, a new method is described for the MIP synthesis through photo-initiated ATRP using fac-[Ir(ppy)3] as ATRP catalyst. The synthesis is possible at room temperature and is compatible with acidic monomers. This study considerably widens the range of functional monomers and thus molecular templates that can be used when MIPs are synthesized by ATRP. The proposed method was used for fabrication of hierarchically organised nanocomposites based on MIPs and nanostructured metal surfaces containing nanoholes or nanoislands, exhibiting plasmonic effects for signal amplification. The fabrication of nanometer scale MIP coatings localized on gold surface was demonstrated. Optical transduction methods, namely Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) were exploited and shown that they hold great promise for enhancing the limit of detection in sensing of biologically relevant analytes including proteins and the drug propranolol
9

Rajkumar, Rajagopal. "Development of a thermometric sensor for fructosyl valine and fructose using molecularly imprinted polymers as a recognition element." Phd thesis, Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1727/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nature has always served as a model for mimicking and inspiration to humans in their efforts to improve their life. Researchers have been inspired by nature to produce biomimetic materials with molecular recognition properties by design rather than evolution. Molecular imprinting is one way to prepare such materials. Such smart materials with new functionalities are at the forefront of the development of a relevant number of ongoing and perspective applications ranging from consumer to space industry. Molecularly imprinted polymers were developed by mimicking the natural enzymes or antibodies that serve as host for binding target molecules. These imprints were used as a recognition element to substitute natural biomolecules in biosensors. The concept behind molecular imprinting is to mold a material (with the desired chemical properties) around individual molecules. Upon removal of the molecular templates, one is left with regions in the molded material that fit the shape of the template molecules. Thus, molecular imprinting results in materials that can selectively bind to molecules of interest. Imprinted materials resulted in applications ranging from chemical separation to bioanalytics. In this work attempts were made particularly in the development of molecularly imprinted polymer based thermometric sensors. The main effort was focused towards the development of an covalently imprinted polymer that would be able to selectively bind fructosyl valine (Fru-Val), the N-terminal constituent of hemoglobin A1c ß-chains. Taking into account the known advantages of imprinted polymers, e.g. robustness, thermal and chemical stability, imprinted materials were successfully used as a recognition element in the sensor. One of the serious problems associated with the development of MIP sensors and which lies in the absence of a generic procedure for the transformation of the polymer-template binding event into a detectable signal has been addressed by developing the "thermometric" approach. In general the developed approach gives a new insight on MIP/Analyte interactions.
In dem Bestreben, ihr eigenes Leben zu verbessern, haben die Menschen stets die Natur nachgeahmt und sich von ihr inspirieren lassen. Die Natur hat Forscher zur Erzeugung smarter biomimetischer Stoffe mit molekularen Erkennungseigenschaften nach dem Vorbild der Evolution inspiriert. Eine der Methoden zur Herstellung solcher Substanzen ist das molekulare Prägen. Smarte Materialien mit neuen Eigenschaften stehen an der Spitze der Entwicklung potentieller Anwendungen vom Verbraucher bis hin zur Raumfahrtindustrie. Durch Nachahmung von natürlichen Enzymen oder Antikörpern wurden molekular geprägte Polymere (MIPs) entwickelt, die der Bindung von Zielmolekülen dienen. Diese geprägten Polymere (imprints) wurden anstelle von Biomolekülen als Erkennungselemente in Biosensoren eingesetzt. Das Konzept, das dem molekularen Prägen zugrunde liegt, besteht in der Formung eines Polymers (mit den entsprechenden chemischen Eigenschaften) um einzelne Zielmoleküle herum. Nach Entfernen dieser molekularen Template bleiben Abdrücke im Polymer übrig, die der Form der Templatmoleküle entsprechen. Mit Hilfe des molekularen Prägens kann man also Stoffe herstellen, die sich selektiv an bestimmte Moleküle binden können. Geprägte Polymere finden breite Anwendung, etwa in chemischen Aufreinigungsprozessen und der Bioanalytik. Hauptanliegen der vorliegenden Arbeit war es, thermometrische Sensoren auf der Basis molekular geprägter Polymere zu entwickeln. Die Anstrengungen richteten sich vor allem auf die Entwicklung eines kovalent geprägten Polymers, das in der Lage ist, selektiv Fruktosyl-Valin (Fru-Val), den N-terminalen Bereich von Hämoglobin A1c, zu binden. Aufgrund der bekannten Vorzüge geprägter Polymere – z. B. Robustheit und thermische und chemische Stabilität – wurden geprägte Polymere erfolgreich als Erkennungselement im Sensor angewendet. Eine der größten Herausforderungen bei der Entwicklung von MIP-Sensoren, das Fehlen eines generischen Verfahrens zur Umwandlung der Bindungsreaktion in ein nachweisbares Signal, wurde mit der Entwicklung der thermometrischen Methode in Angriff genommen. Diese Methode führt allgemein zu neuen Einsichten in die Interaktionen zwischen MIP und Analyt.
10

Bompart, Marc. "Molecularly imprinted polymers and nano-composites by free radical and controlled/living radical polymerization : applications in optical sensors." Compiègne, 2010. http://www.theses.fr/2010COMP1870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse est organisée en trois chapitres basés sur trois publications et deux manuscrits en cours de soumission. Les polymères à empreintes moléculaires (MIP) sont des récepteurs produits à façon qui sont obtenues par polymérisation en présence de molécules modèles. Le premier papier décrit l'utilisation de la spectroscopie Raman pour la détection et la quantification de molécules modèles au sein d'une particule unique de polymères a empreintes moléculaires de taille micrométrique. Les particules de polymères ont eté imprimées avec comme molécules modèles S-propranolol. Des particules de taille nanométrique et micrométrique ont été respectivement utilisées pour une analyse en masse et sur particule unique. La quantification de molécules cibles est possible sur particule unique et une limite de détection de 1µM a été obtenue sur l’analyse en masse. Le second papier décrit un capteur chimique de taille nanométrique composé d’une particule en core-shell composite. Cette particule comprend un cœur polymérique, une enveloppe inorganique composée de nanoparticules d’or pour l’exaltation du signal, recouvert d’une couche de polymères à empreintes moléculaires pour la reconnaissance. La méthode d’analyse utilisée est une exaltation su signal Raman appelé « surface enchanced Rama scattering ». Ces particules ont aussi été utilisées comme capteur avec la résonance plasmonique localisé comme méthode de transduction (papier n°3). Afin de résoudre certains problèmes associés aux polymères à empreintes moléculaires, tels que l’inhomogénéité en terme de morphologie et de distribution en site de reconnaissance, il a été suggéré d’utiliser des méthodes de polymérisations radicalaire contrôlées. Ces méthodes facilitent aussi leurs synthèses sous forme de nanomatériaux, nanocomposites et films minces. Le quatrième papier considère les récents avantages et inconvénients de ces nouvelles méthodes de polymérisation rapportés aux polymères à empreintes moléculaires. Le dernier papier décrit la première utilisation d’un récente méthode basée sur la polymérisation par transfert à l’iode (ITP), « reversible chain transfer catalyzed polymerization » (RTCP) adapté aux polymères à empreintes moléculaires. Nous décrivons un exemple de synthèse de MIP spécifiques pour la molécule propanolol par RTCP, produisant des polymères sous forme de « bulk » ou particules ayant la même capacité de reconnaissance que ceux synthétisés par polymérisation radicalaire (FRP). La RMN à l’état solide a révélée que la conversion en double liaison intramoléculaire était plus élevée dans le cas de polymères synthétisés par RTCP que par FRP, en particulier à haute concentration en amorceur
This thesis is organized in three chapters and is based on three published papers, and two manuscripts about to be submitted. Molecularly imprinted polymers (MIPs) are tailor-made synthetic receptors that are obtained by polymerization in the presence of a molecular template. The first paper describes the use of Raman spectroscopy to detect and quantify the presence of the imprinting template in single molecularly imprinted polymer microspheres. The polymers were imprinted with the Beta-blocking drugs propranolol and atenolol, and precipitation polymerization was used to obtain spherical particles. The nanoparticles were used for bulk detection whereas with micrometer-sized particles, quantitative measurements on single particles were possible. Relatively low detection limits down to 1µM have been reached for the detection of S-propranolol through bulk measurements on MIP nanoparticles. The second paper describes chemical nanosensors with a submicron core-shell composite design, based on a polymer core, a molecularly imprinted polymer (MIP) shell for selective analyte recognition, and an interlayer of gold nanoparticles for signal amplification. SERS measurements on single nanosensors yielded a detection limit of 10-7 M for the Beta-blocker propranolol, several orders of magnitude lower than on plain MIP spheres. These particles were also used as sensor materials with localized surface plasmon resonance measurements as the transduction method (Paper III), for the determination of the Beta-blocking drug propranolol. The sensors were used in suspension and were measured using a standard UV-Vis spectrophotometer. In order to solve general problems associated with MIPs, in particular their heterogeneity in terms of inner morphology and distribution of binding site affinities, it has been suggested to use modern methods of controlled/living radical polymerization for their synthesis. This also facilitates their generation in the form of nanomaterials, nanocomposites, and thin films, a strong recent trend in the field. The fourth paper reviews recent advances in the molecular imprinting area, with special emphasis on the use of controlled polymerization methods, their benefits, and current limitations. In the last paper, we have for the first time used a recently developed CRP method based on iodide mediated polymerization, reversible chain transfer catalyzed polymerization (RTCP), for the synthesis of MIPs. We show on the example of MIPs specific for the Beta-blocking drug propranolol that RTCP is compatible with MIP synthesis, both for the synthesis of bulk polymers and nanospheres, and that it yields polymers with the same binding capacity as the standard FRP method used for comparison. Solid-state NMR measurements revealed that the conversion of pendant vinyl groups was higher with RTCP than with polymers synthesized by FRP, in particular at higher initiator concentrations

Книги з теми "Molecularly Imprinted Polymers (MIP)":

1

Martín-Esteban, Antonio, ed. Molecularly Imprinted Polymers. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1629-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mattiasson, Bo, and Lei Ye, eds. Molecularly Imprinted Polymers in Biotechnology. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20729-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kutner, Wlodzimierz, and Piyush Sindhu Sharma, eds. Molecularly Imprinted Polymers for Analytical Chemistry Applications. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788010474.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Zhaosheng, Yanping Huang, and Yi Yang, eds. Molecularly Imprinted Polymers as Advanced Drug Delivery Systems. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0227-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

KHAN, Singhal. Molecularly Imprinted Polymers Environhb. Institute of Physics Publishing, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mattiasson, Bo, and Lei Ye. Molecularly Imprinted Polymers in Biotechnology. Springer London, Limited, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Singh, Meenakshi. Molecularly Imprinted Polymers: Commercialization Prospects. Elsevier, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Handbook of Molecularly Imprinted Polymers. Smithers Rapra Technology, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mattiasson, Bo, and Lei Ye. Molecularly Imprinted Polymers in Biotechnology. Springer, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mattiasson, Bo, and Lei Ye. Molecularly Imprinted Polymers in Biotechnology. Springer, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Molecularly Imprinted Polymers (MIP)":

1

Furtado, Ana I., Raquel Viveiros, and Teresa Casimiro. "MIP Synthesis and Processing Using Supercritical Fluids." In Molecularly Imprinted Polymers, 19–42. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1629-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Feng, Jing, and Zhaosheng Liu. "MIP as Drug Delivery Systems of Anticancer Agents." In Molecularly Imprinted Polymers as Advanced Drug Delivery Systems, 133–52. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0227-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhao, Long, and Zhaosheng Liu. "MIP as Drug Delivery Systems of Ophthalmic Drugs." In Molecularly Imprinted Polymers as Advanced Drug Delivery Systems, 153–78. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0227-6_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wei, Zehui, Lina Mu, and Zhaosheng Liu. "MIP as Drug Delivery Systems for Dermal Delivery." In Molecularly Imprinted Polymers as Advanced Drug Delivery Systems, 111–31. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0227-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ma, Li, and Zhaosheng Liu. "MIP as Drug Delivery Systems for Special Application." In Molecularly Imprinted Polymers as Advanced Drug Delivery Systems, 179–200. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0227-6_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cieplak, Maciej, and Wlodzimierz Kutner. "CHAPTER 9. Protein Determination Using Molecularly Imprinted Polymer (MIP) Chemosensors." In Polymer Chemistry Series, 282–329. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788010474-00282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cyago, Allan, and Rigoberto Advincula. "Surface Plasmon Resonance Spectroscopy and Molecularly Imprinted Polymer (MIP) Sensors." In Handbook of Spectroscopy, 1229–58. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527654703.ch33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ulubayram, Kezban. "Molecularly Imprinted Polymers." In Advances in Experimental Medicine and Biology, 123–38. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-306-48584-8_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Piletsky, Sergey A., Iva Chianella, and Michael J. Whitcombe. "Molecularly Imprinted Polymers." In Encyclopedia of Biophysics, 1596–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Takeuchi, Toshifumi, and Hirobumi Sunayama. "Molecularly Imprinted Polymers." In Encyclopedia of Polymeric Nanomaterials, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_126-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Molecularly Imprinted Polymers (MIP)":

1

Pitayataratorn, Teerachote, Wannisa Sukjee, Chak Sangma, and Sarinporn Visitsattapongse. "Detection of Creatinine Using Molecularly Imprinted Polymers (MIP) Technique." In 2022 14th Biomedical Engineering International Conference (BMEiCON). IEEE, 2022. http://dx.doi.org/10.1109/bmeicon56653.2022.10011578.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vitale, U., A. Rechichi, M. D’Alonzo, C. Cristallini, N. Barbani, G. Ciardelli, and P. Giusti. "Selective Peptide Recognition With Molecularly Imprinted Polymers in Designing New Biomedical Devices." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95587.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Molecular imprinting is a technique for the synthesis of polymers capable to bind selectively specific molecules. The imprinting of large proteins, like cell adhesion proteins or cell receptors, can lead to important and innovative biomedical applications. However such molecules show such important conformational changes in the polymerisation environment that the recognition sites are poorly specific. The “epitope approach” can overcome this limit by adopting, as template, a stable short peptide sequence representative of an accessible fragment of a larger protein. The resulting imprinted polymer can recognize both the template and the whole molecule thanks to the specific cavities for the epitope. In this work two molecularly imprinted polymer formulations (macroporous monolith and nanospheres) were obtained with the protected peptides Z-Thr-Ala-Ala-OMe, as template, and Z-Thr-Ile-Leu-OMe, as analogue for the selectivity evaluation, the methacrylic acid, as functional monomer, the trimethylolpropane trimethacrylate and pentaerythritol triacrylate, as cross-linkers. Polymers were synthesized by precipitation polymerisation in acetonitrile at 60 °C, thermally initiated with azobisisobutyronitrile. All polymers were characterized by the standard techniques SEM, FT-IR, and TGA. The supernatants from the polymerisation and the rebinding solutions were analysed by HPLC. The higher cross-linked polymers retained about the 70% of the template, against about the 20% for the lower ones. The extracted template amount and the rebinding capacity decreased with the cross-linking degree, while the selectivity showed the opposite behaviour. The pentaerythritol triacrylate cross-linked polymers showed the best recognition (MIP 2−, α = 1.71) and selectivity (MIP 2+, α′ = 5.58) capabilities.
3

Nurhamidah, Nurhamidah, Popo Marinda, and Erri Koryanti. "PEMBUATAN MOLECULARLY IMPRINTED POLYMER (MIP) MELAMIN MENGGUNAKAN METODE COOLING-HEATING." In SEMINAR NASIONAL FISIKA 2017 UNJ. Pendidikan Fisika dan Fisika FMIPA UNJ, 2017. http://dx.doi.org/10.21009/03.snf2017.02.mps.08.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Guć, Maria, and Grzegorz Schroeder. "Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Cores for Molecularly Imprinted Polymers (MIP) in Trace Analysis." In The 5th World Congress on Recent Advances in Nanotechnology. Avestia Publishing, 2020. http://dx.doi.org/10.11159/icnnfc20.131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

García-Garibay, M., I. Méndez-Palacios, A. López-Luna, E. Bárzana, and J. Jiménez-Guzmán. "Development of a Molecularly Imprinted Polymer (MIP) for the Recovery of Lactoferrin." In 13th World Congress of Food Science & Technology. Les Ulis, France: EDP Sciences, 2006. http://dx.doi.org/10.1051/iufost:20060639.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Holthoff, Ellen L., Lily Li, Tobias Hiller, and Kimberly L. Turner. "A molecularly imprinted polymer (MIP)-coated microbeam MEMS sensor for chemical detection." In SPIE Defense + Security, edited by Augustus W. Fountain. SPIE, 2015. http://dx.doi.org/10.1117/12.2179694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kia, Solmaz. "A new Voltametric sensor, based on molecularly imprinted polymer (MIP) for vitamin D3 Detection." In 2019 International Conference on Biomedical Innovations and Applications (BIA). IEEE, 2019. http://dx.doi.org/10.1109/bia48344.2019.8967459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Aouled, N. Omar, H. Hallil, B. Plano, D. Rebiere, C. Dejous, R. Delepee, and L. Agrofoglio. "Love wave sensor based on thin film molecularly imprinted polymer : MIP layer morphology and nucleosides analogs detection." In 2013 IEEE Sensors. IEEE, 2013. http://dx.doi.org/10.1109/icsens.2013.6688280.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Naskar, Hemanta, Sheikh Saharuk Ali, A. H. M. Toufique Ahmed, Debangana Das, Shreya Nag, Bipan Tudu, and Rajib Bandyopadhyay. "Detection of Curcumin using a Simple and Sensitive Molecularly Imprinted Polymer (MIP) Embedded Graphite Electrode Based Electrochemical Sensor." In 2020 International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET). IEEE, 2020. http://dx.doi.org/10.1109/icefeet49149.2020.9186985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sianita, Maria Monica, Ni Nyoman Tri Puspaningsih, Miratul Khazanah, and Gaden Supriyanto. "Comparison of the method used for extraction chloramphenicol from its Molecularly Imprinted Polymer (MIP) using chloroform as porogen." In Proceedings of the National Seminar on Chemistry 2019 (SNK-19). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/snk-19.2019.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Molecularly Imprinted Polymers (MIP)":

1

Holthoff, Ellen L., Lily Li, Tobias Hiller, and Kimberly L. Turner. A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada622335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Harvey, Scott D. Ultraselective Sorbents. Task 2: Molecularly Imprinted Polymers (MIPs)/Stabilized Antibody Fragments (STABs). Final Report FY 2004. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/15016482.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Holthoff, Ellen, and Dimitra Stratis-Cullum. A Nanosensor for Explosives Detection Based on Molecularly Imprinted Polymers (MIPs) and Surfaced-enhanced Raman Scattering (SERS). Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada516676.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Harvey, Scott D. Ultraselective Sorbents. Task 2: Molecularly Imprinted Polymers (MIPs)/Stabilized Antibody Fragments (STABs). Final Report -- Fiscal Year (FY) 2005. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/860003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Glasscott, Matthew, Johanna Jernberg, Erik Alberts, and Lee Moores. Toward the electrochemical detection of 2,4-dinitroanisole (DNAN) and pentaerythritol tetranitrate (PETN). Engineer Research and Development Center (U.S.), March 2022. http://dx.doi.org/10.21079/11681/43826.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Analytical methods to rapidly detect explosive compounds with high precision are paramount for applications ranging from national security to environmental remediation. This report demonstrates two proof-of-concept electroanalytical methods for the quantification of 2,4-dinitroanisol (DNAN) and pentaerythritol tetranitrate (PETN). For the first time, DNAN reduction was analyzed and compared at a bare graphitic carbon electrode, a polyaniline-modified (PANI) electrode, and a molecularly imprinted polymer (MIP) electrode utilizing PANI to explore the effect of surface-area and preconcentration affinity on the analytical response. Since some explosive compounds such as PETN are not appreciably soluble in water (<10 μg/L), necessitating a different solvent system to permit direct detection via electrochemical reduction. A 1,2-dichloroethane system was explored as a possibility by generating a liquid-liquid extraction-based sensor exploiting the immiscibility of 1,2-dichloroethane and water. The reduction process was explored using a scan rate analysis to extract a diffusion coefficient of 6.67 x 10⁻⁶ cm/s, in agreement with literature values for similarly structured nitrate esters. Once further refined, these techniques may be extended to other explosives and combined with portable electrochemical hardware to bring real-time chemical information to soldiers and citizens alike.

До бібліографії