Добірка наукової літератури з теми "Multiaxial fatigue analysis"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multiaxial fatigue analysis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Multiaxial fatigue analysis":

1

Maslak, Tetiana, Mikhail Karuskevich, and Łukasz Pejkowski. "New Criterion for Aircraft Multiaxial Fatigue Analysis." MATEC Web of Conferences 304 (2019): 01020. http://dx.doi.org/10.1051/matecconf/201930401020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The complexity of analytical and experimental estimation of aircraft components fatigue life is determined by the irregular character of the load’s sequence, a number of stress concentrators, multiaxial stress state. Proposed early multiaxial fatigue criteria are aimed to reduce the complex multi axial loading to an equivalent uniaxial loading. These criteria cover different categories of metals but taking into account the wide variety of constructional materials, modes of loading, environmental conditions, the instrumental structural health monitoring looks a reasonable alternative or at least a strong complement to existing multiaxial fatigue analysis procedures. The new criterion has been proposed as a result of multi-scale levels study of metal surface transformation under fatigue.
2

Gaier, C., B. Unger, and H. Dannbauer. "Multiaxial fatigue analysis of orthotropic materials." Revue de Métallurgie 107, no. 9 (October 2010): 369–75. http://dx.doi.org/10.1051/metal/2011002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Jianhui, Xin Lv, Yaobing Wei, Xuemei Pan, Yifan Jin, and Youliang Wang. "A novel model for low-cycle multiaxial fatigue life prediction based on the critical plane-damage parameter." Science Progress 103, no. 3 (July 2020): 003685042093622. http://dx.doi.org/10.1177/0036850420936220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multiaxial fatigue of the components is a very complex behavior. This analyzes the multiaxial fatigue failure mechanism, reviews and compares the advantages and disadvantages of the classic model. The fatigue failure mechanism and fatigue life under multiaxial loading are derived through theoretical analysis and formulas, and finally verified with the results of multiaxial fatigue tests. The model of multiaxial fatigue life for low-cycle fatigue life prediction model not only improves the prediction accuracy of the classic model, but also considers the effects of non-proportional additional hardening phenomena and fatigue failure modes. The model is proved to be effective in low-cycle fatigue life prediction under different loading paths and types for different materials. Compared with the other three classical models, the proposed model has higher life prediction accuracy and good engineering applicability.
4

Wang, Lei, Tian Zhong Sui, Hang Zhao, and En Guo Men. "Probabilistic Model of the Multiaxial Low-Cycle Fatigue Life Prediction." Advanced Materials Research 479-481 (February 2012): 2135–40. http://dx.doi.org/10.4028/www.scientific.net/amr.479-481.2135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
First, several widely used models of the multiaxial low-cycle fatigue life prediction based on the critical plane approach were presented in this paper, and the predicted results of these models for a medium carbon steel under the condition of multiaxial low-cycle fatigue loading were compared. Second, the stochastic expressions and probability density function curves of the fatigue performance parameters were obtained by probabilistic analysis of the medium carbon steel fatigue data. Finally, the probabilistic model of the multiaxial fatigue life prediction was simulated by Monte Carlo Method, which should provide a basis for the reliability analysis of engineering components subjected to the multiaxial complex loads.
5

Li, Bochuan, Chao Jiang, Xu Han, and Yuan Li. "The prediction of multiaxial fatigue probabilistic stress–life curve by using fuzzy theory." Artificial Intelligence for Engineering Design, Analysis and Manufacturing 31, no. 2 (May 2017): 199–206. http://dx.doi.org/10.1017/s0890060417000087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe fuzziness of the traditional multiaxial fatigue prediction model is discussed and the fuzzy theory is applied into fatigue reliability analysis. The fuzzy linear regression analysis method is used to determine the fuzzy coefficients in the multiaxial stress–life equation under a small sample condition, and the corresponding multiaxial fatigue probabilistic stress–life curve is calculated with different confidence levels.
6

Liu, Yongming, Liming Liu, Brant Stratman, and Sankaran Mahadevan. "Multiaxial fatigue reliability analysis of railroad wheels." Reliability Engineering & System Safety 93, no. 3 (March 2008): 456–67. http://dx.doi.org/10.1016/j.ress.2006.12.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zou, Guang Ping, Qi Chao Xue, and Zhong Liang Chang. "The Fatigue Reliability Analysis of Stress Criterion in Multiaxial High Cycle Fatigue." Key Engineering Materials 417-418 (October 2009): 389–92. http://dx.doi.org/10.4028/www.scientific.net/kem.417-418.389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The stress criterion of multiaxial high cycle fatigue is a type of non-linear equation of high-order. It is used to predict the failure of fatigue in proportional torsion and bending loads. Soon-Bok Lee presented a new design criterion for fully reversed out-of phase torsion and bending. The values are randomized in different random distributions in Lee’s criterion formula. The correlations among random variables are considered and limit state equation is also established. This paper attempts to use First Order Reliability Method (FORM) and Second Order Reliability Method (SORM) to calculate the reliability of material fatigue in torsion and bending loads. The example is calculated and it is found that the failure probability estimated by using the SORM is more reliable than those of the FORM in multiaxial high cycle fatigue.
8

Xiong, Ying. "Analysis of the Effect of Load Ratio on Fatigue Crack Growth." Advanced Materials Research 181-182 (January 2011): 330–36. http://dx.doi.org/10.4028/www.scientific.net/amr.181-182.330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, fatigue test and numerical simulation are carried out for Q345 weld joint under constant amplitude loading at different R-ratio using the compact tension samples with 3.8mm thickness. The result indicates that fatigue crack growth rates in the base metal is not sensitive to R-ratio, but the fatigue crack growth rates increases in the weld zone with R-ratio increasing. The effect of R-ratio on fatigue crack growth is analyzed based on J-S cycle plasticity model and Jiang’s multiaxial fatigue criterion. The finite element method (FEM) is used for the stress-strain analysis with the implementation of an accurate J-S cyclic plasticity model. With the detailed stresses and strains, fatigue damage assessment is made using a Jiang’s multiaxial fatigue criterion.
9

Zhang, Jun Hong, Jie Wei Lin, Shuo Yang, and Feng Lv. "Unsymmetrical Cycle Fatigue Analysis of Titanium Alloy Blades under Multi-Level Loading." Advanced Materials Research 337 (September 2011): 686–89. http://dx.doi.org/10.4028/www.scientific.net/amr.337.686.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents a modified nonlinear continuum damage model (CDM) applying to analyze compressor blades fatigue developed by Chaboche. The proposed model has been formulated to take into account the effect of different load levels and loading sequence. From a multiaxial fatigue point of view, the mean stress effect has been considered in order to extend the proposed model to multiaxial fatigue conditions. The unsymmetrical cycle fatigue test of TC4 alloy has been carried out to verify the model proposed in this paper and the results show a good agreement to predict fatigue life and damage. Finally, the fatigue life of a compressor blade is predicted using the proposed model under multi-level loading.
10

Uhríčik, Milan, Peter Kopas, Peter Palček, Tatiana Oršulová, and Patrícia Hanusová. "Multiaxial Fatigue Experimental Analysis of 6063-T66 Aluminum Alloy of the Base Material and the Welded Material." Quality Production Improvement - QPI 1, no. 1 (July 1, 2019): 334–41. http://dx.doi.org/10.2478/cqpi-2019-0045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This article deals with determining of fatigue lifetime of aluminum alloy 6063-T66 during by multiaxial cyclic loading. The experiments deal with the testing of specimens for identification of the strain-life behavior of material, the modeling of combined loading and determining the number of cycles to fracture in the region of low-cycle fatigue. Fatigue tests under constant amplitude loading were performed in a standard electromechanical machine with a suitable gripping system. Based on the experimental results the fatigue design curves are compared to the fatigue data from the base material and the welded material and also multiaxial fatigue models, which are able to predict fatigue life at different loads.

Дисертації з теми "Multiaxial fatigue analysis":

1

Sharifimehr, Shahriar. "Multiaxial Fatigue Analysis under Complex Non-proportional Loading Conditions." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1544787705876488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bulusu, Prashant. "Rolling contact fatigue predictions based on elastic-plastic finite element stress analysis and multiaxial fatigue /." abstract and full text PDF (free order & download UNR users only), 2006. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1437664.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (M.S.)--University of Nevada, Reno, 2006.
"August, 2006." Includes bibliographical references (leaves 38-45). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2006]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
3

Bonnen, John Joseph Francis. "Multiaxial fatigue response of normalized 1045 steel subjected to periodic overloads, experiments and analysis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0008/NQ38224.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Le, Moal Patrick. "Fatigue optimization of an induction hardened shaft under combined loading." Thesis, Virginia Tech, 1996. http://hdl.handle.net/10919/44959.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

An integrated procedure, combining finite element modeling and fatigue analysis methods, is developed and applied to the fatigue optimization of a notched, induction hardened, steel shaft subjected to combined bending and torsional loading. Finite element analysis is used first to develop unit-load factors for generating stress-time histories, and then, employing thermo-elastic techniques, to determine the residual stresses resulting from induction hardening. These stress fields are combined using elastic superposition, and incorporated in a fatigue analysis procedure to predict failure location and lifetime. Through systematic variation of geometry, processing, and loading parameters, performance surfaces are generated from which optimum case depths for maximizing shaft fatigue performance are determined. General implications of such procedures to the product development process are discussed.


Master of Science
5

Takahashi, Bruno Ximenes. "Metodologia moderna para análise de fadiga baseada em elementos finitos de componentes sujeitos a fadiga uni e multiaxial." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/3/3151/tde-19032015-173219/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Grande parte dos componentes mecânicos e estruturas são solicitados por carregamentos que variam com o tempo e frequentemente falham por fadiga. Neste sentido, é indubitável que o modo de falha por fadiga seja considerado no projeto mecânico de componentes, equipamentos e estruturas sujeitas a carregamentos cíclicos. Os livros de projetos de máquinas ainda são os mais utilizados na indústria como referência teórica e prática ao dimensionamento contra a fadiga de produtos. Entretanto, muitos deles ainda não incluem as últimas descobertas e metodologias mais modernas para o cálculo de durabilidade de estruturas. Adicionalmente, de uma maneira geral, grande parte dos livros especializados em fadiga também não trazem informações detalhadas sobre a previsão de vida em fadiga sob a ótica do projeto mecânico, como a análise utilizando critérios de Fadiga Multiaxial e a análise de fadiga baseada em Elementos Finitos (FE-Based Fatigue Analysis). Baseado neste cenário, este trabalho tem o objetivo de propor um procedimento para avaliar a vida em fadiga de componentes e estruturas reunindo os métodos mais recentes utilizados nesta área. Dentre os vários assuntos incluídos no procedimento proposto, destacam-se: as importantes contribuições propostas pelo Conselho Alemão de Pesquisa em Engenharia (FKM-Guideline); a utilização de Análise por Elementos Finitos (FEA) na previsão de vida em fadiga; o cálculo do fator de tensão média utilizando pseudo tensões provenientes de FEA; a contabilização do efeito de entalhe em componentes com geometria complexa utilizando o Método do Gradiente de Tensão Relativo em conjunto com FEA, que pode ser aplicado tanto em carregamento uniaxial quanto em carregamento multiaxial; a contabilização do dano por fadiga em carregamento multiaxial de amplitude variável; a densidade da malha de elementos finitos adequada para utilizar em fadiga computacional; e a aplicação da teoria e dos critérios de Fadiga Multiaxial, principalmente em FE-Based Fatigue Analyses, cuja utilização é imprescindível em estruturas sujeitas a tensões cíclicas em mais de uma direção (x,y,z).
Most of mechanical components and structures are subjected to time varying loading and therefore often present fatigue failure. Therefore, it is essential to consider the fatigue failure mode in the project of components, machines and structures under cyclic loading. Design of Machine Elements books are still the most used in industry as theoretical and practical reference for designing products against fatigue. However, many of them still do not include the latest findings and methodologies used in fatigue life assessment of structures. Additionally, overall, most of the specialized fatigue books also do not include detailed information about fatigue life assessment in a mechanical project view, as the fatigue analysis using Multiaxial Fatigue criteria and the fatigue life prediction using the Finite Element Method (FE-Based Fatigue Analysis). Based on this fact, this thesis proposes a procedure for predicting component and structures fatigue life, gathering together the most recent methods used in the fatigue area. Among the several subjects included in this procedure, we can highlight: the important contributions of the German Engineering Research Council (FKM-Guideline); the use of Finite Element Analysis (FEA) in the fatigue life assessment; the calculation of the mean stress factor using the pseudo stresses from FEA; the computation of the notch eect in geometrically complex components using the Relative Stress Gradient Method in conjunction with FEA, method which can be applied both in uniaxial loading and multiaxial loading; the estimation of the fatigue damage in structures under variable amplitude multiaxial fatigue loading; the selection of an adequate Finite Element mesh density to use in computational fatigue; and the aplication of the Multiaxial Fatigue theory and criteria, specially in FE-Based Fatigue Analyses, of which use is essential in structures under ciclic stresses in 2 or 3 directions (x,y,z).
6

Agard, Bastien. "Détermination d’une stratégie de dimensionnement en fatigue à faible nombre de cycles adaptée au contexte industriel." Thesis, Lyon, 2021. http://www.theses.fr/2021LYSEE003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Depuis le XXème siècle, le développement continu des puissances de calcul a permis aux méthodes numériques de devenir essentielles dans le processus de conception des produits industriels. La méthode de calcul par éléments finis apporte aux industriels des solutions fiables pour anticiper avec précision la tenue mécanique des composants sans recourir aux prototypages réels. La tendance actuelle d’optimisation des coûts de fabrication impacte directement la conception des produits avec notamment comme axe de travail la réduction des épaisseurs de matière. Dans ce contexte, les pièces de structures sont moins robustes qu’avant. La maitrise de la tenue en fatigue des composants est devenue aujourd’hui un enjeu majeur. Ce phénomène complexe se montre sensible à l’histoire vécu par la matière, notamment en ce qui concerne les potentiels impacts sur les propriétés matériaux locales des différents procédés de fabrication intrinsèques au composant. Le procédé de soudage induit des conséquences à plusieurs niveaux de l’assemblage qui peuvent s’avérer être néfastes pour la durée de vie des structures. Ces phénomènes multi-physiques d’origine thermique, métallurgique et mécanique doivent alors être pris en compte comme données d’entrée dans les études en fatigue pour fiabiliser les résultats. Cependant, la complexité des données d’entrée et les temps de traitements très conséquents freinent leur utilisation par les ingénieurs lorsqu’il s’agit de structures de grandes dimensions. Afin de répondre aux besoins des industriels, deux développements ont été créés pour réduire le temps d’analyse des approches de Manson-Coffin et de Fatemi-Socie de près de 99,9%. Ces post-traitements font partie intégrante d’une stratégie originale de dimensionnement en fatigue chainant la prise en compte des effets locaux des procédés d’assemblage, et permettant ainsi l’analyse en fatigue des grandes structures dans un délais compatible avec les attentes des bureaux d’études
Since the 20th century, the continuous development of computing power has enabled numerical methods to become essential in the design process of industrial products. The finite element calculation method provides manufacturers with reliable solutions for accurately anticipating the mechanical strength of components by limiting the number of prototypes. The current trend of reducing manufacturing costs has a direct impact on product design with, in particular, the reduction of material thicknesses. In this context, the structural parts are more exposed to the risk of rupture. Controlling the fatigue behavior of components has now become a major challenge. This complex phenomenon is sensitive to the history experienced by the material, particularly with regard to the impacts on the local material properties by the various manufacturing processes. The welding process induces consequences at several levels of the assembly which can prove to be harmful for the life of the structures. These multi-physical phenomena of thermal, metallurgical and mechanical origin must then be taken into account as input data in fatigue studies to make the results more reliable. However, the complexity of the input data and the very substantial processing times hamper their use by engineers when dealing with large structures. In order to meet the needs of manufacturers, two developments have been created to reduce the analysis time of the Manson-Coffin and Fatemi-Socie approaches by nearly 99.9%. These post-processings take part of an original fatigue dimensioning strategy linking the consideration of the local effects of assembly processes, and thus allowing the fatigue analysis of large structures within a timeframe compatible with the industrial context
7

Nascimento, Denise Ferreira Laurito. "Estudo do comportamento em fadiga de baixo ciclo e fadiga sob cargas multiaxiais das ligas de alumínio AA6005, AA6063 e AA6351." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/97/97134/tde-21052015-153422/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
O uso das ligas de alumínio em aplicações estruturais tem crescido consideravelmente nas últimas décadas. Nos transportes, a baixa massa específica do alumínio resulta em uma alta razão resistência/ peso, favorecendo a fabricação de aviões, trens e automóveis. Com a crescente preocupação em reduzir a emissão de gases poluentes, vem tornando-se promissora a alternativa de reduzir o peso dos veículos substituindo peças convencionalmente produzidas com outros materiais por peças de alumínio. As ligas tratáveis termicamente da série 6xxx são frequentemente escolhidas para estas aplicações. Assim, para que o emprego dessas ligas seja otimizado, é importante um estudo mais detalhado de suas propriedades mecânicas, principalmente sob solicitações cíclicas. Neste trabalho foram estudadas ligas de Al-Si-Mg que são amplamente utilizadas nas indústrias automotivas, em especial na fabricação de componentes de carroçarias para caminhões e ônibus. Foi realizado o estudo do comportamento em fadiga de baixo ciclo e fadiga multiaxial das ligas AA6005 T6, AA6063 T6 e AA6351 T6, fornecidas pela CBA (Companhia Brasileira de Alumínio) visando caracterizar e comparar essas ligas em sua microestrutura, propriedades de tração e fadiga. As propriedades básicas de fadiga foram determinadas por meio do método ε-N (fadiga de baixo ciclo) e os ensaios foram realizados com controle de deformação total, onda triangular e taxa de deformação 0,005 seg-1. As análises dos laços de histerese elasto-plástica permitiram inferir sobre aspectos microestruturais relacionados às propriedades mecânicas das ligas estudadas. O comportamento em fadiga multiaxial foi avaliado por meio de carregamentos combinados axial-torcional em fase e fora de fase. Para ajustar os dados experimentais obtidos, foram testados alguns dos modelos encontrados na literatura. Os cálculos baseados no modelo de plano crítico, proposto por Fatemi e Socie, apresentaram resultados satisfatórios. Também foram realizadas análises microestruturais e fractográficas para as três ligas. As superfícies de fratura dos ensaios de fadiga multiaxial mostraram resultados diferentes de acordo com o carregamento adotado. A avaliação comparativa das três ligas estudadas fornece subsídios para fundamentar a seleção de materiais para a fabricação de componentes estruturais para o setor automotivo.
The use of aluminum alloys in structural applications has grown considerably in recent decades. In transportation, the low density of aluminum results in a high strength-to weight ratio, proving attractive for production of aircrafts, trains and automobiles. With a growing concern for the reduction of pollutant gas emissions, aluminum alloys are becoming a promising alternative to diminish vehicle weight through the replacement of conventionally produced parts made from other heavier materials for aluminum parts. The heat treatable alloys from the 6xxx series are often chosen for these applications. Therefore, to optimize the employment of these alloys, a detailed study of their mechanical properties, primary under cyclic solicitations is necessary For the present study Al-Mg-Si alloys were chosen, which are widely used in automotive industries, particularly in the manufacturing of components for trucks and bus bodies. The low-cycle fatigue behavior and multiaxial fatigue of the three following aluminum alloys: AA6005 T6, AA6063 T6 and AA6351 T6, provided by CBA (Brazilian Aluminum Company), were assessed, with the aim of characterizing and comparing these alloys in their microstructure, tensile properties and fatigue. The basic properties of fatigue were studied by ε-N method (low cycle fatigue) and the experiments were performed with total strain control, triangular waveform and with a constant deformation rate of 5.0x10-3 s-1. The analyses of hysteresis loops elasto-plastic provided insight about microstructural aspects, related to mechanical properties of the studied alloys. Multiaxial fatigue behavior was assessed in combined axial-torsion loading in phase and out of phase. To adjust the experimental data, some models found in the literature were tested. Calculations based on critical plane model, proposed by Fatemi Socie, presented satisfactory results. Furthermore, microstructure analyses and fractography were performed for these three alloys. The fracture surface of multiaxial fatigue assays demonstrated different results according to the adopted loading. Comparative evaluation of the three studied alloys provides support for the selection of materials for manufacturing structural components of the automotive sector.
8

Selles, Nathan. "Cavitation et rupture du Polyamide 6 sous état de contrainte multiaxial en traction monotone, fluage et fatigue. Dialogue entre imagerie 3D et modélisation par éléments finis." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM038/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
De nombreuses structures industrielles soumises à des chargements à long terme statique (fluage) ou cyclique (fatigue) sont constituées de matériaux polymères semi-cristallins. C’est le cas notamment des canalisations et réservoirs sous pression. Il est donc essentiel de traiter les problématiques de durabilité pour être capable d'anticiper et de contrôler leur fin de vie. Par ailleurs, elles présentent généralement des formes complexes et sont soumises à des états de contrainte multiaxiaux.Le matériau de l'étude est un polymère semi-cristallin : le Polyamide 6. Il est caractérisé par la coexistence d'une phase cristalline et d'une phase amorphe qui s'arrangent selon une microstructure sphérolitique.Dans un premier temps, les liens entre comportement mécanique à l'échelle globale de l'éprouvette et les micro-mécanismes de déformation sous-jacents conduisant à la rupture sont établis expérimentalement pour des sollicitations en traction monotone et en fluage qui présentent des résultats similaires puis en fatigue. L'influence de la multiaxialité de l'état de contrainte est étudiée à partir d’éprouvettes axisymétriques entaillées de différents rayons de fond d'entaille et d'éprouvettes « Compact Tensile ». Les phénomènes de cavitation sont caractérisés grâce aux techniques de tomographie et laminographie à rayonnement X synchrotron qui permettent d'observer et de quantifier les distributions spatiales de taux de porosité volumique et le caractère anisotrope des cavités. Et l'analyse des faciès de rupture a permis de mettre en évidence que les mécanismes de croissance et de coalescence de cavités étaient à l'origine de l’amorçage ductile de la rupture.Ensuite, un modèle poro-visco-plastique à deux mécanismes (permettant de différencier le comportement des phases amorphe et cristalline) a été utilisé. Ce modèle permet de reproduire à la fois le comportement global (courbes de chargement) en traction monotone et en fluage mais aussi les distributions spatiales de taux de porosité obtenues expérimentalement. De plus, les calculs par éléments finis permettent d'étudier les distributions spatiales du champ de contrainte et d'établir l'influence de l'état de contrainte sur l'état de cavitation. Les évolutions temporelles en cours de déformation de la pression hydrostatique (ou contrainte moyenne) ont été reliées aux distributions spatiales de taux de porosité volumique. Et l'anisotropie de cavitation (et donc la morphologie et les facteurs de forme des cavités) a été reliée aux évolutions des composantes du tenseur des contraintes de Cauchy. Enfin, la définition d'un critère de rupture en taux de porosité critique a permis de simuler l'amorçage et la propagation de fissures en traction monotone et fluage
Many industrial structures subjected to quasi-static (creep) or cyclic (fatigue) long-term loadings are made of semi-crystalline polymers. Such is the case, for instance, of pressure vessels and pipes. It is therefore considered critical to study the issues related to their durability in order to be able to anticipate and control their end of life. Furthermore, they generally have complex designs and are subjected to multiaxial stress states.The material which has been studied was a semi-crystalline Polyamide 6. Its structure consisted of amorphous and the crystalline phases and a spherolitic microstructure.As a first step, the links between the mechanical behaviour at the global scale of the specimens and the underlying micro-mechanisms of deformation that lead to failure have been established experimentally for monotonic and creep loadings that show similar results and then for fatigue loadings. The influence of the multiaxiality of the stress state has been studied using circumferentially notched round bars with different notch root radii and Compact Tensile specimens. The cavitation phenomena were characterized using synchrotron radiation tomography and laminography techniques that enabled the observation and quantification of the spatial distributions of the voids and the anisotropy of the cavities. An analysis of the fracture surfaces has shown that the initiation of ductile failure resulted from void growth and coalescence mechanismsA poro-visco-plastic model with two mechanisms (that allow the behaviours of the amorphous and crystalline phases to be distinguished) has been used. Thanks to this model, the global behaviour (loading curves) under steady strain rates and steady loads but also the spatial distributions of the void volume fraction could be reproduced numerically. In addition finite element calculations have permitted the spatial distributions of the stress field to be studied and the influence of the stress state on the cavitation state to be investigated. The temporal evolutions during the deformation of the hydrostatic pressure have been linked to the spatial distributions of void volume fraction. The void anisotropy (and thus the void morphology and shape factors) has been related to the evolutions of the components of the Cauchy stress tensor. Finally, the definition of a rupture criterion based on a critical value of the void volume fraction has enabled crack propagation under steady strain rate and steady load to be simulated
9

Gundmi, Satish Sajjan. "Continuous Time Fatigue Modelling for Non-proportional Loading." Thesis, Linköpings universitet, Mekanik och hållfasthetslära, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-164950.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fatigue analysis is a critical stage in the design of any structural component. Typically fatigue is analysed during post-processing, but as the size of the analysed component increases, the amount of data stored for the analysis increases simultaneously. This increases the computational and memory requirements of the system, intensifying the work load on the engineer. A continuum mechanics approach namely ’Continuous time fatigue model’, for fatigue analysis is available in a prior study which reduces the computational requirements by simultaneously computing fatigue along with the stress. This model implements a moving endurance surface in the stress space along with the damage evolution equation to compute high-cycle fatigue. In this thesis the continuous time fatigue model is compared with conventional model (ie.Cycle counting) to study its feasibility. The thesis also aims to investigate the continuous time fatigue model and an evolved version of the model is developed for non-proportional load cases to identify its limitations and benefits.
10

Lambert, Sylvain. "Contribution à l'analyse de l'endommagement par fatigue et au dimensionnement de structures soumises à des vibrations aléatoires." Phd thesis, INSA de Rouen, 2007. http://tel.archives-ouvertes.fr/tel-00560885.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse est consacrée au développement d'un outil de pré-dimensionnement par éléments finis pour l'estimation de l'endommagement par fatigue polycyclique de structures linéaires sous chargements multiaxiaux et stationnaires gaussiens. L'état de contraintes atteint dans ces structures étant aléatoire, il devient nécessaire de raisonner en terme de statistique et l'approche spectrale s'avère particulièrement adaptée pour cette situation. Dans ce travail, les méthodes spectrales sont améliorées par la prise en compte des largeurs de bande des spectres de réponses des structures soumises à des chargements nonproportionnels et de moyennes non nulles. Le critère d'endommagement de Sines est retenu. L'étude numérique de la distribution de l'endommagement résultant des incertitudes sur les paramètres matériaux et des applications dans le domaine de l'optimisation des structures sont également abordées.

Книги з теми "Multiaxial fatigue analysis":

1

Multiaxial fatigue: Analysis and experiments. Warrendale, PA: Society of Automotive Engineers, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Socie, Darrell. Multiaxial Fatigue: Analysis and Experiments (Ae (Series)). Society of Automotive Engineers Inc, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Manson, S. S., and G. R. Halford. Fatigue and Durability of Structural Materials. ASM International, 2006. http://dx.doi.org/10.31399/asm.tb.fdsm.9781627083447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fatigue and Durability of Structural Materials serves as a reference, textbook, and guide for engineers who design or maintain equipment subject to fatigue damage and failure. Using images, diagrams, and equations, it explains how cyclic loading affects the composition, structure, and properties of metals and the lifetime and performance of machine components. It describes the fundamentals of fatigue analysis, the role of dislocations, the concept of mean stress, the complexity of multiaxial loading, and the impact of cumulative fatigue damage. It discusses the influence of notches and cracks on shaft failures, the effects of fatigue on nonmetals, the characteristics of fatigue mechanisms, and the use of fatigue life equations and approximating techniques. It also defines important terms and concepts, includes relevant background information, and provides guidelines and best practices on part sizing, materials selection and processing routes, fabrication methods, surface preparation, the introduction of favorable residual stresses, material restoration and healing, and permissible crack growth. For information on the print version, ISBN 978-0-87170-825-0, follow this link.

Частини книг з теми "Multiaxial fatigue analysis":

1

Brown, M. W. "Analysis and Design Methods in Multiaxial Fatigue." In Advances in Fatigue Science and Technology, 387–401. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2277-8_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pujari, Pradip. "Multiaxial Fatigue Analysis—Approach Toward Real-World Life Prediction." In Lecture Notes in Mechanical Engineering, 167–83. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6002-1_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pitatzis, N., G. Savaidis, A. Savaidis, and Chuan Zeng Zhang. "Fatigue Analysis of Notched Shafts under Multiaxial Synchronous Cyclic Loading." In Advances in Fracture and Damage Mechanics VI, 233–36. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-448-0.233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cruces, A. S., P. Lopez-Crespo, B. Moreno, S. Bressan, and T. Itoh. "Multiaxial Fatigue Analysis of Stainless Steel Used in Marine Structures." In Structural Integrity, 279–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13980-3_36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ross, Michael, Brian Stevens, Moheimin Khan, Adam Brink, and James Freymiller. "Fastener Fatigue Analysis Using Time Domain Methods for Multiaxial Random Vibration." In Special Topics in Structural Dynamics, Volume 5, 17–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75390-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Glinka, Gregory. "Analysis of Elasto-Plastic Strains and Stresses Near Notches Subjected to Monotonic and Cyclic Multiaxial Loading Paths." In Fatigue of Materials and Structures, 131–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118616789.ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ott, W., H. Nowack, and H. Peeken. "Advanced Fem-Based Fatigue Analysis (Femfat) For Arbitrary Multiaxial Elastic Plastic Loading Conditions." In Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, 499–505. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3459-7_77.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wu, Hao, and Zheng Zhong. "A Novel Nonlinear Kinematic Hardening Model for Uniaxial/Multiaxial Ratcheting and Mean Stress Relaxation." In Fatigue and Fracture Test Planning, Test Data Acquisitions and Analysis, 227–45. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2017. http://dx.doi.org/10.1520/stp159820160059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mei, Jifa, and Pingsha Dong. "Analysis of Nonproportional Multiaxial Fatigue Test Data of Various Aluminum Alloys Using a New Damage Parameter." In Fatigue and Fracture Test Planning, Test Data Acquisitions and Analysis, 278–98. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2017. http://dx.doi.org/10.1520/stp159820160079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cruces, A. S., P. Lopez-Crespo, S. Sandip, and B. Moreno. "On the Application of SK Critical Plane Method for Multiaxial Fatigue Analysis of Low Carbon Steel." In Structural Integrity, 287–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13980-3_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Multiaxial fatigue analysis":

1

Hay, N. C. "Conditioned Spectral Analysis in Multiaxial Fatigue." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/970707.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Cheng-cheng, Yuan Ren, Jing-yun Gao, Ying Li, and Kun Yang. "Analysis of Multiaxial Fatigue Evaluation in Engine Components Using an Improved Multiaxial Fatigue Life Model." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Current design methodologies for LCF/HCF of aero engine components are based on traditional uniaxial stress/strain methods like strain-life (ε-N), stress-life (S-N) and Goodman / Haigh diagram approaches, often applied with a wide safe factors to account for uncertainties in the understanding of multiaxial loading and other effects. With constantly striving to improve the performance and life of gas turbine engines, there is a need to increase accuracy of life prediction and reduce maintenance cost. Some multiaxial fatigue methods like Manson-McKnight, Sines, Smith-Watson-Topper etc. were developed to convert the multiaxial stresses into an equivalent uniaxial stress. This conversion simply provides the treatment of both the mean stress, the stress amplitude and directions. However, critical locations in engine components often experience significant multiaxial non-proportional loading conditions, such as blades and LP/HP shafts are subjected to HCF loading associated with mixed bending and torsional vibration modes. In this paper, the use of a new multiaxial fatigue life model was explored in the prediction of multiaxial fatigue behavior in aeronautic materials and structural steel. This new life model is based on the multiaxial S-N curve and an improved multiaxial high-cycle fatigue criterion which validated before by authors. The applied range of this new multiaxial fatigue life model were also compared with other models. Several groups of solid and hollow specimens with different ductile materials were conducted and evaluated under multiaxial loading cases. The predictions based on the proposed model give a better statistical result than other models.
3

Chu, C. C. "Incremental Multiaxial Neuber Correction for Fatigue Analysis." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/950705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Qingquan, Hezhen Yang, and Huajun Li. "Multiaxial Fatigue Analysis on Reeled Steel Tube Umbilical." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multiaxial fatigue analysis on reeled steel tube umbilical is proposed based on finite element analysis (FEA) results. Due to the complexity of the umbilical geometry, stresses and strains field becomes multiaxial, worsening the fatigue resistance. Reel-lay method, is one of the most efficient and cost-effective methods of pipeline installation. However, if installed by reel-lay method, material properties of the umbilical change may have an influence in fatigue performance of the line. Finite element analysis is applied with contact and formulation, and the load history through reel, aligner and straightener is simulated. The strain history of the whole modeling process in critical element is given, and the properties’ change after the load history is discussed. Then, principal stress criteria and Brown–Miller criteria (both combined with critical plane approach) based on FEA results were used to do fatigue life prediction of reeled and non-reeled model, respectively. The results indicate that reel-lay method does have a great influence on the fatigue life of steel tube umbilical, so the influence of installation on the umbilical fatigue must be considered when reel-lay method is adopted.
5

Lee, Chu-Hwa, Hee Seung Ro, and Vipul Kinariwala. "Multiaxial Fatigue Life Prediction Capabilities Increase Accuracy of Fatigue Analysis Software." In Earthmoving Industry Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/910947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chu, C. C. "Programming of a Multiaxial Stress-Strain Model for Fatigue Analysis." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/920662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Karpanan, Kumarswamy. "Critical Plane Search Method for Biaxial and Multiaxial Fatigue Analysis." In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
For complex cyclic loadings, stress- or strain-based critical plane search methods are commonly used for fatigue analysis of the structural components. Complex loadings can result in a non-proportional type loading in which it is difficult or impossible to determine the plane with maximum shear stress/strain amplitude. ASME Sec VIII, Div-3 fatigue analysis for non-welded components is a shear stress based fatigue analysis method and, for non-proportional loading, uses the critical plane search method to calculate the plane with maximum shear stress amplitude. For a two-dimensional non-proportional stress state, analytical stress transformation equations can be used to calculate the shear stress or strain amplitude on any plane at a point. The shear stress range on each plane is the difference between the maximum and minimum shear stress. For a three-dimensional stress state, shear stress amplitude calculations are much more complicated because the shear stress is a vector and both magnitude and direction change during the loading cycle. In ASME VIII-3, the maximum shear stress range among all planes, along with the normal stress on the plane, is used to calculate the stress amplitude. This paper presents a method to calculate the shear stress/strain amplitude using 3D transformation equations. This method can be used for any stress- or strain-based critical plane search method. This paper also discusses ASME proportional and non-proportional fatigue analysis methods in detail.
8

Albinmousa, Jafar, Syed Haris Iftikhar, and Mustafa Al-Samkhan. "Modeling Multiaxial Fatigue Damage Using Polar Equations." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70998.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
It is estimated that more than 70% of failures in engineering components are associated with fatigue loading. Therefore, fatigue is a major design tool for mechanical components. These components are usually subjected to multiaxial cyclic loading. In fact, multiaxial state is very common as tension specimen is under triaxial strain state even though its stress state is uniaxial. There are three approaches to modeling fatigue damage: stress, strain and energy. Critical plane concept is established based on the fact that fatigue cracks initiate at specific plane(s), therefore, multiaxial fatigue damage parameter is evaluated at these plane(s). Critical plane fatigue models such as Fatemi-Socie is among the popular strain-based models. Because it was shown to provide estimation mostly within two factors of life for different materials and different multiaxial loading conditions. This paper presents a new method for analyzing critical plane damage parameters. Using plane stress-strain transformation, maximum values of normal and shear stresses and strains from hysteresis loops are obtained at 360 planes. Plotting these values on polar diagrams shows that multiaxial cyclic responses represent polar curves that can successfully be fitted with definitive known polar equations. In principle, this means that both critical plane and fatigue damage can be determined analytically for a given loading path. However, fitting constants must first be determined. A systematic analysis is performed on different experimental data that were obtained by testing two extruded magnesium alloys at proportional and 90° out of phase loading paths. A closed-form solution for Fatemi-Socie damage parameter is presented for these two loading paths.
9

Jadaan, Osama M., and Gregory Boys. "Energy Approach for Multiaxial Fatigue Life Prediction Using Finite Element Analysis." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A new approach, based on virtual strain energy, has recently been proposed and proven successful in collapsing all data for various loading conditions for a given material and environment into a single curve. Two energy parameters associated with two different physical modes of failure were used to predict the lifetime. The first parameter is a Mode I energy parameter associated with the critical plane where principal stress and strain take place, while the second parameter is a mode II energy parameter associated with the critical planes where maximum shear stresses and strains occur. The objective of this research is to incorporate this theory into a Finite Element Method (FEM) code in order to predict the lifetime of structural components subjected to complex loading. During the post processing stage of the program, the calculated stresses and strains will be used to evaluate the normal (Mode I) and shear (mode II) energy parameters, which subsequently can be used to predict the lifetime for the given structural component. Biaxial fatigue data obtained from the literature for SAE 1045 steel were used in this study to demonstrate the ability of incorporating this energy approach into FEM codes to predict the fatigue life of structural components. This ability is demonstrated by comparing the energy parameters calculated using FEM to those calculated using the experimental data.
10

Zhang, Shengde, Masao Sakane, and Takamoto Itoh. "Creep-Fatigue Life Assessment Under Multiaxial Strain State." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93807.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper studies the multiaxial creep-fatigue life for type 304 stainless steel at elevated temperature. Strain controlled biaxial tension-compression creep-fatigue tests were carried out using cruciform specimens under four strain waves at three principal strain ratios. The strain wave and the principal strain ratio had a significant effect on creep-fatigue life of the cruciform specimen. The creep-fatigue life ratio decreased as the principal strain ratio increased which indicates that larger creep damage occurred at larger principal strain ratio. The effects of the strain wave and principal strain ratio were discussed in relation to the observations of surface crack and void area density in the gage part of the specimen. Creep-fatigue lives were discussed in relation to the principal stress amplitude calculated by finite element analysis and creep-fatigue damage was evaluated by linear damage rule.

До бібліографії