Добірка наукової літератури з теми "Multiband I"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multiband I".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Multiband I":

1

Zhao, Yongqiang, Qunnie Peng, Chen Yi, and Seong G. Kong. "Multiband Polarization Imaging." Journal of Sensors 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/5985673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multiband polarization imaging is an emerging sensing method that enables simultaneous acquisition of multiband spectral and multiangle polarization information of an object of interest in the scene. Spectral signatures of the light reflected from a target reveal the characteristics of the material composing the target while polarized light provides useful information on the surface features such as light scattering and specular reflection. In multiband spectral imaging, combined spectral and polarization information offers a comprehensive representation of an object utilizing complementary spectral and polarization information in visual sensing. Multiband polarization imaging has demonstrated a potential in the recognition of targets in challenging operating environments such as low-contrast and hazy conditions. This paper presents the concept and recent advances of multiband polarization imaging techniques, in particular, a bioinspired multiband polarization vision system. Applications of multiband polarization imaging in various fields include atmospheric observation, object detection and classification, medical diagnostics, surveillance, and 3D object reconstruction.
2

NAGAO, HIDEMI, SERGEI P. KRUCHININ, ANATOLI M. YAREMKO, and KIZASHI YAMAGUCHI. "MULTIBAND SUPERCONDUCTIVITY." International Journal of Modern Physics B 16, no. 23 (September 10, 2002): 3419–28. http://dx.doi.org/10.1142/s0217979202012220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multi-band superconductivity is investigated by using two-particle Green's function techniques, and equations for coupled states are derived in the framework of a two-band model. These results suggest that superconductivity appears, even if electron–electron interaction is positive. We also present a cooperative mechanism for multi-band superconductivity.
3

Kruchinin, S. P. "Multiband Superconductors." Reviews in Theoretical Science 4, no. 2 (June 1, 2016): 165–78. http://dx.doi.org/10.1166/rits.2016.1057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Garcia-Lamperez, Alejandro, and Magdalena Salazar-Palma. "Single-Band to Multiband Frequency Transformation for Multiband Filters." IEEE Transactions on Microwave Theory and Techniques 59, no. 12 (December 2011): 3048–58. http://dx.doi.org/10.1109/tmtt.2011.2170579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yu, Yuchi, Han Jia, Yuzhen Yang, Han Zhao, Quanquan Shi, Peng Kong, Jun Yang, and Ke Deng. "Multi-order resonators for acoustic multiband asymmetric absorption and reflection." Journal of Applied Physics 131, no. 13 (April 7, 2022): 135102. http://dx.doi.org/10.1063/5.0084450.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We propose a multiband asymmetric acoustic absorption and reflection system constructed from a waveguide and multi-order resonators with different radiant modes. Theoretical and experimental results confirm that the coupling of the dark and bright modes at each resonant frequency enables multiband high-efficiency absorption requiring only two functional units. More interestingly, we demonstrate a hybrid multiband asymmetric system based on customized multi-mode pairs. One side of the hybrid multiband system almost completely absorbs the lower frequency incident sound waves while reflecting the higher frequency ones; conversely, the other side effectively reflects the lower frequency ones and absorbs the higher frequency ones. Our design showcases the flexibility of customized multiband asymmetric absorption and also provides an approach for the design of bidirectional wave-manipulation devices.
6

Anguera, Jaume, Aurora Andújar, José Luis Leiva, Oriol Massó, Joakim Tonnesen, Endre Rindalsholt, Rune Brandsegg, and Roberto Gaddi. "Reconfigurable Multiband Operation for Wireless Devices Embedding Antenna Boosters." Electronics 10, no. 7 (March 29, 2021): 808. http://dx.doi.org/10.3390/electronics10070808.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Wireless devices such as smart meters, trackers, and sensors need connections at multiple frequency bands with low power consumption, thus requiring multiband and efficient antenna systems. At the same time, antennas should be small to easily fit in the scarce space existing in wireless devices. Small, multiband, and efficient operation is addressed here with non-resonant antenna elements, featuring volumes less than 90 mm3 for operating at 698–960 MHz as well as some bands in a higher frequency range of 1710–2690 MHz. These antenna elements are called antenna boosters, since they excite currents on the ground plane of the wireless device and do not rely on shaping complex geometric shapes to obtain multiband behavior, but rather the design of a multiband matching network. This design approach results in a simpler, easier, and faster method than creating a new antenna for every device. Since multiband operation is achieved through a matching network, frequency bands can be configured and optimized with a reconfigurable matching network. Two kinds of reconfigurable multiband architectures with antenna boosters are presented. The first one includes a digitally tunable capacitor, and the second one includes radiofrequency switches. The results show that antenna boosters with reconfigurable architectures feature multiband behavior with very small sizes, compared with other prior-art techniques.
7

Amirov, S. F., B. Kh Khushbokov, and N. E. Balgaev. "Multiband current transformers." Russian Electrical Engineering 80, no. 2 (February 2009): 119–21. http://dx.doi.org/10.3103/s1068371209020126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Griffin, Daniel W., and Jae S. Lim. "Multiband excitation vocoder." IEEE Transactions on Acoustics, Speech, and Signal Processing 36, no. 8 (August 1988): 1223–35. http://dx.doi.org/10.1109/29.1651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Walbeoff, A., and R. J. Langley. "Multiband PCB antenna." IEE Proceedings - Microwaves, Antennas and Propagation 152, no. 6 (2005): 471. http://dx.doi.org/10.1049/ip-map:20050053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sabah, Cumali. "Multiband planar metamaterials." Microwave and Optical Technology Letters 53, no. 10 (July 20, 2011): 2255–58. http://dx.doi.org/10.1002/mop.26296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Multiband I":

1

Marques, Anselmo Miguel Magalhães. "Frustrated multiband superconductors." Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/12174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mestrado em Física
Motivada pela recente descoberta de supercondutores baseados em ferro, com altas temperaturas críticas e possibilidade de coexistência de múltiplas bandas no nível de Fermi, esta dissertação pretende estudar as condições sob as quais se podem manifestar configurações frustradas nas fases supercondutoras, em função das variáveis temperatura e campo magnético externo aplicado. A Acão reciproca entre as interações atrativas/repulsivas interbandas e intrabandas e analisada, sendo apresentado o diagrama de fases de campo magnético vs. temperatura para um regime de acoplamento entre bandas fraco.
Motivated by the recent discovery of iron-based superconductors, having high critical temperatures and multiple bands crossing the Fermi level, this dissertation aims to study the conditions under which frustrated con gurations in the superconducting phases can be present, as a function of the variables temperature and externally applied magnetic eld. The interplay between interband and intraband attractive/ repulsive interactions is analysed, with the magnetic eld vs. temperature phase diagram being presented for the weakly interband coupling regime.
2

Corrêa, Lucas Eduardo. "Investigação de supercondutividade em boreto do sistema Ta-Zr-B." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/97/97135/tde-03122018-184821/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Em trabalhos anteriores realizados em síntese e caracterização cristalográfica, a existência de uma nova fase de estequiometria Ta1-xHfxB (com x variando no intervalo entre 0,05 e 0,4) que cristaliza no protótipo FeB foi descoberta. Este ternário cristaliza num protótipo diferente do protótipo CrB aceito no binário TaB. Na verdade, essa substituição é capaz de gerar uma mudança significativa na estrutura cristalina de TaB, a qual sofre uma distorção e modifica o protótipo CrB para FeB. Além desta mudança estrutural os compostos de composição global Ta1-xHfxB apresentam supercondutividade com temperatura crítica supercondutora acima do binário TaB (Tc ~ 4,0 K). Foi observado que a supercondutividade otimizada na composição Ta0,7Hf0,3B com Tc ~ 6,7 K na qual medidas de calor específico revelam forte assinatura de manifestação multibanda neste novo composto. Motivados por esta descoberta, neste trabalho são investigadas a possiblidade desta transformação estrutural bem como o seu impacto nas propriedades supercondutoras em ligas de composição global Ta1-xZrxB, devido à similaridade eletrônica entre Zr e Hf na tabela periódica. De fato, resultados publicados a respeito da transformação cristalográfica com a substituição de Ta por Zr revelam o mesmo comportamento observado nas ligas produzidas com Hf e este trabalho revela que os compostos Ta1-xZrxB também são supercondutores. A composição com a maior temperatura crítica é Ta0,8Zr0,2Be tem uma temperatura de transição aproximadamente 7,8 K. Entretanto, esse composto tem evidencia de um supercondutor não convencional. Assim, este trabalho revela a existência de supercondutividade não convencional em ligas do sistema ternário Ta-Zr-B revelados por medidas de resistividade, magnetização e caracterização estrutural e microestrutural.
In previous works carried out in synthesis and crystallographic characterization, the existence of a new Ta1-xHfxB stoichiometry phase (with x varying in the interval between 0.05 and 0.4) that crystallizes in the FeB prototype was discovered. This ternary crystallizes in a prototype different from the prototype CrB accepted in the TaB binary. In fact, this substitution is capable of generating a significant change in the crystalline structure of TaB, which undergoes distortion and modifies the CrB prototype for FeB. In addition to this structural change, the compounds of global composition Ta1-xHfxB present superconductivity with critical superconducting temperature above the TaB Tc ~ 4.0 K. It was observed that the superconductivity optimizes at Ta0,7Hf0,3B composition with Tc ~ 6.7 K in which specific heat measurements reveal a strong multiband manifestation signature in this new compound. Based on this finding, this work investigates the possibility of this structural transformation as well as its impact on the superconducting properties of alloys of global composition Ta1-xZrxB, due to the electronic similarity between Zr and Hf in the periodic table. In fact, published results on crystallographic transformation with the substitution of Ta by Zr reveal the same behavior observed in the alloys produced with Hf and this work reveals that the Ta1-xZrxB compounds are also superconducting. The composition with the highest critical temperature is Ta0,8Zr0,2Band has a transition temperature of about 7.8K. However, this compound has evidence of an unconventional superconductor. Thus, this work reveals the existence of unconventional superconductivity in alloys of the Ta-Zr-B ternary system revealed by resistivity, magnetization and structural and microstructural characterization measurements.
3

Blaschke, Volker. "Multiband Cognitive Radio-Systeme." [S.l. : s.n.], 2008. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000009926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Saucier, Scott. "Multiband Analog-to-Digital Conversion." Fogler Library, University of Maine, 2002. http://www.library.umaine.edu/theses/pdf/SaucierS2002.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Abutarboush, Hattan F. "Fixed and reconfigurable multiband antennas." Thesis, Brunel University, 2011. http://bura.brunel.ac.uk/handle/2438/9037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With the current scenario of development of antennas in the wireless communication field, the need of compact multiband, multifunctional and cost effective antenna is on the rise. The objective of this thesis is to present fixed and reconfigurable techniques and methods for small and slim multiband antennas, which are applicable to serve modern small and slime wireless, mobile and cognitive radio applications. In the fixed designs, independent control of the operating frequencies is investigated to enhance the antennas capabilities and to give the designer an additional level of freedom to design the antenna for other bands easily without altering the shape or the size of the antenna. In addition, for mobile phone antenna, the effect of user’s hand and mobile phone housing are studied to be with minimum effect. Although fixed multiband antennas can widely be used in many different systems or devices, they lack flexibility to accommodate new services compared with reconfigurable antennas. A reconfigurable antenna can be considered as one of the key advances for future wireless communication transceivers. The advantage of using a reconfigurable antenna is to operate in multiband where the total antenna volume can be reused and therefore the overall size can be reduced. Moreover, the future of cell phones and other personal mobile devices require compact multiband antennas and smart antennas with reconfigurable features. Two different types of frequency reconfigurability are investigated in this thesis: switchable and tunable. In the switchable reconfigurability, PIN diodes have been used so the antenna’s operating frequencies can hop between different services whereas varactor diode with variable capacitance allow the antenna’s operating frequencies to be fine-tuned over the operating bands. With this in mind, firstly, a switchable compact and slim antenna with two patch elements is presented for cognitive radio applications where the antenna is capable of operating in wideband and narrow bands depending on the states of the switches. In addition to this, a switchable design is proposed to switch between single, dual and tri bands applications (using a single varactor diode to act as a switch at lower capacitance values) with some fine tuning capabilities for the first and third bands when the capacitance of the diode is further increased. Secondly, the earlier designed fixed antennas are modified to be reconfigurable with fine-tuning so that they can be used for more applications in both wireless and mobile applications with the ability to control the bands simultaneously or independently over a wide range. Both analytical and numerical methods are used to implement a realistic and functional design. Parametric analyses using simulation tools are performed to study critical parameters that may affect the designs. Finally, the simulated designs are fabricated, and measured results are presented that validate the design approaches.
6

Maxwell, Michael. "Multiband observations of recurrent novae." Thesis, University of Central Lancashire, 2014. http://clok.uclan.ac.uk/10719/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recurrent novae are binary systems which undergo outbursts due to a thermonuclear runaway on a timescale of decades. Two systems, U Scorpii and RS Ophiuchi, are the main focus of this thesis having gone into outburst in 2010 and 2006 respectively. Optical and near-IR spectroscopy of U Sco obtained with facilities including the Liverpool Telescope, the Very Large Telescope, and the Southern African Large Telescope, as well as ultra-violet and optical spectroscopy of RS Oph obtained with the Ultra-Violet and Optical Telescope, are presented here. Observations of U Sco obtained in outburst are used to determine the helium abundance of the ejecta, with observations in quiescence used to constrain the nature of the companion star and the accretion disc. Observations of RS Oph are used to produce lightcurves of the decline from maximum to the post-outburst minimum. Analysis of optical and near-IR spectra following the 2010 outburst of U Sco leads to the determination of the reddening and the helium abundance. The reddening is found to be E(B-V) = 0.17 ± 0.14, consistent with previous estimates. The helium abundance, N(He)/N(H), is determined to be 0.122 ± 0.018, lower than previous estimates and suggesting that the companion is not helium rich. The fitting of model stellar atmospheres to observations of U Sco in quiescence, obtained ∼18-30 months after the 2010 outburst, constrains the effective temperature of the companion and indicates that it is a cool F or hot G star. The accretion disc is found to be still in a state of development until at least ∼18 months after outburst, contrary to previous studies. The strength of the Heii 4686 ̊A line in quiescence is found to be consistent with a high mass white dwarf accreting solar-abundance material at a high rate. The He line strengths do not require an overabundance of helium, as has been previously suggested, consistent with the solar abundance of helium found in the ejecta of the 2010 outburst. UVOT observations of RS Oph following the 2006 outburst are used to produce B and u′ lightcurves of the decline to minimum. These lightcurves are used in con- junction with published V and B lightcurves to show the change in the colour of the system throughout the outburst. Spectra of RS Oph show the spectroscopic evolution during the initial decline, plateau, final decline, and post-outburst minimum phases. SALT spectra obtained during the late decline phase of the 2011 outburst of a third recurrent nova, T Pyxidis, are used to derive a helium abundance of N(He)/N(H)= 0.161 ± 0.013, approximately twice the solar value. Very strong [O iii] lines are also detected.
7

Abunjaileh, Alaa Ibrahim. "Multimode and multiband microstrip antennas." Thesis, University of Leeds, 2007. http://etheses.whiterose.ac.uk/759/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis describes original work on the broadband and multiband matching of microstrip patch antennas. Microstrip patch antennas suffer from many constraints on their performance. One major restriction is their narrow impedance bandwidth. An effective method to resolve this is adding more resonators to the antenna structure to achieve multi-resonance and hence wider bandwidth. Structures such as circular, square and triangular patch antennas may support two orthogonal resonant modes or polarisations. This allows excitation of an additional resonance beside the fundamental. With the correct coupling between the resonant modes, the impedance bandwidth can be significantly increased. The equivalent circuit of such structures is similar to those used in microwave filter design. Using techniques normally employed in filter synthesis, the equivalent circuits can be generated, and aid in finding the couplings and dimensions of the specified antenna requirement. The bandwidth of circular microstrip patch antennas is significantly increased by exciting two modes on a single circular microstrip antenna, and four modes using two stacked circular microstrip patches. In this work, the designs are also extended into multimode antennas achieving multi-frequency operation.
8

Blaschke, Volker [Verfasser]. "Multiband cognitive Radio-Systeme / Volker Blaschke." Karlsruhe : Inst. für Nachrichtentechnik, 2008. http://d-nb.info/998339180/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tzeng, Jack. "Multiband deblurring for fluid lens cameras." Diss., [La Jolla] : University of California, San Diego, 2010. http://wwwlib.umi.com/cr/ucsd/fullcit?p3404214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--University of California, San Diego, 2010.
Title from first page of PDF file (viewed June 10, 2010). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (leaves 96-100).
10

Maassel, Michael. "A Metamaterial-Based Multiband Phase Shifter." Diss., North Dakota State University, 2014. https://hdl.handle.net/10365/27095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A design methodology for a multi-band phase shifter using a metamaterial-based transmission line was developed. This method is different in that the loaded-line phase shifter has a phase shift of 90 degrees at the center frequencies of both bands instead of -90 degrees and -270 degrees. The method was validated using simulation and measured results.

Книги з теми "Multiband I":

1

Askerzade, Iman. Unconventional superconductors: Anisotropy and multiband effects. Berlin: Springer, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Matin, Mohammad Abdul, ed. Wideband, Multiband, and Smart Antenna Systems. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74311-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Siriwongpairat, W. Pam. Ultra-wideband communications systems: Multiband OFDM approach. Hoboken, N.J: John Wiley, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nguyen, Cam, and Youngman Um. Multiband Dual-Function CMOS RFIC Filter-Switches. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46248-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gonzalez Rodriguez, Erick. Reconfigurable Transceiver Architecture for Multiband RF-Frontends. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24581-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, Wenhua, Karun Rawat, and Fadhel M. Ghannouchi. Multiband RF Circuits and Techniques for Wireless Transmitters. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-50440-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zheng, Yuliang. Tunable Multiband Ferroelectric Devices for Reconfigurable RF-Frontends. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35780-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zheng, Yuliang. Tunable Multiband Ferroelectric Devices for Reconfigurable RF-Frontends. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Matin, Mohammad A. Wideband, multiband, and smart reconfigurable antennas for modern wireless communications. Hershey, PA: Information Science Reference, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Perros, Sotirios Georgios. The design and evaluation of transmit and receive antennas for an ionospheric communications probe system: A. Multiband Dipole Antenna. Monterey, Calif: Naval Postgraduate School, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Multiband I":

1

Chen, Wenhua, Karun Rawat, and Fadhel M. Ghannouchi. "Multiband RF Transmitters." In Multiband RF Circuits and Techniques for Wireless Transmitters, 59–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-50440-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Wenhua, Karun Rawat, and Fadhel M. Ghannouchi. "Multiband RF Passive Circuits." In Multiband RF Circuits and Techniques for Wireless Transmitters, 81–156. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-50440-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, Wenhua, Karun Rawat, and Fadhel M. Ghannouchi. "Multiband Power Amplifier Design." In Multiband RF Circuits and Techniques for Wireless Transmitters, 157–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-50440-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zheng, Yuliang. "Tunable Multiband Ferroelectric Devices." In Lecture Notes in Electrical Engineering, 55–136. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35780-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Abbas, Syed Muzahir, Ilyas Saleem, Abida Parveen, Hijab Zahra, and Shahid Ahmed Khan. "Chebyshev Multiband Patch Antenna." In Communications in Computer and Information Science, 10–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28962-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Choudhary, Dilip Kumar, and Raghvendra Kumar Chaudhary. "Compact Multiband Metamaterial Filter." In Metamaterials Science and Technology, 1–34. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-13-0261-9_43-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Iyer, Brijesh, and Nagendra Prasad Pathak. "Introduction." In Multiband Non-Invasive Microwave Sensor, 1–10. First edition. | Boca Raton, FL : CRC Press, Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9780203732946-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Iyer, Brijesh, and Nagendra Prasad Pathak. "Preliminaries and Review." In Multiband Non-Invasive Microwave Sensor, 11–26. First edition. | Boca Raton, FL : CRC Press, Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9780203732946-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Iyer, Brijesh, and Nagendra Prasad Pathak. "Design and Characterization of the Radiating Elements." In Multiband Non-Invasive Microwave Sensor, 27–48. First edition. | Boca Raton, FL : CRC Press, Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9780203732946-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Iyer, Brijesh, and Nagendra Prasad Pathak. "Concurrent Dualband Front-End Elements for NIVSD Sensors." In Multiband Non-Invasive Microwave Sensor, 49–78. First edition. | Boca Raton, FL : CRC Press, Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9780203732946-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Multiband I":

1

Brenner, Tadeusz, Heiner Kuschel, and Karl Erik Olsen. "Multiband Radar Modelling." In 2006 International Radar Symposium. IEEE, 2006. http://dx.doi.org/10.1109/irs.2006.4338066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Savochkin, A. A., and A. A. Nudga. "The multiband antenna." In 2011 VIII International Conference on Antenna Theory and Techniques (ICATT). IEEE, 2011. http://dx.doi.org/10.1109/icatt.2011.6170738.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mondal, Sofikul Islam, and R. P. Ghosh. "Multiband wearable antennas." In 2016 International Conference on Microelectronics, Computing and Communications (MicroCom). IEEE, 2016. http://dx.doi.org/10.1109/microcom.2016.7522409.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mathis, James E., and J. J. Garcia-Luna-Aceves. "Survivable Multiband Networking." In 1987 IEEE Military Communications Conference - Crisis Communications: The Promise and Reality. IEEE, 1987. http://dx.doi.org/10.1109/milcom.1987.4795279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mansour, R. R., and P. D. Laforge. "Multiband superconducting filters." In 2016 IEEE/MTT-S International Microwave Symposium (IMS). IEEE, 2016. http://dx.doi.org/10.1109/mwsym.2016.7540242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Craig, Brian I. "Multiband target detection." In International Symposium on Photonics and Applications, edited by Yee Loy Lam, Koji Ikuta, and Metin S. Mangir. SPIE, 1999. http://dx.doi.org/10.1117/12.368477.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Xuan, Anh Nghiem, and Renato Negra. "Design of concurrent multiband biasing networks for multiband RF power amplifiers." In 2012 42nd European Microwave Conference (EuMC 2012). IEEE, 2012. http://dx.doi.org/10.23919/eumc.2012.6459311.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Napoli, Antonio, Nelson Costa, Johannes K. Fischer, João Pedro, Silvio Abrate, Nicola Calabretta, Wladek Forysiak, et al. "Towards multiband optical systems." In Photonic Networks and Devices. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/networks.2018.netu3e.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Naik, Amit, and K. Krishna Naik. "Handover in multiband Transceiver." In 2016 International Conference on ICT in Business Industry & Government (ICTBIG). IEEE, 2016. http://dx.doi.org/10.1109/ictbig.2016.7892654.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yoon, Huisu, Dong-wook Lee, Juyoung Lee, Seung Hong Choi, Sung-Hong Park, and Jong Chul Ye. "Multiband dynamic compressed sensing." In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015). IEEE, 2015. http://dx.doi.org/10.1109/isbi.2015.7164021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Multiband I":

1

Glover, Mark. Navy Multiband Terminal (NMT). Fort Belvoir, VA: Defense Technical Information Center, November 2015. http://dx.doi.org/10.21236/ad1019521.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Palmer, Todd S., Adam Q. Lam, Jonathan Walsh, and Patrick Brantley. Generation of Multigroup Multiband Nuclear Data. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1544480.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nguyen, Cam. Advanced Concurrent-Multiband, Multibeam, Aperture-Synthesis with Intelligent Processing for Urban Operation Sensing. Fort Belvoir, VA: Defense Technical Information Center, April 2012. http://dx.doi.org/10.21236/ada582347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ager III, Joel W., W. Walukiewicz, and Kin Man Yu. Ultrahigh Efficiency Multiband Solar Cells Final Report forDirector's Innovation Initiative Project DII-2005-1221. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/919750.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Crowne, Frank J. Derivation of Effective-Mass Expressions for Electrons and Holes in the Anisotropic Multiband Semimetals Ar, Sb, and Bi. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada381337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Clavijo-Vergara, Sergio. Hacia la multibanca en Colombia: retos y "retazos" financieros. Bogotá, Colombia: Banco de la República, June 2000. http://dx.doi.org/10.32468/be.150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії