Зміст
Добірка наукової літератури з теми "Multicompartmental nanoparticles"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Multicompartmental nanoparticles".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Multicompartmental nanoparticles"
Rahmani, Sahar, and Joerg Lahann. "Recent progress with multicompartmental nanoparticles." MRS Bulletin 39, no. 3 (March 2014): 251–57. http://dx.doi.org/10.1557/mrs.2014.10.
Повний текст джерелаHe, Xin, Yaqing Qu, Chengqiang Gao, and Wangqing Zhang. "Synthesis of multicompartment nanoparticles of a triblock terpolymer by seeded RAFT polymerization." Polymer Chemistry 6, no. 35 (2015): 6386–93. http://dx.doi.org/10.1039/c5py01041a.
Повний текст джерелаLiu, Jian, Tingting Liu, Jian Pan, Shaomin Liu, and G. Q. (Max) Lu. "Advances in Multicompartment Mesoporous Silica Micro/Nanoparticles for Theranostic Applications." Annual Review of Chemical and Biomolecular Engineering 9, no. 1 (June 7, 2018): 389–411. http://dx.doi.org/10.1146/annurev-chembioeng-060817-084225.
Повний текст джерелаChen, Shengli, Xueying Chang, Pingchuan Sun, and Wangqing Zhang. "Versatile multicompartment nanoparticles constructed with two thermo-responsive, pH-responsive and hydrolytic diblock copolymers." Polymer Chemistry 8, no. 36 (2017): 5593–602. http://dx.doi.org/10.1039/c7py01182b.
Повний текст джерелаHe, Xin, Quanlong Li, Pengfei Shi, Yongliang Cui, Shentong Li, and Wangqing Zhang. "A new strategy to prepare thermo-responsive multicompartment nanoparticles constructed with two diblock copolymers." Polym. Chem. 5, no. 24 (2014): 7090–99. http://dx.doi.org/10.1039/c4py01077a.
Повний текст джерелаHuang, Jing, Yakun Guo, Song Gu, Guang Han, Wenfeng Duan, Chengqiang Gao, and Wangqing Zhang. "Multicompartment block copolymer nanoparticles: recent advances and future perspectives." Polymer Chemistry 10, no. 25 (2019): 3426–35. http://dx.doi.org/10.1039/c9py00452a.
Повний текст джерелаPochan, Darrin J., Jiahua Zhu, Ke Zhang, Karen L. Wooley, Caroline Miesch, and Todd Emrick. "Multicompartment and multigeometry nanoparticle assembly." Soft Matter 7, no. 6 (2011): 2500. http://dx.doi.org/10.1039/c0sm00960a.
Повний текст джерелаQu, Yaqing, Fei Huo, Quanlong Li, Xin He, Shentong Li, and Wangqing Zhang. "In situ synthesis of thermo-responsive ABC triblock terpolymer nano-objects by seeded RAFT polymerization." Polym. Chem. 5, no. 19 (2014): 5569–77. http://dx.doi.org/10.1039/c4py00510d.
Повний текст джерелаLiu, Tingting, Wei Tian, Yunqing Zhu, Yang Bai, Hongxia Yan, and Jianzhong Du. "How does a tiny terminal alkynyl end group drive fully hydrophilic homopolymers to self-assemble into multicompartment vesicles and flower-like complex particles?" Polym. Chem. 5, no. 17 (2014): 5077–88. http://dx.doi.org/10.1039/c4py00501e.
Повний текст джерелаLunn, David J., John R. Finnegan, and Ian Manners. "Self-assembly of “patchy” nanoparticles: a versatile approach to functional hierarchical materials." Chemical Science 6, no. 7 (2015): 3663–73. http://dx.doi.org/10.1039/c5sc01141h.
Повний текст джерелаДисертації з теми "Multicompartmental nanoparticles"
Lu, Yaowei. "Multicompartmental lipid-based Janus nanoparticles : influence of different amphiphilic starting materials on their formation mechanisms and their suitability as drug delivery vehicles." Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASQ009.
Повний текст джерелаThe innovative asymmetric lipid-based Janus nanoparticles (JNPs) developed by the Galien Institute can function as novel drug delivery vehicles or diagnostic agent carriers in the field of nanotechnology. To obtain this type of anisotropic particles, different raw materials (phospholipids and short-PEG-based surfactants or amphiphilic cyclodextrin derivatives) and preparation methods (hot high-pressure homogenization or nanoprecipitation) were compared. After that, we tried to optimize these JNPs in terms of knowledge of phospholipid effects and aqueous phase composition. Especially, the relationship between JNP morphology and phospholipid properties was established by considering the packing parameter of phospholipids. By investigating the interaction between phospholipids and short-PEG-based surfactants that constitute JNP, more information can be obtained.We are interested in the ability of classical Janus NPs to co-encapsulate the model drug pairs, and the dual phase release kinetics are quantified and adjusted by mathematic equations. Finally, we aim to explore the acute toxicity and morphological changes upon exposure to classical Janus NPs on the zebrafish larvae. Moreover, the fluorescence microscopy images showed that the biodistribution of nanoparticles is pretty consistent with the nanotoxicity and malformations determined in the larvae. This project verified that the multicompartmental supramolecular organizations are promising candidates for the co-encapsulation of the hydrophilic and hydrophobic active pharmaceutical ingredients