Статті в журналах з теми "Multivariate time series forecasting"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Multivariate time series forecasting".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Athanasopoulos, George, and Farshid Vahid. "Forecasting multivariate time series." International Journal of Forecasting 31, no. 3 (2015): 680–81. http://dx.doi.org/10.1016/j.ijforecast.2015.03.003.
Повний текст джерелаWang, Miss Lei. "Advanced Multivariate Time Series Forecasting Models." Journal of Mathematics and Statistics 14, no. 1 (2018): 253–60. http://dx.doi.org/10.3844/jmssp.2018.253.260.
Повний текст джерелаŞişman-Yılmaz, N. Arzu, Ferda N. Alpaslan, and Lakhmi Jain. "ANFISunfoldedintime for multivariate time series forecasting." Neurocomputing 61 (October 2004): 139–68. http://dx.doi.org/10.1016/j.neucom.2004.03.009.
Повний текст джерелаWu, Haixiang. "Revisiting Attention for Multivariate Time Series Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 20 (2025): 21528–35. https://doi.org/10.1609/aaai.v39i20.35455.
Повний текст джерелаPei, Jinglei, Yang Zhang, Ting Liu, Jingbin Yang, Qinghua Wu, and Kang Qin. "ADTime: Adaptive Multivariate Time Series Forecasting Using LLMs." Machine Learning and Knowledge Extraction 7, no. 2 (2025): 35. https://doi.org/10.3390/make7020035.
Повний текст джерелаShibo, Feng, Peilin Zhao, Liu Liu, Pengcheng Wu, and Zhiqi Shen. "HDT: Hierarchical Discrete Transformer for Multivariate Time Series Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 1 (2025): 746–54. https://doi.org/10.1609/aaai.v39i1.32057.
Повний текст джерелаAria, Seyed Sina, Seyed Hossein Iranmanesh, and Hossein Hassani. "Optimizing Multivariate Time Series Forecasting with Data Augmentation." Journal of Risk and Financial Management 17, no. 11 (2024): 485. http://dx.doi.org/10.3390/jrfm17110485.
Повний текст джерелаFeng, Shibo, Chunyan Miao, Zhong Zhang, and Peilin Zhao. "Latent Diffusion Transformer for Probabilistic Time Series Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 11 (2024): 11979–87. http://dx.doi.org/10.1609/aaai.v38i11.29085.
Повний текст джерелаJi, Xin, Haifeng Zhang, Jianfang Li, Xiaolong Zhao, Shouchao Li, and Rundong Chen. "Multivariate time series prediction of high dimensional data based on deep reinforcement learning." E3S Web of Conferences 256 (2021): 02038. http://dx.doi.org/10.1051/e3sconf/202125602038.
Повний текст джерелаTaga, Ege Onur, Muhammed Emrullah Ildiz, and Samet Oymak. "TimePFN: Effective Multivariate Time Series Forecasting with Synthetic Data." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 19 (2025): 20761–69. https://doi.org/10.1609/aaai.v39i19.34288.
Повний текст джерелаDuan, Ziheng, Haoyan Xu, Yida Huang, Jie Feng, and Yueyang Wang. "Multivariate Time Series Forecasting with Transfer Entropy Graph." Tsinghua Science and Technology 28, no. 1 (2023): 141–49. http://dx.doi.org/10.26599/tst.2021.9010081.
Повний текст джерелаShapovalova, Yuliya, Nalan Baştürk, and Michael Eichler. "Multivariate Count Data Models for Time Series Forecasting." Entropy 23, no. 6 (2021): 718. http://dx.doi.org/10.3390/e23060718.
Повний текст джерелаYin, Yi, and Pengjian Shang. "Forecasting traffic time series with multivariate predicting method." Applied Mathematics and Computation 291 (December 2016): 266–78. http://dx.doi.org/10.1016/j.amc.2016.07.017.
Повний текст джерелаVan Der Knoop, H. S. "Conditional forecasting with a multivariate time series model." Economics Letters 22, no. 2-3 (1986): 233–36. http://dx.doi.org/10.1016/0165-1765(86)90238-7.
Повний текст джерелаThomakos, Dimitrios D., and Konstantinos Nikolopoulos. "Forecasting Multivariate Time Series with the Theta Method." Journal of Forecasting 34, no. 3 (2015): 220–29. http://dx.doi.org/10.1002/for.2334.
Повний текст джерелаShih, Shun-Yao, Fan-Keng Sun, and Hung-yi Lee. "Temporal pattern attention for multivariate time series forecasting." Machine Learning 108, no. 8-9 (2019): 1421–41. http://dx.doi.org/10.1007/s10994-019-05815-0.
Повний текст джерелаWang, Xuguang, Mi Zhang, and Jie Su. "Robust temporal alignment for multivariate time series forecasting." Expert Systems with Applications 289 (September 2025): 128299. https://doi.org/10.1016/j.eswa.2025.128299.
Повний текст джерелаWan, Renzhuo, Chengde Tian, Wei Zhang, Wendi Deng, and Fan Yang. "A Multivariate Temporal Convolutional Attention Network for Time-Series Forecasting." Electronics 11, no. 10 (2022): 1516. http://dx.doi.org/10.3390/electronics11101516.
Повний текст джерелаKang, Seung Woo, and Ohyun Jo. "Multivariate Time-Series Imagification with Time Embedding in Constrained Environments (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 21 (2024): 23535–36. http://dx.doi.org/10.1609/aaai.v38i21.30461.
Повний текст джерелаDíaz Berenguer, Abel, Yifei Da, Matías Nicolás Bossa, Meshia Cédric Oveneke, and Hichem Sahli. "Causality-driven multivariate stock movement forecasting." PLOS ONE 19, no. 4 (2024): e0302197. http://dx.doi.org/10.1371/journal.pone.0302197.
Повний текст джерелаAhmadi, Ahmadi, and R. Adisetiawan. "Multivariate Time Series in Macroeconomics." Eksis: Jurnal Ilmiah Ekonomi dan Bisnis 11, no. 2 (2020): 151. http://dx.doi.org/10.33087/eksis.v11i2.209.
Повний текст джерелаHe, Zichao, Chunna Zhao, and Yaqun Huang. "Multivariate Time Series Deep Spatiotemporal Forecasting with Graph Neural Network." Applied Sciences 12, no. 11 (2022): 5731. http://dx.doi.org/10.3390/app12115731.
Повний текст джерелаCalderon, Sergio, and Fabio H. Nieto. "Forecasting with Multivariate Threshold Autoregressive Models." Revista Colombiana de Estadística 44, no. 2 (2021): 369–83. http://dx.doi.org/10.15446/rce.v44n2.91356.
Повний текст джерелаLee, Won Kyung. "Partial Correlation-Based Attention for Multivariate Time Series Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 10 (2020): 13720–21. http://dx.doi.org/10.1609/aaai.v34i10.7132.
Повний текст джерелаCheng, Yunyao, Peng Chen, Chenjuan Guo, et al. "Weakly Guided Adaptation for Robust Time Series Forecasting." Proceedings of the VLDB Endowment 17, no. 4 (2023): 766–79. http://dx.doi.org/10.14778/3636218.3636231.
Повний текст джерелаSobanapuram Muruganandam, Narendran, and Umamakeswari Arumugam. "Dynamic Ensemble Multivariate Time Series Forecasting Model for PM2.5." Computer Systems Science and Engineering 44, no. 2 (2023): 979–89. http://dx.doi.org/10.32604/csse.2023.024943.
Повний текст джерелаYazdanbakhsh, Omolbanin, and Scott Dick. "Forecasting of Multivariate Time Series via Complex Fuzzy Logic." IEEE Transactions on Systems, Man, and Cybernetics: Systems 47, no. 8 (2017): 2160–71. http://dx.doi.org/10.1109/tsmc.2016.2630668.
Повний текст джерелаKun-Huang Huarng, Tiffany Hui-Kuang Yu, and Yu Wei Hsu. "A Multivariate Heuristic Model for Fuzzy Time-Series Forecasting." IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) 37, no. 4 (2007): 836–46. http://dx.doi.org/10.1109/tsmcb.2006.890303.
Повний текст джерелаNg, C. N., P. C. Young, and C. Wang. "Recursive Identification. Estimation and Forecasting of Multivariate Time-series." IFAC Proceedings Volumes 21, no. 9 (1988): 593–96. http://dx.doi.org/10.1016/s1474-6670(17)54792-8.
Повний текст джерелаLi, Zhuo Lin, Gao Wei Zhang, Jie Yu, and Ling Yu Xu. "Dynamic graph structure learning for multivariate time series forecasting." Pattern Recognition 138 (June 2023): 109423. http://dx.doi.org/10.1016/j.patcog.2023.109423.
Повний текст джерелаWang, Yulong, Yushuo Liu, Xiaoyi Duan, and Kai Wang. "FilterTS: Comprehensive Frequency Filtering for Multivariate Time Series Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 20 (2025): 21375–83. https://doi.org/10.1609/aaai.v39i20.35438.
Повний текст джерелаYu, Yongbo, Weizhong Yu, Feiping Nie, Zongcheng Miao, Ya Liu, and Xuelong Li. "PRformer: Pyramidal recurrent transformer for multivariate time series forecasting." Neural Networks 191 (November 2025): 107769. https://doi.org/10.1016/j.neunet.2025.107769.
Повний текст джерелаRasheed, Abdul, Muhammad Asad Ullah, and Imam Uddin. "PKR Exchange Rate Forecasting Through Univariate and Multivariate Time Series Techniques." NICE Research Journal 13, no. 4 (2020): 49–67. http://dx.doi.org/10.51239/nrjss.v13i4.226.
Повний текст джерелаBhanja, Samit, Banani Ghose, and Abhishek Das. "Multi-Step-Ahead Time Series Forecasting using Deep Learning and Fuzzy Time Series-based Error Correction Method." JUCS - Journal of Universal Computer Science 30, no. (11) (2024): 1569–94. https://doi.org/10.3897/jucs.114357.
Повний текст джерелаYu, Yue, Pavel Loskot, Wenbin Zhang, Qi Zhang, and Yu Gao. "A Spatial–Temporal Time Series Decomposition for Improving Independent Channel Forecasting." Mathematics 13, no. 14 (2025): 2221. https://doi.org/10.3390/math13142221.
Повний текст джерелаZhao, Mengmeng, Haipeng Peng, Lixiang Li, and Yeqing Ren. "Graph Attention Network and Informer for Multivariate Time Series Anomaly Detection." Sensors 24, no. 5 (2024): 1522. http://dx.doi.org/10.3390/s24051522.
Повний текст джерелаFeng, Xing, Hongru Li, and Yinghua Yang. "Time-lagged relation graph neural network for multivariate time series forecasting." Engineering Applications of Artificial Intelligence 139 (January 2025): 109530. http://dx.doi.org/10.1016/j.engappai.2024.109530.
Повний текст джерелаLi, ZhuoLin, ZiHeng Gao, XiaoLin Zhang, GaoWei Zhang, and LingYu Xu. "Time-aware personalized graph convolutional network for multivariate time series forecasting." Expert Systems with Applications 240 (April 2024): 122471. http://dx.doi.org/10.1016/j.eswa.2023.122471.
Повний текст джерелаDou, Jiaxin, Yaling Xun, Haifeng Yang, Jianghui Cai, Yanfeng Li, and Shuo Han. "Multivariate time series forecasting based on time–frequency transform mixed convolution." Knowledge-Based Systems 325 (September 2025): 113912. https://doi.org/10.1016/j.knosys.2025.113912.
Повний текст джерелаCai, Wanlin, Yuxuan Liang, Xianggen Liu, Jianshuai Feng, and Yuankai Wu. "MSGNet: Learning Multi-Scale Inter-series Correlations for Multivariate Time Series Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 10 (2024): 11141–49. http://dx.doi.org/10.1609/aaai.v38i10.28991.
Повний текст джерелаChen, Jason Li, Gang Li, Doris Chenguang Wu, and Shujie Shen. "Forecasting Seasonal Tourism Demand Using a Multiseries Structural Time Series Method." Journal of Travel Research 58, no. 1 (2017): 92–103. http://dx.doi.org/10.1177/0047287517737191.
Повний текст джерелаNguyen, Nam, and Brian Quanz. "Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate Time Series Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (2021): 9117–25. http://dx.doi.org/10.1609/aaai.v35i10.17101.
Повний текст джерелаHuang, Lei, Feng Mao, Kai Zhang, and Zhiheng Li. "Spatial-Temporal Convolutional Transformer Network for Multivariate Time Series Forecasting." Sensors 22, no. 3 (2022): 841. http://dx.doi.org/10.3390/s22030841.
Повний текст джерелаWan, Renzhuo, Shuping Mei, Jun Wang, Min Liu, and Fan Yang. "Multivariate Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting." Electronics 8, no. 8 (2019): 876. http://dx.doi.org/10.3390/electronics8080876.
Повний текст джерелаHendi, Hanaa Ghareib, Mohamed Hassan Ibrahim, Masoud Esmail Masoud Shaheen, and Mohamed Hassan Farrag. "Multi-Time Series Forecasting for Regional Emergency Call Demand." International Journal of Healthcare Information Systems and Informatics 20, no. 1 (2025): 1–15. https://doi.org/10.4018/ijhisi.375011.
Повний текст джерелаHaviluddin, Haviluddin, and Rayner Alfred. "Multi-step CNN forecasting for COVID-19 multivariate time-series." International Journal of Advances in Intelligent Informatics 9, no. 2 (2023): 176. http://dx.doi.org/10.26555/ijain.v9i2.1080.
Повний текст джерелаPalaskar, Santosh, Vijay Ekambaram, Arindam Jati, et al. "AutoMixer for Improved Multivariate Time-Series Forecasting on Business and IT Observability Data." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 21 (2024): 22962–68. http://dx.doi.org/10.1609/aaai.v38i21.30336.
Повний текст джерелаLi, Shaowei, He Huang, and Wei Lu. "A Neural Networks Based Method for Multivariate Time-Series Forecasting." IEEE Access 9 (2021): 63915–24. http://dx.doi.org/10.1109/access.2021.3075063.
Повний текст джерелаZhang, Huihui, Shicheng Li, Yu Chen, Jiangyan Dai, and Yugen Yi. "A Novel Encoder-Decoder Model for Multivariate Time Series Forecasting." Computational Intelligence and Neuroscience 2022 (April 14, 2022): 1–17. http://dx.doi.org/10.1155/2022/5596676.
Повний текст джерелаChiu, Yi Chia, and Joseph Z. Shyu. "Applying multivariate time series models to technological product sales forecasting." International Journal of Technology Management 27, no. 2/3 (2004): 306. http://dx.doi.org/10.1504/ijtm.2004.003957.
Повний текст джерела