Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Naphtha Hydrotreating.

Статті в журналах з теми "Naphtha Hydrotreating"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-27 статей у журналах для дослідження на тему "Naphtha Hydrotreating".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Imran, Dr Aed Jaber. "AL – Mansuriya gas fields associated liquid and its role to increase the potential capacity of gasoline fuel in Daura oil refinery." Journal of Petroleum Research and Studies 7, no. 1 (May 6, 2021): 107–17. http://dx.doi.org/10.52716/jprs.v7i1.167.

Повний текст джерела
Анотація:
Hydrotreating processing is commonly used to remove platforming catalyst poisons from straight run or cracked naphthas prior to charging to the platforming Process unit. It can be seen that the primary function of the naphtha Hydrotreating Process can be characterized as a “Clean up” Operation. The catalyst used in the Naphtha Hydrotreating Process is composed of an alumina base impregnated with compounds of cobalt or nickel and molybdenum. The catalyst is insensitive to most poisons which affect dehydrogenation reactions. A relatively high percentage of carbon on the catalyst does not materially affect its sensitivity or selectivity. Volumetric recoveries of products depend on the sulfur and olefin contents [1]. The Naphtha Hydrotreating Process is a catalytic refining process employing a selected catalyst and a hydrogen-rich gas stream to decompose organic sulfur, oxygen and nitrogen compounds contained in hydrocarbon fractions. In addition, hydrotreating removes organo-metallic compounds and saturates olefinic compounds. Organo-metallic compounds, notably arsenic and lead compounds, are known to be permanent poisons to platinum catalysts. "The complete removal of these materials by Hydrotreating processing gives longer catalyst life in the platforming unit. Sulfur, above a critical level, is a temporary poison to platforming catalysts and causes an unfavorable change in the product distribution. Organic nitrogen is also a temporary poison to platforming catalyst. It is an extremely potent one, however, and relatively small amounts of nitrogen compounds in the Platformer feed can cause large deactivation effects, as well as the deposition of ammonium chloride salts in the platforming unit cold sections. Oxygen compounds are detrimental to the operation of a Platformer. Any oxygen compounds which are not removed in the hydrotreater will be converted to water in the platforming unit, thus affecting the water/ chloride balance of the platforming catalyst. Large amounts of olefins contribute to increase coking of the platforming catalyst. Also, olefins can poly­merize at platforming operating conditions which can result in exchanger and reactor fouling. The Naphtha Hydrotreating Process makes a major contribution to the ease of operation and economy of platforming. Much greater flexibility is afforded in choice of allowable charge stocks to the platforming unit. Because this unit protects the platforming catalyst, it is important to maintain consistently good operation in the Hydrotreating Unit. In addition to treating naphtha for Platformer feed, naphthas produced from thermal cracking processes, such as delayed coking and visbreaking, are usually high in olefinic content and other contaminants, and may not be stable in storage. These naphthas may be hydrotreated to stabilize the olefins and to remove organic or metallic contaminants, thus providing a marketable product.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Aladysheva, �. Z., V. A. Peregudova, L. D. Strom, and R. T. Khuramshin. "Hydrotreating catalytic naphtha." Chemistry and Technology of Fuels and Oils 24, no. 3 (March 1988): 124–26. http://dx.doi.org/10.1007/bf00729963.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fairbridge, C., and B. Farnand. "HYDROTREATING COAL-DERIVED NAPHTHA." Fuel Science and Technology International 4, no. 3 (January 1986): 225–48. http://dx.doi.org/10.1080/08843758608915806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Agbo, A. F., A. A. Aboje, and K. S. Obayomi. "Exergy analysis of Naphtha Hydrotreating Unit (NHU)." Journal of Physics: Conference Series 1299 (August 2019): 012025. http://dx.doi.org/10.1088/1742-6596/1299/1/012025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dyurik, N. M., K. V. Baklashov, V. S. Lutsik, Yu N. Lebedev, S. A. Kotov, A. G. Sypin, L. L. Man'kovskaya, T. M. Zaitseva, and N. Yu Krymov. "Naphtha Cut Hydrotreating Units at Yaroslavnefteorgsintez Company." Chemistry and Technology of Fuels and Oils 40, no. 1 (January 2004): 14–18. http://dx.doi.org/10.1023/b:cafo.0000021587.54116.5f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Setiawan, Daliya Indra, Tun Tedja Irawadi та Zainal Alim Mas’ud. "Hydrotreating of Sunan Candlenut (Reutealis trisperma Airy Shaw) Oil by Using NiMo-γAl2O3 as Renewable Energy". Indonesian Journal of Chemistry 19, № 1 (29 січня 2019): 78. http://dx.doi.org/10.22146/ijc.27274.

Повний текст джерела
Анотація:
Hydrotreating process of Sunan candlenut oil by using NiMo-γAl2O3 catalyst has been successfully investigated. Preparation of NiMo-γAl2O3 catalyst by using dipping impregnation method generated catalyst used for hydrotreating process. This method consists of three stages: support activation, impregnation, and calcination. This factors influencing the process including temperature, pressure, and the ratio of Sunan candlenut oil to the H2 gas factor were examined. The hydrotreating product of fuel similar to oil was obtained at a minimum temperature of 380 °C, a pressure of 30–60 bar, and the ratio of the sample to H2 gas of 0.5–1. The diesel fuel from physical properties range for the density of 0.82–0.86 g/cm3, and kinematic viscosity of 2–6 cSt have been fulfilled by hydrotreating result. Gasoline, naphtha, diesel oil, and gas oil products of Sunan candlenut oil were obtained by distillation from hydrotreating process. Sunan candlenut oil fuel qualified fuel requirement.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sukharev, V. P., Yu T. Zhila, V. A. Krylov, and N. S. Degterev. "Operating experience in preliminary hydrotreating of naphtha cuts." Chemistry and Technology of Fuels and Oils 22, no. 9 (September 1986): 465–68. http://dx.doi.org/10.1007/bf00722277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Prokopyuk, S. G., I. V. Egorov, G. A. Berg, S. G. Khabibullin, and L. A. Kalicheva. "Experience in hydrotreating naphtha from Karachaganak gas condensate." Chemistry and Technology of Fuels and Oils 24, no. 6 (June 1988): 239–42. http://dx.doi.org/10.1007/bf00725588.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nabeel Abdulqahar, Safa, Majid I. Abdulwahab, and Khalid K. Hummadi. "Reuse of Spent Hydrotreating Catalyst of the Middle Petroleum Fractions." Iraqi Journal of Chemical and Petroleum Engineering 20, no. 1 (March 30, 2019): 15–22. http://dx.doi.org/10.31699/ijcpe.2019.1.3.

Повний текст джерела
Анотація:
Reuse of spent hydrodesulphurization (HDS) of middle petroleum fractions catalyst CoMo/γAl2O3 was accomplished via removal of coke and contaminants such as vanadium, Iron, Nickel, and sulfur. Three processes were adopted; extraction, leaching, decoking. Soluble and insoluble coke was removed. Leaching step used three different solvents (oxalic acid, ammonium peroxydisulfate and oxalic acid + H2O2) in separate in order to remove contaminant metals (V, S, Ni and Fe). The effect of soluble coke removal on leaching step was studied. It was found that the removal of soluble coke significantly enhances the leaching of contaminants and barely affected the removal of active metals (Co and Mo). It was found that the best route (sequence) was soluble coke extraction followed by contaminants leaching then decoking process and the best leaching solvent was oxalic acid. According to this determination, the removed contaminants were 79.9 % for sulfur, 13.69% for vanadium, 82.27 % for iron, and 76.34 % for nickel. The active components loss accompanied with this process were 5.08 % for cobalt and 6.88% for molybdenum. Leaching process conditions (leaching solvent concentration, temperature and leaching time) were studied to determine the best-operating conditions. The rejuvenated catalyst activity was examined by a pilot scale HDS unit of naphtha. Sulfur content removal of naphtha was found to be 85.56 % for single pass operation under typical operating conditions of refinery HDS unit of naphtha which are 1 ml/min feed flow rate, 200 H2/HC ratio, 32 bar operating pressure and 320 °C operating temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yin, Changlong, Ruiyu Zhao, and Chenguang Liu. "Hydrotreating of Cracked Naphtha over Ni/HZSM-5 Catalyst." Energy & Fuels 17, no. 5 (September 2003): 1356–59. http://dx.doi.org/10.1021/ef020287g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Xin, Qin, Anton Alvarez-Majmutov, Heather D. Dettman, and Jinwen Chen. "Hydrogenation of Olefins in Bitumen-Derived Naphtha over a Commercial Hydrotreating Catalyst." Energy & Fuels 32, no. 5 (April 10, 2018): 6167–75. http://dx.doi.org/10.1021/acs.energyfuels.8b00344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Khavkin, V. A., I. T. Kozlov, and S. G. Prokopyuk. "Initial operation of process for hydrocracking naphtha-kerosine distillates in hydrotreating unit." Chemistry and Technology of Fuels and Oils 24, no. 6 (June 1988): 243–44. http://dx.doi.org/10.1007/bf00725589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Ahmed zeki, Nada Sadoon, Sattar Jalil Hussein, Khalifa K. Aoyed, Saad Kareem Ibrahim та Ibtissam K. Mehawee. "Synthesis and Characterization of Co-Mo/γ-Alumina Catalyst from local Kaolin clay for Hydrodesulfurization of Iraqi Naphtha". Journal of Petroleum Research and Studies 11, № 1 (7 травня 2021): 84–106. http://dx.doi.org/10.52716/jprs.v11i1.431.

Повний текст джерела
Анотація:
This work deals with the hydrodesulfurization of three types of naphtha feedstocks; mixednaphtha (WN), heavy naphtha (HN) & light naphtha (LN) with a sulfur content of 1642.1,1334.9 & 709 ppm respectively, obtained from Missan refinery using prepared Co-Mo/γ-Al2O3catalyst. The Iraqi white kaolin was used as a starting material for the preparation of γ-Al2O3support, transferring kaolin to meta-kaolin was studied through calcination at differenttemperatures and durations, kaolin structure was investigated using X-Ray diffractiontechniques.High purity 94.83%. Crystalline γ-Al2O3 with a surface area of 129.91 m2/gm, pore volume0.9002 cm3/g was synthesized by extraction of Iraqi kaolin with H2SO4 at different acid to clayweight ratios, acid concentrations & leaching time. Ethanol was used as precipitating agent; theresultant gel was dried and calcined at 70OC, 10 hrs & 900 OC, 2 hrs respectively.The effects of different parameters on the average crystallinity and extraction % ofsynthesized γ-Al2O3 were studied like; acid: clay ratio, sulfuric acid concentration, leachingtime, leaching temperature & kaolin conversion to metakaolin. Characterization of prepared γ-Al2O3 & Co-Mo catalyst were achieved by X-ray diffraction, FTIR-spectra, texture properties& BET surface area, BJH N2 adsorption porosity, AFM, SEM, crush strength & XRF tests. Co-Mo/ γ-Al2O3 catalyst with final loading 5.702 wt% and 21.45 wt% of Co and Mo oxidesrespectively was prepared by impregnation methods.The activity of prepared Co-Mo/γ-Al2O3 catalyst after moulding to be tested forhydrodesulfurization (HDS) of naphtha feedstock W.N, H.N & L.N was performed using apilot hydrotreating unit at petroleum research & development centre, at different operatingconditions. Effects of temperature, LHSV, pressure, time & pore size distribution were studied,the best percentage of sulfur removal is increased with decreasing LHSV to 2 hr-1 as a generaltrend to be 89.71, 99.72, 99.20 % at 310oC for the whole naphtha, heavy naphtha and lightnaphtha feedstocks respectively, at 34 bar pressure and 200/200 cm3/cm3 H2/HC ratio.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Đukanović, Zoran, Sandra B. Glišić, Vesna Jančić Čobanin, Miroslav Nićiforović, Constantinos A. Georgiou, and Aleksandar M. Orlović. "Hydrotreating of straight-run gas oil blended with FCC naphtha and light cycle oil." Fuel Processing Technology 106 (February 2013): 160–65. http://dx.doi.org/10.1016/j.fuproc.2012.07.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Al-Hadhrami, Luai M., Aftab Ahmad, and Abdullah Al-Qahtani. "Performance analysis of heat exchangers of an existing naphtha hydrotreating plant: A case study." Applied Thermal Engineering 30, no. 8-9 (June 2010): 1029–33. http://dx.doi.org/10.1016/j.applthermaleng.2010.01.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Firmansyah, Tommy, Mohammad Abdur Rakib, Mustafa Karakaya, Mohamed Al Musharfy, and Mabruk Issa Suleiman. "Mitigating flow induced vibration in heater radiant coil." Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 73 (2018): 28. http://dx.doi.org/10.2516/ogst/2018024.

Повний текст джерела
Анотація:
Vibration of process heater tubes in a fired heater can cause fretting-wear damage of the tubes at the locations of contact points with the supports. For the reboiler of a naphtha splitter in a naphtha hydrotreating unit, a scenario of fretting-wear damage was observed exactly at contact areas between the top return bends and the hanger supports, which likely indicated constant rubbing between them during vibration. A root-cause analysis of this tube vibration problem was carried out through a combined study of process simulation, Computational Fluid Dynamics (CFD) and vibration analysis. Results from CFD simulations revealed dual phase flow inducing pressure fluctuations inside the radiant tube. The predicted pressure fluctuations were further analyzed using Fast Fourier Transform (FFT) to identify the dominant frequency of pressure fluctuations. Some of the resulting dominant frequencies were within 20% band of the estimated natural frequency of the tube, which could lead to resonance mode. This predicted resonant vibration matched with the locations of severe grooving, as reported in the heater inspection report. A scenario of mitigating this resonance mode has also been presented through decreasing feed flow rates to the radiant tube coils and installing additional support at the mid-height of the radiant tube coils.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Chang, June‐Cheng, and Tse‐Chuan Chou. "Improvement of the operation cycle time of a naphtha hydrotreating unit by controlling the pressure drop." Journal of the Chinese Institute of Engineers 21, no. 1 (January 1998): 73–80. http://dx.doi.org/10.1080/02533839.1998.9670371.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Lestari, Hidayah Dwi, S. Subagjo, and IGBN Makertihartha. "Sintesis katalis NiMo untuk hydrotreating coker nafta." Jurnal Teknik Kimia Indonesia 5, no. 1 (October 2, 2018): 365. http://dx.doi.org/10.5614/jtki.2006.5.1.5.

Повний текст джерела
Анотація:
NiMo catalyst synthesis aimed to make catalyst based on nickel molybdenum Ni(4%-wt) Mo(20%­ wt)γ-Al2O3 by using ammonium heptamolybdate as source of Mo and nickel nitrate as source of Ni, and γ-Al2O3 as a support. The catalysts are prepared by sequential-dry impregnation method. The preparation parameters that studied are characteristic of support, the ammonium heptamolybdate solution pH, volume of impregnation solution, and stages impregnation of ammonium heptamolybdate solution. The preparation parameter affected the Mo distribution to the support. The inhomogeneous Mo distribution produced MoO crystal in the catalyst. The characterization of catalyst consists of N2 adsorption, XRD, SEM EDAX, and XRF. The results of catalyst characterization are specific surface area, crustallinity of catalyst, deposition metal in pore of support, and catalyst compositions. The NiMo catalyst activity is tested by using coker naphtha feed. The result of activity test is compared with commercial catalyst to know how the performance of catalyst. The composition of NiMo 15 catalyst is 19.43%-b MoO3 dan 2.61%-b NiO. NiMo catalyst with composition 20%-wt Mo and 4%-wt Ni needs support with specific surface area larger than 212 m2/g cat, to get more homogenous Mo distribution. The ammonium heptamolybdate solution pH that is good to use in impregnation to get a homogenous Mo distribution is less or same as 5.Keywords: Hydrotreating, Nimo/γ-Al2O3, ImpregnationAbstrakSintesis katalis NiMo dilakukan untuk membuat katalis hydrotreating dengan komposisi 20%-b MoO3 4%-b NiO/γAl2O3. Sumber Mo dan Ni yang digunakan berasal dari amonium heptamolibdat dan nikel nitrat dengan penyangga γAl2O3. Preparasi katalis dilakukan dengan menggunakan metode impregnasi kering bertahap. Parameter preparasi yang dipelajari adalah karakteristik penyangga, pH larutan amonium heptamolibdat, volum larutan impregnasi, dan tahapan impregnasi larutan amonium heptamolibdat. Parameter preparasi tersebut mempengaruhi distribusi Mo pada penyangga. Distribusi Mo yang tidak merata akan menghasilkan kristal MoO3 di dalam katalis. Katalis NiMo dikarakterisasi dengan menggunakan analisa adsorpsi N2 difraksi sinar X, SEM EDAX, dan XRF. Hasil karakterisasi katalis berupa luas permukaan spesifik, kristalinitas katalis, gambaran deposisi logam pada pori penyangga, dan komposisi katalis. Katalis NiMo diuji aktivitasnya dengan menggunakan umpan coker nafta. Hasil uji aktivitas dibandingkan dengan katalis komersial untuk mengetahui kinerja dari katalis tersebut. Katalis NiMo 15 memiliki komposisi 19,43%-b MoO3 dan 2,61%-b NiO. Luas permukaan spesifik penyangga yang dibutuhkan untuk membuat katalis NiMo dengan komposisi 20%-b Mo03 dan 4%-b NiO adalah lebih besar dari 212 m2/g kat, agar didapatkan distribusi Mo yang lebih merata. pH larutan amonium heptamolibdat yang baik untuk digunakan dalam impregnasi agar didapatkan distribusi Mo yang merata adalah ≤ 5.Kata Kunci: Hydrotreating, Nimo/ γAl2O3, lmpregnasi
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Pérez-Martínez, David J., Pierre Eloy, Eric M. Gaigneaux, Sonia A. Giraldo та Aristóbulo Centeno. "Study of the selectivity in FCC naphtha hydrotreating by modifying the acid–base balance of CoMo/γ-Al2O3 catalysts". Applied Catalysis A: General 390, № 1-2 (20 грудня 2010): 59–70. http://dx.doi.org/10.1016/j.apcata.2010.09.028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Mijatović, Ivana M., Sandra B. Glisic, and Aleksandar M. Orlović. "Modeling a Catalytic Reactor for Hydrotreating of Straight-Run Gas Oil Blended with Fluid Catalytic Cracking Naphtha and Light Cycle Oil: Influence of Vapor–Liquid Equilibrium." Industrial & Engineering Chemistry Research 53, no. 49 (November 26, 2014): 19104–16. http://dx.doi.org/10.1021/ie503188p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Imran, Dr Aed Jaber, and Dr Adnan Abdul jabbar. "Increasing production of gasoline and diesel fuel in medium and small refineries to meet the needs of Iraqi market." Journal of Petroleum Research and Studies 7, no. 2 (May 6, 2021): 46–57. http://dx.doi.org/10.52716/jprs.v7i2.187.

Повний текст джерела
Анотація:
Iraq is considered one of the countries exporters of oil in the world, but the output of motors fuels from the refined crude oil less than (45 wt %), which is associated with the lack of Iraqi refineries with secondary processes.Iraq consist of five big capacity crude oil refineries which include (atmospheric crude distillation, hydrotreating, catalytic reforming and isomerization) and produce high quality motors fuel, in addition five medium and five small in capacity crude oil refineries include only atmospheric crude distillation which produce low quality raw products (light and heavy naphtha, light gasoil and reduced crude).The total capacity of Iraqi oil in the last years changed from 28 to 35 million ton/year. Most of our refineries include old equipment, but in spite of the annual maintenance for these refineries the motor fuels products could not able to cover all the Iraqi requirements of motor fuels 27 million ton/year.In these refineries produce reduced crude (fuel oil) in large quantity and because of this, Iraq imports gasoline fuel (30 wt%) of its requirements and LPG (17 wt%) of its requirements.This situation impose on us to increase the output products quantity from the Iraqi crude oil by development the medium and small capacity refineries via installation thermal processes units instead of vacuum distillation units, by this actual research we will find that the deep of refinery will increase from 54 to 70 wt%, and production of motor fuel will change from 45 to 68 wt%.Purpose of the work: development of the flowchart which is applied in Iraqi small capacity refineries (1.3 – 1.4 million Ton/year) by installation thermal cracking units to produce maximum allowable yield and quality of motors fuels.This research depends on actual experiments which are done by me in Ufa state petroleum technological university on actual crude oil and reduced crude brought from Iraqi‘s refineries from the oil fields Basrah (Zubair) and Kirkuk.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Chernysheva, E. A., T. V. Usova, and A. I. Izmashkina. "Secondary Naphthas as Components of Hydrotreating Feedstock." Chemistry and Technology of Fuels and Oils 41, no. 2 (March 2005): 146–50. http://dx.doi.org/10.1007/s10553-005-0037-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

"00/02461 Optimization of coking naphtha hydrotreating process." Fuel and Energy Abstracts 41, no. 5 (September 2000): 277. http://dx.doi.org/10.1016/s0140-6701(00)96374-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

D, Zhao. "Pinch Analysis in Optimising Energy Consumption on a Naphtha Hydrotreating Unit in a Refinery." Petroleum & Petrochemical Engineering Journal 1, no. 4 (2017). http://dx.doi.org/10.23880/ppej-16000126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Kumar, Naveen, Ankit Sonthalia, and Rashi Koul. "Optimization of the Process Parameters for Hydrotreating Used Cooking Oil by the Taguchi Method and Fuzzy Logic." Journal of Energy Resources Technology 142, no. 12 (July 1, 2020). http://dx.doi.org/10.1115/1.4047405.

Повний текст джерела
Анотація:
Abstract Hydrotreating process is an alternate approach for producing diesel hydrocarbons from the biomass-based oils. In the present study, used cooking oil was selected for the hydrotreating process due to its high abundance. A batch reactor was used for carrying out the experiments. To increase the reaction rate a manganese, cerium promoted ruthenium-based catalyst supported on Al2O3 was used. The design of experiments was used for optimizing the process parameters. The Taguchi method was selected as it reduces the number of experiments which saves time and money. The study was aimed at increasing the conversion percentage and diesel selectivity and reducing the naphtha selectivity. Since multi-objective optimization was required, fuzzy logic was incorporated which utilizes the human thought logic. The analysis of variance shows that the reaction temperature and reaction pressure significantly affect the output parameters. Higher temperature leads to cracking of the oil resulting in the formation of large amount of lower carbon chains. Moreover, high hydrogen pressure results in increase in the hydrogenation process, thereby increasing the diesel selectivity. The optimized parameters obtained from the study were 360 °C reaction temperature, 40-bar initial reaction pressure, and 200-min reaction time. Confirmation experiment was carried out using these parameters, and the conversion efficiency and diesel selectivity was 89.7% and 88.2%, respectively. The study shows that the combination of Taguchi and fuzzy logic is an effective method for optimizing the process parameters of the hydrotreating process.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

"04/02239 Combined hydrotreating and reforming in upgrading of Fischer-Tropsch naphtha and distillates to gasoline and lubricating oil basestocks." Fuel and Energy Abstracts 45, no. 5 (September 2004): 318–19. http://dx.doi.org/10.1016/s0140-6701(04)80042-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

"04/01771 Combined hydrotreating and reforming in upgrading of Fischer-Tropsch naphtha and distillates to gasoline and lubricating on basestocks." Fuel and Energy Abstracts 45, no. 4 (July 2004): 249. http://dx.doi.org/10.1016/s0140-6701(04)94358-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії