Добірка наукової літератури з теми "Nitsche’s method for contact problems"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Nitsche’s method for contact problems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Nitsche’s method for contact problems":

1

Zhao, Gang, Ran Zhang, Wei Wang, and Xiaoxiao Du. "Two-dimensional frictionless large deformation contact problems using isogeometric analysis and Nitsche’s method." Journal of Computational Design and Engineering 9, no. 1 (December 30, 2021): 82–99. http://dx.doi.org/10.1093/jcde/qwab070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACT The simulation of large deformation contact problems has been a tough subject due to the existence of multiple nonlinearities, including geometric nonlinearity and contact interface nonlinearity. In this paper, we develop a novel method to compute the large deformation of 2D frictionless contact by employing Nitsche-based isogeometric analysis. The enforcement of contact constraints as one of the main issues in contact simulation is implemented by using Nitsche’s method, and the node-to-segment scheme is applied to the contact interface discretization. We detailedly derive the discrete formulations for 2D large deformation frictionless contact where NURBS is used for geometrical modeling and the Neo-Hookean hyperelastic materials are applied to describe the deformation of the model. The collocation method with Greville points is employed to integrate the contact interface and the classical Legendre–Gauss quadrature rule is used for contact bodies’ integration. The Lagrange multiplier method and penalty method are also implemented for comparison with Nitsche’s method. Several examples are investigated, and the obtained results are compared with that from commercial software ABAQUS to verify the effectiveness and accuracy of the Nitsche-based isogeometric analysis.
2

Gustafsson, Tom, Rolf Stenberg, and Juha Videman. "Nitsche’s method for unilateral contact problems." Portugaliae Mathematica 75, no. 3 (June 6, 2019): 189–204. http://dx.doi.org/10.4171/pm/2016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Seitz, Alexander, Wolfgang A. Wall, and Alexander Popp. "Nitsche’s method for finite deformation thermomechanical contact problems." Computational Mechanics 63, no. 6 (September 26, 2018): 1091–110. http://dx.doi.org/10.1007/s00466-018-1638-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fabre, Mathieu, Jérôme Pousin, and Yves Renard. "A fictitious domain method for frictionless contact problems in elasticity using Nitsche’s method." SMAI journal of computational mathematics 2 (September 4, 2016): 19–50. http://dx.doi.org/10.5802/smai-jcm.8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chouly, Franz, Mathieu Fabre, Patrick Hild, Jérôme Pousin, and Yves Renard. "Residual-based a posteriori error estimation for contact problems approximated by Nitsche’s method." IMA Journal of Numerical Analysis 38, no. 2 (June 19, 2017): 921–54. http://dx.doi.org/10.1093/imanum/drx024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gustafsson, Tom, Rolf Stenberg, and Juha Videman. "On Nitsche's Method for Elastic Contact Problems." SIAM Journal on Scientific Computing 42, no. 2 (January 2020): B425—B446. http://dx.doi.org/10.1137/19m1246869.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chouly, Franz, Patrick Hild, and Yves Renard. "Symmetric and non-symmetric variants of Nitsche’s method for contact problems in elasticity: theory and numerical experiments." Mathematics of Computation 84, no. 293 (October 31, 2014): 1089–112. http://dx.doi.org/10.1090/s0025-5718-2014-02913-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chouly, Franz, and Patrick Hild. "A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis." SIAM Journal on Numerical Analysis 51, no. 2 (January 2013): 1295–307. http://dx.doi.org/10.1137/12088344x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Di Pietro, Daniele A., Ilaria Fontana, and Kyrylo Kazymyrenko. "A posteriori error estimates via equilibrated stress reconstructions for contact problems approximated by Nitsche's method." Computers & Mathematics with Applications 111 (April 2022): 61–80. http://dx.doi.org/10.1016/j.camwa.2022.02.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Burman, Erik, Miguel A. Fernández, and Stefan Frei. "A Nitsche-based formulation for fluid-structure interactions with contact." ESAIM: Mathematical Modelling and Numerical Analysis 54, no. 2 (February 18, 2020): 531–64. http://dx.doi.org/10.1051/m2an/2019072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We derive a Nitsche-based formulation for fluid-structure interaction (FSI) problems with contact. The approach is based on the work of Chouly and Hild (SIAM J. Numer. Anal. 51 (2013) 1295–1307) for contact problems in solid mechanics. We present two numerical approaches, both of them formulating the FSI interface and the contact conditions simultaneously in equation form on a joint interface-contact surface Γ(t). The first approach uses a relaxation of the contact conditions to allow for a small mesh-dependent gap between solid and wall. The second alternative introduces an artificial fluid below the contact surface. The resulting systems of equations can be included in a consistent fashion within a monolithic variational formulation, which prevents the so-called “chattering” phenomenon. To deal with the topology changes in the fluid domain at the time of impact, we use a fully Eulerian approach for the FSI problem. We compare the effect of slip and no-slip interface conditions and study the performance of the method by means of numerical examples.

Дисертації з теми "Nitsche’s method for contact problems":

1

Fontana, Ilaria. "Interface problems for dam modeling." Thesis, Université de Montpellier (2022-….), 2022. http://www.theses.fr/2022UMONS020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les équipes d’ingénierie ont souvent recours aux simulations numériques par éléments finis pour étudier et analyser le comportement des ouvrages hydrauliques de grande dimension. Pour les ouvrages en béton, les modèles doivent être en mesure de prendre en compte le comportement non-linéaire des discontinuités aux diverses zones d’interfaces localisées en fondation, dans le corps du barrage ou à l’interface entre la structure et la fondation. Il faut non seulement être capable de représenter le comportement mécanique non-linéaire de ces interfaces (rupture, glissement, contact), mais également de prendre en compte l’écoulement hydraulique à travers ces ouvertures.Dans le cadre de cette thèse, nous nous focalisons d’abord sur la question du comportement des interfaces, que nous abordons à travers le modèle des zones cohésives (CZM). Ce dernier, introduit dans divers codes de calcul par éléments finis (avec éléments finis de joint), est une approche pertinente pour décrire la physique des problèmes de fissuration et de frottement au niveau de discontinuités géométriques. Bien que le CZM a été initialement introduit pour prendre en compte que le phénomène de rupture, nous montrons dans cette thèse que son utilisation peut être étendue aux problèmes de glissement en s'appuyant sur le formalisme élasto-plastique éventuellement couplé à l'endommagement. En outre, des lois de comportement hydromécaniques non-linéaires peuvent être introduites pour modéliser la notion d’ouverture de fissure et le couplage avec les lois d’écoulement fluide. Au niveau mécanique, nous travaillons dans le cadre des matériaux standard généralisés (SGM), qui fournit une classe de modèles qui satisfont d’une manière automatique des principes de la thermodynamique tout en possédant des bonnes propriétés mathématiques utiles pour la modélisation numérique robuste. Nous adaptons le formalisme SGM volumique à la description des zones d'interface. Dans cette première partie de la thèse, nous présentons nos développements faites dans l'hypothèse de SGM adaptée aux CZM, capable de reproduire les phénomènes physiques observés expérimentalement : rupture, frottement, adhésion.En pratique, les non-linéarités du comportement des zones d’interface sont dominées par la présence de contact, ce qui engendre des difficultés numériques importantes pour la convergence des calculs par élément fini. Le développement de méthodes numériques efficaces pour le problème de contact est donc une étape clé pour atteindre l’objectif de simulateurs numériques industriels robustes. Récemment, l’utilisation de techniques d’imposition faible des conditions de contact à la Nitsche a été proposée comme moyen pour réduire la complexité numérique. Cette technique présente plusieurs avantages, dont les plus importants pour nos travaux sont: 1) possibilité de gérer une vaste gamme de conditions (glissement avec ou sans frottement, non interpénétration, etc); 2) la technique se prête à une analyse d'erreur a posteriori rigoureuse. Ce schéma basé sur les conditions d’interface faibles représente le point de départ pour l’estimation d’erreur a posteriori par reconstruction équilibrée de la contrainte. Cette analyse est utilisée pour estimer les différentes composantes d’erreur (p.e., spatiale, non-linéaire), et pour mettre en place un algorithme de résolution adaptatif, ainsi que des critères d’arrêt pour les solveurs itératifs et le réglage automatique d’éventuels paramètres numériques.L'objectif principal de la thèse est donc de rendre robuste la simulation numérique par éléments finis des ouvrages présentant des discontinuités géométriques. On aborde cette question sous angle double : d’un côté on revisite les méthodes existantes de représentation de fissuration en travaillant sur la loi de comportement mécanique pour les joints ; de l’autre on introduit une nouvelle méthode a posteriori pour traiter le problème de contact et propose son adaptation pour les modèles d’interfaces génériques
Engineering teams often use finite element numerical simulations for the design, study and analysis of the behavior of large hydraulic structures. For concrete structures, models of increasing complexity must be able to take into account the nonlinear behavior of discontinuities at the various interfaces located in the foundation, in the body of the dam or at the interface between structure and foundation. Besides representing the nonlinear mechanical behavior of these interfaces (rupture, sliding, contact), one should also be able to take into account the hydraulic flow through these openings.In this thesis, we first focus on the topic of interface behavior modeling, which we address through the Cohesive Zone Model (CZM). This model was introduced in various finite element codes (with the joint elements), and it is a relevant approach to describe the physics of cracking and friction problems at the geometrical discontinuities level. Although initially the CZM was introduced to take into account the phenomenon of rupture, we show in this thesis that it can be extended to sliding problems by possibly relying on the elasto-plastic formalism coupled to the damage. In addition, nonlinear hydro-mechanical constitutive relations can be introduced to model the notion of crack opening and the coupling with the laws of fluid flow. At the mechanical level, we work in the Standard Generalized Materials (SGM) framework, which provides a class of models automatically satisfying some thermodynamical principles, while having good mathematical and numerical properties that are useful for robust numerical modeling. We adapt the formalism of volumetric SGM to the interface zones description. In this first part of the thesis, we present our developpements under the hypothesis of SGM adapted to CZM, capable of reproducing the physical phenomena observed experimentally: rupture, friction, adhesion.In practice, nonlinearities of behavior of interface zones are dominated by the presence of contact, which generates significant numerical difficulties for the convergence of finite element computations. The development of efficient numerical methods for the contact problem is thus a key stage for achieving the goal of robust industrial numerical simulators. Recently, the weak enforcement of contact conditions à la Nitsche has been proposed as a mean to reduce numerical complexity. This technique displays several advantages, among which the most important for our work are: 1) it can handle a wide range of conditions (slip with or without friction, no interpenetration, etc.); 2) it lends itself for a rigorous a posteriori error analysis. This scheme based on the weak contact conditions represents in this work the starting point for the a posteriori error estimation via equilibrated stress reconstruction. This analysis is then used to estimate the different error components (e.g., spatial, nonlinear), and to develop an adaptive resolution algorithm, as well as stopping criteria for iterative solvers and the automatic tuning of possible numerical parameters.The main goal of this thesis is thus to make the finite element numerical simulation of structures with geometrical discontinuities robust. We address this question from two angles: on one side, we revisit the existing methods for the crack representation working on the mechanical constitutive relation for joints; on the other, we introduce a new a posteriori method for the contact problem and we propose its adaptation for the generic interface models
2

Chernov, Alexey. "Nonconforming boundary elements and finite elements for interface and contact problems with friction hp-version for mortar, penalty and Nitsche's methods /." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981952364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lee, Kisu. "Numerical solution of elastic contact problems including friction /." The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260531957279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Litven, Joshua Alexander. "A parallel active-set method for solving frictional contact problems." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43934.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Simulating frictional contact is a challenging computational task and there exist a variety of techniques to do so. One such technique, the staggered projections algorithm, requires the solution of two convex quadratic program (QP) subproblems at each iteration. We introduce a method, SCHURPA, which employs a primal-dual active-set strategy to efficiently solve these QPs based on a Schur-complement method. A single factorization of the initial saddle point system and a smaller dense Schur-complement is maintained to solve subsequent saddle point systems. Exploiting the parallelizability and warm-starting capabilities of the active-set method as well as the problem structure of the QPs yields a novel approach to the problem of frictional contact. Numerical results of a parallel GPU implementation using NVIDIA’s CUDA applied to a physical simulator of highly deformable bodies are presented.
5

Chaudhary, Anil Bhaskar. "A solution method for two- and three-dimensional contact problems." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1985.
MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.
Includes bibliographical references.
by Anil Bhaskar Chaudary.
Sc.D.
6

Takahashi, S. "Stress analysis of elastic contact problems by the boundary element method." Thesis, University of Southampton, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233460.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hack, Roy Stuart. "The boundary element method applied to practical two-dimensional frictional contact problems." Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Har, Jason. "A new scalable parallel finite element approach for contact-impact problems." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/17080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Carazo-Alvarez, J. D. "The use of the method of caustics for the study of contact problems." Thesis, University of Sheffield, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301532.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Maury, Aymeric. "Shape optimization for contact and plasticity problems thanks to the level set method." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066365/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse porte sur l'optimisation de forme via la méthode des "level sets" pour deux comportements mécaniques induisant des déplacements non différentiables par rapport à la forme: le contact et la plasticité. Pour y remédier, nous utilisons des problèmes approchés issus de méthode de pénalisation et de régularisation.Dans la première partie, nous présentons quelques notions fondamentales d'optimisation de forme (chapitre 1). Puis nous exposons les résultats qui seront utiles à l'analyse des deux problèmes mécaniques considérés et nous illustrons ces résultats.La deuxième partie introduit les modèles statiques de contact (chapitre 3) et le modèle statique de plasticité (chapitre 4) que nous utilisons dans le manuscrit. Pour chacun, nous donnons les bases de la modélisation mécanique, une analyse mathématique des inéquations variationnelles associées et nous expliquons quels solveurs nous avons implémentés.La dernière partie se focalise sur l'optimisation de forme. Dans chacun des chapitres nous donnons les versions pénalisées et régularisées des modèles, prouvons, pour certains, leur convergence vers les modèles exactes, calculons leurs gradients de forme et proposons des exemples 2D et, en contact, 3D. Ainsi, dans le chapitre 5, traitons-nous du contact et considérons deux sortes de problèmes: le premier dans lequel la zone de contact est fixe, le second dans lequel la zone de contact est optimisable. Pour ce dernier, nous introduisons deux méthodes pour résoudre du contact sans discrétiser la zone de contact. Dans le chapitre 6, nous abordons le modèle de Hencky que nous approximons grâce à une pénalisation de Perzyna ainsi que grâce à un modèle de notre crue
The main purpose of this thesis is to perform shape optimisation, in the framework of the level set method, for two mechanical behaviours inducing displacement which are not shape differentiable: contact and plasticity. To overcome this obstacle, we use approximate problems found by penalisation and regularisation.In the first part, we present some classical notions in optimal design (chapter 1). Then we give the mathematical results needed for the analysis of the two mechanical problems in consideration and illustrate these results.The second part is meant to introduce the five static contact models (chapter 3) and the static plasticity model (chapter 4) we use in the manuscript. For each chapter we provide the basis of the mechanical modeling, a mathematical analysis of the related variational inequations and, finally, explain how we implement the associated solvers.Eventually the last part, consisting of two chapters is devoted to shape optimisation. In each of them, we state the regularised versions of the models, prove, for some of them, the convergence to the exact ones, compute shape gradients and perform some numerical experiments in 2D and, for contact, in 3D. Thus, in chapter 5, we focus on contact and consider two types of optimal design problems: one with a fixed contact zone and another one with a mobile contact zone. For this last type, we introduce two ways to solve frictionless contact without meshing the contact zone. One of them is new and the other one has never been employed in this framework. In chapter 6, we deal with the Hencky model which we approximate thanks to a Perzyna penalised problem as well as a home-made one

Книги з теми "Nitsche’s method for contact problems":

1

Zhong, Zhi-Hua. Finite element procedures for contact-impact problems. Oxford: Oxford University Press, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Karami, G. A boundary element method for two-dimensional contact problems. Berlin: Springer-Verlag, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Plesha, Michael E. A constitutive law for finite element contact problems with unclassical friction. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Karami, Ghodratollah. Lecture Notes in Engineering: A Boundary Element Method for Two-Dimensional Contact Problems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Segond, Dominique. Stress analysis of three-dimensional contact problems without friction using the boundary element method. Manchester: University of Manchester, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kikuchi, Noboru. Contact problems in elasticity: A study of variational inequalities and finite element methods. Philadelphia: SIAM, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Aleynikov, Sergey. Spatial Contact Problems in Geotechnics: Boundary-Element Method. Springer Berlin / Heidelberg, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Aleynikov, Sergey. Spatial Contact Problems in Geotechnics: Boundary-Element Method. Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kikuchi, N., and J. Tinsley Oden. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods (Studies in Applied and Numerical Mathematics). Society for Industrial Mathematics, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Nitsche’s method for contact problems":

1

Gustafsson, Tom, Rolf Stenberg, and Juha Videman. "Nitsche’s Master-Slave Method for Elastic Contact Problems." In Lecture Notes in Computational Science and Engineering, 899–908. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55874-1_89.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chouly, Franz, Mathieu Fabre, Patrick Hild, Rabii Mlika, Jérôme Pousin, and Yves Renard. "An Overview of Recent Results on Nitsche’s Method for Contact Problems." In Lecture Notes in Computational Science and Engineering, 93–141. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71431-8_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chernov, Alexey, and Peter Hansbo. "An hp-Nitsche’s Method for Interface Problems with Nonconforming Unstructured Finite Element Meshes." In Lecture Notes in Computational Science and Engineering, 153–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15337-2_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Taylor, R. L., and P. Papadopoulos. "A Finite Element Method for Dynamic Contact Problems." In The finite element method in the 1990’s, 212–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-10326-5_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, J. K., J. T. Jinn, and S. H. Advani. "An Iterative Solution Method for Frictional Contact Problems." In Computational Mechanics ’88, 951–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-61381-4_246.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Doyen, David, Alexandre Ern, and Serge Piperno. "A Semi-Explicit Modified Mass Method for Dynamic Frictionless Contact Problems." In Trends in Computational Contact Mechanics, 157–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22167-5_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cermak, Martin, and Stanislav Sysala. "Total-FETI Method for Solving Contact Elasto-Plastic Problems." In Lecture Notes in Computational Science and Engineering, 955–63. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05789-7_93.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Karami, Ghodratollah. "Application of the BEM Method to Hertzian Contact Problems." In Lecture Notes in Engineering, 108–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83897-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Licht, C., E. Pratt, and M. Raous. "Remarks on a Numerical Method for Unilateral Contact Including Friction." In Unilateral Problems in Structural Analysis IV, 129–44. Basel: Birkhäuser Basel, 1991. http://dx.doi.org/10.1007/978-3-0348-7303-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sato, K., and T. Yamaya. "New Method for Determining Contact Pressure Distributions by Using Caustic Images." In Inverse Problems in Engineering Mechanics, 159–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-52439-4_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Nitsche’s method for contact problems":

1

Rodrigues, José Alberto. "A Nonconforming Multidomain Method for Contact Problems." In MATERIALS PROCESSING AND DESIGN; Modeling, Simulation and Applications; NUMIFORM '07; Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2007. http://dx.doi.org/10.1063/1.2741039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liu, Qian, Haiquan Li, and Ou Ma. "A Novel Hybrid Modeling Method for Contact Problems." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Accurately modeling of many practical contact scenarios such as robotic grasping and assembly is a challenging problem because of complex contact geometry and surface uncertainties. This paper presents a new hybrid contact model (HCM), which combines a traditional physical model and a data-driven model to make a more accurate description of a contact dynamics phenomenon. When a physical model is employed to describe a complex contact case, it usually has error from an experimental data measured from the contact case to be modeled because of inevitable unmodeled and/or unknown factors. The data-driven model is used to represent this error, which is an artificial neural network model trained from experimental data using a machine learning technique. A bouncing ball example is presented to demonstrate the feasibility of the presented approach.
3

Jiang, Yusong, and Chao Su. "Mixed Finite Element Method for Contact Problems of Multibody." In 12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments; and Fourth NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41096(366)61.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

He, Suyan, and Yuxi Jiang. "Solving frictional contact problems by a semismooth Newton method." In 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2011. http://dx.doi.org/10.1109/cecnet.2011.5769067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kolman, R., J. A. González, R. Dvořák, J. Kopačka, and K. C. Park. "Localized formulation of bipenalty method in contact-impact problems." In Engineering Mechanics 2022. Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Prague, 2022. http://dx.doi.org/10.21495/51-2-201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

SUN, S., H. TZOU, and M. NATORI. "A PARAMETRIC QUADRATIC PROGRAMMING METHOD FOR DYNAMIC CONTACT PROBLEMS WITH FRICTION." In 34th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1388.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jain, Amit, Ramdev Kanapady, and Kumar Tamma. "Local Discontinuous Galerkin Method for Parabolic Problems Involving Imperfect Contact Surfaces." In 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-590.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mazgaonkar, Numair, and Andrew Stankovich. "Fast Contact Method for Speeding up Solving of Finite Element Problems involving Non-Linear Contact Behavior." In AeroTech Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017. http://dx.doi.org/10.4271/2017-01-2021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Anderson, Kurt S., and Michael J. A. Sadowski. "An Efficient Method for Contact/Impact Problems in Multibody Systems: Tree Topologies." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48339.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents an algorithm for the efficient numerical analysis and simulation of contact/impact problems in tree topology multi-rigid-body dynamic systems. The algorithm can accommodate the jumps in structure which occur in the equations of motion of general multi-rigid-body tree systems due to a contact/impact event between bodies, or due to the locking of joints. The presented method uses a generalized momentum balance approach to determine the velocity jumps which take place across impacts in such multibody dynamic systems, and where necessary explicitly determines impact impulsive loads (both working and non-working). The presented method does not suffer from the performance (speed) penalty encountered by most other momentum balance methods given its O(n) overall cost, and exact direct embedded consideration of the all constraints. Due to these characteristics, the presented algorithm offers superior computing performance relative to other methods in situations involving both large n and potentially many unilateral constraints.
10

Cappellini, Niccolò, Bart Blockmans, Jakob Fiszer, Tommaso Tamarozzi, Francesco Cosco, and Wim Desmet. "Reduced-Order Modelling of Multibody Contact Problems: A Novel Semi-Analytic Method." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67948.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper we present a novel method to efficiently solve gear contact simulations in a flexible multi-body environment. Semi-analytical contact approaches have been recently used in Finite Element (FE) simulations for describing the displacement field in the contact zone and eliminating the need for highly refined FE meshes. In the proposed method, we integrate a semi-analytic strategy with a Model Order Reduction (MOR) scheme, which allows us to decrease further the reduced order model complexity as well as the computational burden. We validate the method against state-of-the-art MOR techniques, for both static and dynamic gear contact problems. Finally the results show how the presented method is able to more efficiently capture quantitatively the transmission error in case of spur geared transmission for different torque levels.

Звіти організацій з теми "Nitsche’s method for contact problems":

1

Atluri, Satya N. Meshless Local Petrov-Galerkin Method for Solving Contact, Impact and Penetration Problems. Fort Belvoir, VA: Defense Technical Information Center, November 2006. http://dx.doi.org/10.21236/ada515552.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Warrick, Arthur, Uri Shani, Dani Or, and Muluneh Yitayew. In situ Evaluation of Unsaturated Hydraulic Properties Using Subsurface Points. United States Department of Agriculture, October 1999. http://dx.doi.org/10.32747/1999.7570566.bard.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The primary information for accurately predicting water and solute movement and their impact on water quality is the characterization of soil hydraulic properties. This project was designed to develop methods for rapid and reliable estimates of unsaturated hydraulic properties of the soil. Particularly, in situ methodology is put forth, based on subsurface point sources. Devices were designed to allow introduction of water in subsurface settings at constant negative heads. The ability to operate at a negative head allows a direct method of finding unsaturated soil properties and a mechanism for eliminating extremely rapid preferential flow from the slow matrix flow. The project included field, laboratory and modeling components. By coupling the measurements and the modeling together, a wider range of designs can be examined, while at the same time realistic performance is assured. The developed methodology greatly expands the possibilities for evaluating hydraulic properties in place, especially for measurements in undisturbed soil within plant rooting zones. The objectives of the project were (i) To develop methods for obtaining rapid and reliable estimates of unsaturated hydraulic properties in situ, based on water distribution from subsurface point sources. These can be operated with a constant flow or at a constant head; (ii) To develop methods for distinguishing between matrix and preferential flow using cavities/permeameters under tension; (iii) To evaluate auxiliary measurements such as soil water content or tensions near the operating cavities to improve reliability of results; and (iv: To develop numerical and analytical models for obtaining soil hydraulic properties based on measurements from buried-cavity sources and the auxiliary measurements. The project began in July 1995 and was terminated in November 1998. All of the objectives were pursued. Three new subsurface point sources were designed and tested and two old types were also used. Two of the three new designs used a nylon cloth membrane (30 mm) arranged in a cylindrical geometry and operating at a negative water pressure (tension). A separate bladder arrangement allowed inflation under a positive pressure to maintain contact between the membrane and the soil cavity. The third new design used porous stainless steel (0.5 and 5 mm) arranged in six segments, each with its own water inlet, assembled to form a cylindrical supply surface when inflated in a borehole. The "old" types included an "off-the-shelf" porous cup as well as measurements from a subsurface drip emitter in a small subsurface cavity. Reasonable measurements were made with all systems. Sustained use of the cloth membrane devices were difficult because of leaks and plugging problems. All of the devices require careful consideration to assure contact with the soil system. Steady flow was established which simplified the analysis (except for the drip emitter which used a transient analysis).

До бібліографії