Статті в журналах з теми "Nm and 32 nm"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Nm and 32 nm.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Nm and 32 nm".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Wisely, D. R. "32 channel WDM multiplexer with 1 nm channel spacing and 0.7 nm bandwidth." Electronics Letters 27, no. 6 (1991): 520. http://dx.doi.org/10.1049/el:19910326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jaatinen, E., and N. Brown. "A simple external iodine stabilizer applied to 633 nm, 612 nm and 543 nm He-Ne lasers." Metrologia 32, no. 2 (January 1, 1995): 95–101. http://dx.doi.org/10.1088/0026-1394/32/2/004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fernandes, Leonardo Agostini, and Luiz Henrique Lucas Barbosa. "breve análise exegética de Nm 10,29-32." Revista de Cultura Teológica, no. 102 (October 1, 2022): 287–306. http://dx.doi.org/10.23925/rct.i102.58815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
O Livro de Números parece não receber a mesma atenção que os demais livros da Torá. Existem bons comentários, mas poucos artigos. Nesse sentido, um estudo sobre Nm 10,29-32 pode trazer alguma contribuição, em particular sobre o tema da súplica com promessa de recompensa que não é estranho ao livro. No texto em foco, encontra-se o diálogo entre Moisés e Hobab, na iminência da partida do Sinai rumo a Canaã. Moisés pede que Hobab sirva de guia na travessia pelo deserto. O vínculo, a denominação do sogro de Moisés e a utilidade a ele atribuída são questões relevantes e trabalhadas na análise, indagando ainda sobre a presença divina como guia pelo deserto através da Arca da Aliança e da Nuvem. Se YHWH já é o guia, por que a súplica para que um membro do clã de Raguel dos madianitas lhes direcione pelas rotas do deserto? Este artigo, adotando abordagens diacrônicas e sincrônicas, subdivide-se em tradução segmentada e notas de crítica textual, delimitação, estrutura e gênero literário, seguido de um comentário às seções adotadas. Nm 10,29-32 atesta que perícia humana não anula a condução divina, mas a integra.
4

Asenov, Asen. "Variability Headaches in Sub-32 nm CMOS." ECS Transactions 25, no. 7 (December 17, 2019): 131–36. http://dx.doi.org/10.1149/1.3203949.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kurd, Nasser A., Subramani Bhamidipati, Chris Mozak, Jeffrey L. Miller, Praveen Mosalikanti, Timothy M. Wilson, Ali M. El-Husseini, et al. "A Family of 32 nm IA Processors." IEEE Journal of Solid-State Circuits 46, no. 1 (January 2011): 119–30. http://dx.doi.org/10.1109/jssc.2010.2079430.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Somra, Neha, and Ravinder Singh Sawhney. "32 nm Gate Length FinFET: Impact of Doping." International Journal of Computer Applications 122, no. 6 (July 18, 2015): 11–14. http://dx.doi.org/10.5120/21703-4816.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bohnenstiehl, Brent, Aaron Stillmaker, Jon J. Pimentel, Timothy Andreas, Bin Liu, Anh T. Tran, Emmanuel Adeagbo, and Bevan M. Baas. "KiloCore: A 32-nm 1000-Processor Computational Array." IEEE Journal of Solid-State Circuits 52, no. 4 (April 2017): 891–902. http://dx.doi.org/10.1109/jssc.2016.2638459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Maharrey, J. A., R. C. Quinn, T. D. Loveless, J. S. Kauppila, S. Jagannathan, N. M. Atkinson, N. J. Gaspard, et al. "Effect of Device Variants in 32 nm and 45 nm SOI on SET Pulse Distributions." IEEE Transactions on Nuclear Science 60, no. 6 (December 2013): 4399–404. http://dx.doi.org/10.1109/tns.2013.2288572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gao, Ping, Na Yao, Changtao Wang, Zeyu Zhao, Yunfei Luo, Yanqin Wang, Guohan Gao, Kaipeng Liu, Chengwei Zhao, and Xiangang Luo. "Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens." Applied Physics Letters 106, no. 9 (March 2, 2015): 093110. http://dx.doi.org/10.1063/1.4914000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Deren P.J., Watras A., and Stefanska D. "32-21." Optics and Spectroscopy 132, no. 1 (2022): 123. http://dx.doi.org/10.21883/eos.2022.01.52997.32-21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ZnAl2O4 nanocrystallites doped with Cr3+ ions with mean sizes ranging from 2 to 16 nm were synthesized by the hydrothermal method. Chromium ions occupy the aluminum positions, which symmetry depends on the crystallite size. The smallest nanocrystals have a much larger unit cell than the bigger ones. The metal to ligand distance increases when the size of the nanocrystals decreases. This causes the nephelauxetic effect, which is for the first time (to our knowledge) observed as a size effect. It was also observed that ZnAl2O4: Cr3+ nanocrystals with size larger than 10 nm possesses the same spectroscopic properties as monocrystal.
11

Wilk, Seth J., William Lepkowski, and Trevor J. Thornton. "32 dBm Power Amplifier on 45 nm SOI CMOS." IEEE Microwave and Wireless Components Letters 23, no. 3 (March 2013): 161–63. http://dx.doi.org/10.1109/lmwc.2013.2245413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Jotwani, Ravi, Sriram Sundaram, Stephen Kosonocky, Alex Schaefer, Victor F. Andrade, Amy Novak, and Samuel Naffziger. "An x86-64 Core in 32 nm SOI CMOS." IEEE Journal of Solid-State Circuits 46, no. 1 (January 2011): 162–72. http://dx.doi.org/10.1109/jssc.2010.2080530.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Park, Joon-Min, Ilsin An, and Hye-Keun Oh. "Resist Reflow Process for 32 nm Node Arbitrary Pattern." Japanese Journal of Applied Physics 48, no. 4 (April 20, 2009): 046501. http://dx.doi.org/10.1143/jjap.48.046501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Schenk, Mirjam, Stephan R. Krutzik, Peter A. Sieling, Delphine J. Lee, Rosane M. B. Teles, Maria Teresa Ochoa, Evangelia Komisopoulou, et al. "NOD2 triggers an interleukin-32–dependent human dendritic cell program in leprosy." Nature Medicine 18, no. 4 (March 25, 2012): 555–63. http://dx.doi.org/10.1038/nm.2650.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Yadav, Vinamrata, Nikhil Saxena, and Amit Rajput. "Process Variation and Optimization of Two Stage CMOS Operational Amplifier at 45 nm and 32 nm Technology." Journal of Computational and Theoretical Nanoscience 14, no. 8 (August 1, 2017): 3653–56. http://dx.doi.org/10.1166/jctn.2017.6999.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Noh, Heeso, and Jai-Min Choi. "One-Way Zero Reflection in an Insulator-Metal-Insulator Structure Using the Transfer Matrix Method." Photonics 8, no. 1 (December 31, 2020): 8. http://dx.doi.org/10.3390/photonics8010008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We numerically demonstrate one-way zero reflection using the transfer matrix method. Using simulations, we adjusted the thickness of SiO2 layers in a simple SiO2-Au-SiO2 layer structure. We found two solutions, 47 nm-10 nm-32 nm and 71 nm-10 nm-60 nm, which are the thicknesses for one-way zero reflection at a wavelength of 560 nm. We confirmed it with reflection spectra, where reflectance is zero for forwardly incident light and 2.5% for backwardly incident light at the wavelength 560 nm, and thickness 47 nm-10 nm-32 nm.
17

Ruhl, Gregory, Saurabh Dighe, Shailendra Jain, Surhud Khare, and Sriram R. Vangal. "IA-32 Processor with a Wide-Voltage-Operating Range in 32-nm CMOS." IEEE Micro 33, no. 2 (March 2013): 28–36. http://dx.doi.org/10.1109/mm.2013.8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Ojeda-Rojas, Oscar A., Angela Maria M. Gonella-Diaza, Gustavo L. Sartorello, and Augusto H. Hauber Gameiro. "PSVIII-11 Agent-based simulation model to evaluate the economic performance of reproductive programs in beef cattle." Journal of Animal Science 99, Supplement_3 (October 8, 2021): 428–29. http://dx.doi.org/10.1093/jas/skab235.768.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The objective of this study was to create a stochastic, agent-based simulation model to compare the economic performance of reproductive strategies in beef cattle. The model was parameterized using data from a real herd and the scientific literature. The scenarios evaluated were: natural mating (NM) only (ONM); one timed artificial insemination (TAI) plus NM (1TAI+NM); two TAI plus NM, with 24, 32, and 40 days between TAI (2TAI/24+NM, 2TAI/32+NM, and 2TAI/40+NM, respectively); three TAI without NM, with 24, 32, and 40 days (3TAI/24, 3TAI/32, and 3TAI/40, respectively), and three TAI plus NM, with 24 and 32 days (3TAI/24+NM and 3TAI/32+NM, respectively). The initial female herd was 400 and remained constant. The bull population varies from 0 to 15, depending on the scenario. The outcomes for each scenario are assessed on 32 farms, using a 5000-day time horizon at one-day time intervals and an animal-by-animal basis. The 3TAI/24+NM scenario resulted in the highest incomes (US$ 96,479.2 ± 709.8), while ONM had the least value (US$ 79,753.4 ± 741.9). The total operating cost was highest for 3TAI/24+NM (US$ 101,720.6 ± 79.2) and lowest for ONM (US$ 90,898.6 ± 59.2). However, when the total operating cost was evaluated per kg of weaned calf, the highest and lowest costs were for ONM (US$ 2.8 ± 0.0/kg) and 2TAI/24+NM (US$ 2.17 ± 0.0/kg), respectively. The 2TAI/24+NM (US$ -4,651.3 ± 630.7) scenario presented the best net margin, while the lowest result was for 3TAI/40 (US$ -12,590.0 ± 746.3). Our model suggests that reproductive strategies that use TAI have better economic performance than those under ONM. However, when three TAI were performed with 40 days, the benefit was lower, and even for some analyzes, it was worse than the ONM. The 2TAI/24+NM scenario outperformed the others because of the contrast between its high income with moderate costs.
19

Nguyen, H. V., and Youngmin Kim. "Low-Power Fully Digital Voltage Sensor using 32-nm FinFETs." IEIE Transactions on Smart Processing and Computing 5, no. 1 (February 29, 2016): 10–16. http://dx.doi.org/10.5573/ieiespc.2016.5.1.10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Pepe, Domenico, and Domenico Zito. "32 dB Gain 28 nm Bulk CMOS W-Band LNA." IEEE Microwave and Wireless Components Letters 25, no. 1 (January 2015): 55–57. http://dx.doi.org/10.1109/lmwc.2014.2370251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Joyner Jr., William H., and David C. Yeh. "Guest Editors' Introduction: System IC Design Challenges beyond 32 nm." IEEE Design & Test of Computers 25, no. 4 (July 2008): 294–95. http://dx.doi.org/10.1109/mdt.2008.95.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Allgair, John, Benjamin Bunday, Aaron Cordes, Pete Lipscomb, Milt Godwin, Victor Vartanian, Michael Bishop, Doron Arazi, and Kye-Weon Kim. "Metrology Requirements for the 32 nm Technology Node and Beyond." ECS Transactions 18, no. 1 (December 18, 2019): 151–60. http://dx.doi.org/10.1149/1.3096443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Xu, Yao, Qiang Wu, Xuelong Shi, and Yiming Gu. "DOF and Coherence Optimization in Sub-32 nm Contact Lithography." ECS Transactions 44, no. 1 (December 15, 2019): 257–65. http://dx.doi.org/10.1149/1.3694325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Ferriss, Mark, Alexander Rylyakov, Jose A. Tierno, Herschel Ainspan, and Daniel J. Friedman. "A 28 GHz Hybrid PLL in 32 nm SOI CMOS." IEEE Journal of Solid-State Circuits 49, no. 4 (April 2014): 1027–35. http://dx.doi.org/10.1109/jssc.2014.2299273.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Cai, Ming, Karthik Ramani, Michael Belyansky, Brian Greene, Doug H. Lee, Stephan Waidmann, Frank Tamweber, and William Henson. "Stress Liner Effects for 32-nm SOI MOSFETs With HKMG." IEEE Transactions on Electron Devices 57, no. 7 (July 2010): 1706–9. http://dx.doi.org/10.1109/ted.2010.2049076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Skotnicki, Thomas. "Materials and device structures for sub-32 nm CMOS nodes." Microelectronic Engineering 84, no. 9-10 (September 2007): 1845–52. http://dx.doi.org/10.1016/j.mee.2007.04.091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Hou, Fu-Ju, Po-Jung Sung, Fu-Kuo Hsueh, Chien-Ting Wu, Yao-Jen Lee, Mao-Nang Chang, Yiming Li, and Tuo-Hung Hou. "32-nm Multigate Si-nTFET With Microwave-Annealed Abrupt Junction." IEEE Transactions on Electron Devices 63, no. 5 (May 2016): 1808–13. http://dx.doi.org/10.1109/ted.2015.2466236.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Thornton, Trevor J., William Lepkowski, and Seth J. Wilk. "Impact Ionization in SOI MESFETs at the 32-nm Node." IEEE Transactions on Electron Devices 63, no. 10 (October 2016): 4143–46. http://dx.doi.org/10.1109/ted.2016.2601241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Yuan, X., T. Shimizu, U. Mahalingam, J. S. Brown, K. Habib, D. G. Tekleab, T. C. Su, et al. "Transistor mismatch in 32 nm high-k metal-gate process." Electronics Letters 46, no. 10 (2010): 708. http://dx.doi.org/10.1049/el.2010.0343.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Marathe, Radhika, Bichoy Bahr, Wentao Wang, Zohaib Mahmood, Luca Daniel, and Dana Weinstein. "Resonant Body Transistors in IBM's 32 nm SOI CMOS Technology." Journal of Microelectromechanical Systems 23, no. 3 (June 2014): 636–50. http://dx.doi.org/10.1109/jmems.2013.2283720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Petrillo, Karen, Yayi Wei, R. Brainard, G. Denbeaux, Dario Goldfarb, C. S. Koay, J. Mackey, et al. "Are extreme ultraviolet resists ready for the 32 nm node?" Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, no. 6 (2007): 2490. http://dx.doi.org/10.1116/1.2787815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Gibbons, Francis P., Alex P. G. Robinson, Richard E. Palmer, Sara Diegoli, Mayandithevar Manickam, and Jon A. Preece. "Fullerene Resist Materials for the 32 nm Node and Beyond." Advanced Functional Materials 18, no. 13 (July 9, 2008): 1977–82. http://dx.doi.org/10.1002/adfm.200701155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Kuenstner, J. Todd, and Karl H. Norris. "Spectrophotometry of Human Hemoglobin in the near Infrared Region from 1000 to 2500 nm." Journal of Near Infrared Spectroscopy 2, no. 2 (March 1994): 59–65. http://dx.doi.org/10.1255/jnirs.32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Absorbance and first and second derivative absorbance spectra and quarter-millimolar absorptivity coefficients for hemoglobin species including oxy-, deoxy-, carboxy- and methemoglobin in the visible and in the near infrared regions from 620 nm to 2500 nm are presented. At wavelengths longer than 1500 nm, the absorbance and second derivative absorbance spectra of hemoglobin species are similar for all of the species. Absorption bands are present centred at 1690, 1740, 2056, 2170, 2290 and 2350 nm.
34

Xu, Zhi-Chao, Duo Pan, Wei Zhuang, and Jing-Biao Chen. "Experimental Scheme of 633 nm and 1359 nm Good-Bad Cavity Dual-Wavelength Active Optical Frequency Standard." Chinese Physics Letters 32, no. 8 (August 2015): 083201. http://dx.doi.org/10.1088/0256-307x/32/8/083201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Ojeda-Rojas, Oscar Alejandro, Angela M. Gonella-Diaza, Daniel Bustos Coral, Gustavo L. Sartorello, Thayla Reijers, Guilherme Pugliesi, Maria Mercadante, Cesar Gonçalves, and Augusto H. Gameiro. "PSXI-1 Agent-based simulation model to evaluate the technical performance of reproductive programs in beef cattle." Journal of Animal Science 98, Supplement_4 (November 3, 2020): 385. http://dx.doi.org/10.1093/jas/skaa278.677.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A stochastic, agent-based simulation model was created to compare the technical performance of reproductive strategies in beef cattle. The model was parameterized using field data and peer-reviewed scientific literature using AnyLogic software. Ten scenarios were evaluated: natural mating (NM) only (ONM); one timed artificial insemination (TAI) plus NM (1TAI+NM); two TAI plus NM, with 24, 32, and 40 days of interval between TAI (2TAI/24+NM, 2TAI/32+NM, and 2TAI/40+NM, respectively); three TAI without NM, with 24, 32, and 40 days of interval between TAI (3TAI/24, 3TAI/32, and 3TAI/40, respectively), and three TAI plus NM, with an interval between TAIs of 24 (3TAI/24+NM) and 32 days (3TAI/32+NM). The size of the female herd was up to 400 individuals. The bull population was 0, 7, or 15 bulls depending on the scenario used. The outcomes were assessed on 320 farms, using a 5,000-day time horizon at one-day time intervals and an animal-by-animal basis. The 3TAI/24+NM resulted in a higher number of births (293 births) and weaned calves (287 calves), while the ONM had the lowest number of births (207 births) as well as weaned calves (203 calves). The heaviest and lightest males at weaning belong to the 3TAI/24 (190.58 ± 0.77 kg) and ONM (166.59 ± 0.93 kg), respectively. The total pregnancy rate was highest in 3TAI/24+NM (0.90 ± 0.00) and lowest for ONM (0.61 ± 0.01). The ONM reach 50% of pregnancy 52.5 days longer when compared to the scenarios that included TAI. Our model accurately represents the main interactions of a real beef cattle herd, with all the advantages of a physical experiment without incurring significant money expenses or alterations to the system. This study suggests that scenarios with three TAI accompanied by early pregnancy diagnosis presented better technical performance and produced more and heavier calves.
36

England, Troy D., Rajan Arora, Zachary E. Fleetwood, Nelson E. Lourenco, Kurt A. Moen, Adilson S. Cardoso, Dale McMorrow, et al. "An Investigation of Single Event Transient Response in 45-nm and 32-nm SOI RF-CMOS Devices and Circuits." IEEE Transactions on Nuclear Science 60, no. 6 (December 2013): 4405–11. http://dx.doi.org/10.1109/tns.2013.2289368.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Jacke, T., R. Todt, R. Meyer, and M. C. Amann. "32 nm digitally tunable laser diode with a 0.58 nm wavelength grid using a vertically integrated Mach-Zehnder interferometer." Applied Physics Letters 87, no. 20 (November 14, 2005): 201113. http://dx.doi.org/10.1063/1.2132531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Gaertner, A. A., and L. P. Boivin. "Some problems in realizing an infrared spectral-irradiance scale from 1500 nm to 2400 nm at the NRC." Metrologia 32, no. 6 (December 1, 1995): 615–19. http://dx.doi.org/10.1088/0026-1394/32/6/43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Vahidi-Ferdowsi, P., J. Mehrzad, A. M. Malvandi, and S. Hosseinkhani. "Bioluminescence-based detection of astrocytes apoptosis and ATP depletion induced by biologically relevant level aflatoxin B1." World Mycotoxin Journal 11, no. 4 (December 7, 2018): 589–98. http://dx.doi.org/10.3920/wmj2017.2275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Although brain accumulation of aflatoxin B1 (AFB1) suggests potential impact on brain cells, including astrocytes, there still exists a scarcity of research on this issue within the literature. This research investigates the apoptosis effect of AFB1 on primary mouse astrocytes. To this aim, a MTT colorimetric assay on astrocytes was performed to measure the toxicity/LC50 of various concentrations (0-320,000 nM) of AFB1 for 24 h. Further, the astrocytes were exposed to concentrations of 8, 16 and 32 nM of AFB1 for 24, 48 and 72 h. Concentration of intracellular ATP) and caspase-3/7 activity was then determined by luciferase-dependent bioluminescence. Furthermore, the percentage of apoptotic cells was obtained using flow cytometry (annexin V+/propidium iodide (PI)−; cytochrome c release from mitochondria, a hallmark of cell damage, was carried out by Western blot as well. MTT assay at post-exposure hours (PEH) 24 revealed that the LC50 of AFB1 was ~80,000 nM. Though at PEH 48 only 32 nM of AFB1 resulted in a significant diminished intracellular ATP content, at PEH 72 both 8 and 32 nM of AFB1 led to a significant ATP depletion in astrocytes. Similar patterns of changes were observed in bioluminescence intensity of AFB1-treated astrocytes. Flow cytometry-based annexin V and PI staining of astrocytes at PEH 24, 48 and 72 showed that 32 nM of AFB1 significantly and time dependently increased the percentage of apoptotic astrocytes (annexin V+/PI−). With 32 nM of AFB1, caspase-3/7 activity in astrocytes was increased ~4-fold at PEH 72. A remarkable release of cytochrome c was only detected in astrocytes exposed to 32 nM AFB1 for PEH 72. The results indicated that a biologically relevant level of AFB1 (32 nM) induces apoptosis in astrocytes through ATP depletion and caspases activation.
40

Du Yuchan, 杜宇禅, 李海亮 Li Hailiang, 史丽娜 Shi Lina, 李春 Li Chun, and 谢常青 Xie Changqing. "Integrated Development of Extreme Ultraviolet Lithography Mask at 32 nm Node." Acta Optica Sinica 33, no. 10 (2013): 1034002. http://dx.doi.org/10.3788/aos201333.1034002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Saito, T., and H. Onuki. "Detector calibration in the wavelength region 10 nm to 100 nm based on a windowless rare gas ionization chamber." Metrologia 32, no. 6 (December 1, 1995): 525–29. http://dx.doi.org/10.1088/0026-1394/32/6/26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Somra, Neha, Kanika Mishra, and Ravinder Singh. "Optimizing Current Characteristics of 32 nm FinFET by Controlling Fin Width." Communications on Applied Electronics 2, no. 7 (August 25, 2015): 1–5. http://dx.doi.org/10.5120/cae2015651795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Park, Jin-Hyung, Hao Cui, Jong-Young Cho, Hee-Sub Hwang, Woong-Jun Hwang, Ungyu Paik, Hyun-Goo Kang, Noh-Jung Kwak, and Jea-Gun Park. "Multiselectivity Chemical Mechanical Polishing for NAND Flash Memories beyond 32 nm." Journal of The Electrochemical Society 157, no. 6 (2010): H607. http://dx.doi.org/10.1149/1.3368675.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Ronse, K., P. Jansen, R. Gronheid, E. Hendrickx, M. Maenhoudt, V. Wiaux, A. M. Goethals, R. Jonckheere, and G. Vandenberghe. "Lithography Options for the 32 nm Half Pitch Node and Beyond." IEEE Transactions on Circuits and Systems I: Regular Papers 56, no. 8 (August 2009): 1884–91. http://dx.doi.org/10.1109/tcsi.2009.2028417.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Kim, Jong-Sun, Wook Chang, Ilsin An, and Hye-Keun Oh. "32 nm Pattern Collapse Modeling with Radial Distance and Rinse Speed." Japanese Journal of Applied Physics 46, no. 8A (August 6, 2007): 5101–3. http://dx.doi.org/10.1143/jjap.46.5101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Gupta, Shourya, Kirti Gupta, and Neeta Pandey. "A 32-nm Subthreshold 7T SRAM Bit Cell With Read Assist." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25, no. 12 (December 2017): 3473–83. http://dx.doi.org/10.1109/tvlsi.2017.2746683.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Palumbo, F., M. Debray, N. Vega, C. Quinteros, A. Kalstein, and F. Guarin. "Evolution of the gate current in 32 nm MOSFETs under irradiation." Solid-State Electronics 119 (May 2016): 19–24. http://dx.doi.org/10.1016/j.sse.2016.02.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Rodbell, Kenneth P., David F. Heidel, Jonathan A. Pellish, Paul W. Marshall, Henry H. K. Tang, Conal E. Murray, Kenneth A. LaBel, et al. "32 and 45 nm Radiation-Hardened-by-Design (RHBD) SOI Latches." IEEE Transactions on Nuclear Science 58, no. 6 (December 2011): 2702–10. http://dx.doi.org/10.1109/tns.2011.2171715.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Wang, YangYuan, Xing Zhang, XiaoYan Liu, and Ru Huang. "Novel devices and process for 32 nm CMOS technology and beyond." Science in China Series F: Information Sciences 51, no. 6 (May 21, 2008): 743–55. http://dx.doi.org/10.1007/s11432-008-0071-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Jung, Minhee, Joon-Min Park, and Hye-Keun Oh. "32 nm Half Pitch Formation with High-Numerical-Aperture Single Exposure." Japanese Journal of Applied Physics 48, no. 10 (October 20, 2009): 106501. http://dx.doi.org/10.1143/jjap.48.106501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії