Статті в журналах з теми "Nonlinear lasers dynamics"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Nonlinear lasers dynamics.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Nonlinear lasers dynamics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Lu, Weiping, and Robert G. Harrison. "Nonlinear dynamics of Raman lasers." Physical Review A 43, no. 11 (June 1, 1991): 6358–67. http://dx.doi.org/10.1103/physreva.43.6358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Glorieux, Pierre, and Albert Le Floch. "Nonlinear polarization dynamics in anisotropic lasers." Optics Communications 79, no. 3-4 (October 1990): 229–34. http://dx.doi.org/10.1016/0030-4018(90)90041-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sterian, Andreea Rodica. "Numerical Simulations on Nonlinear Dynamics in Lasers as Related High Energy Physics Phenomena." Advances in High Energy Physics 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/516396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper aims to present some results on nonlinear dynamics in active nanostructures as lasers with quantum wells and erbium doped laser systems using mathematical models, methods, and numerical simulations for some related high energy physics phenomena. We discuss nonlinear dynamics of laser with quantum wells and of fiber optics laser and soliton interactions. The results presented have important implications in particle detection and postdetection processing of information as well as in soliton generation and amplification or in the case that these simulations are thought to be useful in the experiments concerning the high energy particles. The soliton behaviour as particle offers the possibility to use solitons for better understanding of real particles in this field. The developed numerical models concerning nonlinear dynamics in nanostructured lasers, erbium doped laser systems, the soliton interactions, and the obtained results are consistent with the existing data in the literature.
4

Wang, Xiang-Hui, Zheng-Mao Wu, Zai-Fu Jiang, and Guang-Qiong Xia. "Nonlinear Dynamics of Two-State Quantum Dot Lasers under Optical Feedback." Photonics 8, no. 8 (July 27, 2021): 300. http://dx.doi.org/10.3390/photonics8080300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A modified rate equation model was presented to theoretically investigate the nonlinear dynamics of solitary two-state quantum dot lasers (TSQDLs) under optical feedback. The simulated results showed that, for a TSQDL biased at a relatively high current, the ground-state (GS) and excited-state (ES) lasing of the TSQDL can be stimulated simultaneously. After introducing optical feedback, both GS lasing and ES lasing can exhibit rich nonlinear dynamic states including steady state (S), period one (P1), period two (P2), multi-period (MP), and chaotic (C) state under different feedback strength and phase offset, respectively, and the dynamic states for the two lasing types are always identical. Furthermore, the influences of the linewidth enhancement factor (LEF) on the nonlinear dynamical state distribution of TSQDLs in the parameter space of feedback strength and phase offset were also analyzed. For a TSQDL with a larger LEF, much more dynamical states can be observed, and the parameter regions for two lasing types operating at chaotic state are widened after introducing optical feedback.
5

Sytova, S. N. "Nonlinear Dynamics of Radiation in Multiple-Beam Vacuum Electronic Devices." Nonlinear Phenomena in Complex Systems 25, no. 4 (December 12, 2022): 359–67. http://dx.doi.org/10.33581/1561-4085-2022-25-4-359-367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The article is devoted to overview of different types of vacuum electronic devices with two or more charged particle beams. There are travelling wave and backward wave tubes, free electron lasers and masers, volume free electron lasers. Two different cases take place in such situation: multiple-beam instability in such devices and multiple-stream instability. In the first case some charged particle beams moves in the system with different velocities. In the second one there are beams with almost equal velocities (streams). Two systems of equations for volume free electron laser with two electron beams are proposed. Some numerical results of VFEL numerical simulation are given and discussed.
6

Panajotov, Krassimir, Marc Sciamanna, Ignace Gatare, Mikel Arteaga, and Hugo Thienpont. "Nonlinear Dynamics of Vertical-Cavity Surface-Emitting Lasers." Advances in Optical Technologies 2011 (October 11, 2011): 1–16. http://dx.doi.org/10.1155/2011/469627.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nonlinear dynamics of Vertical-Cavity Surface-Emitting Lasers (VCSELs) induced by optical injection, optical feedback, current modulation and mutual coupling is reviewed. Due to the surface emission and cylindrical symmetry VCSELs lack strong polarization anisotropy and may undergo polarization switching. Furthermore, VCSELs may emit light in multiple transverse modes. These VCSEL properties provide new features to the rich nonlinear dynamics induced by an external perturbation. We demonstrate for the case of orthogonal optical injection that new Hopf bifurcation on a two-polarization-mode solution delimits the injection locking region and that polarization switching and injection locking of first-order transverse mode lead to a new resonance tongue for large positive detunings. Similarly, the underlying polarization mode competition leads to chaotic-like behavior in case of gain switching and the presence of two transverse modes additionally reduces the possibility of regular dynamics. The bistable property of VCSEL makes it possible to investigate very fundamental problems of bistable systems with time-delay, such as the coherence resonance phenomenon. We also demonstrate that the synchronization quality between unidirectionally coupled VCSELs can be significantly enhanced when the feedback-induced chaos in the master laser involves both orthogonal LP fundamental transverse modes.
7

Yan, Senlin. "Controlling two chaotic lasers via OD-DCF." ITM Web of Conferences 47 (2022): 03003. http://dx.doi.org/10.1051/itmconf/20224703003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present a novelty optoelectronic delay double-cross-feedback (OD-DCF) scheme to control two chaotic lasers based on coupled lasers. We design out the OD-DCF technical solution to convert two lights from two lasers into two photocurrents by two photo-detectors, and then the delay photocurrents are cross-fed back to each other’s lasers respectively to suppress two chaotic oscillations and guide two laser’s dynamics behaviours, respectively. By adjusting the feedback levels and delayed time of OD-DCF, two lasers can obtain chaos-control and show all kinds of dynamics behaviours. We find that chaotic oscillation behaviours of two lasers are suppressed into a stable state and different quasi-cycle states, such as a cycle-one, cycle-two, a cycle-three, a cycle-four, and other quasi-cycle states. We find also that two movement behaviours of two lasers can be controlled to lead to two different cycle-double states. The results prove that the control of two chaotic lasers can be effectively realized via OD-DCF. It is very helpful for our studies of control science, nonlinear optics, chaos, and laser.
8

J. Ablowitz, Mark, Terry S. Haut, Theodoros P. Horikis, Sean D. Nixon, and Yi Zhu. "Nonlinear wave dynamics: From lasers to fluids." Discrete & Continuous Dynamical Systems - S 4, no. 5 (2011): 923–55. http://dx.doi.org/10.3934/dcdss.2011.4.923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Labukhin, Dmitry, Christopher A. Stolz, Nickolay A. Zakhleniuk, Rodney Loudon, and Michael J. Adams. "Nonlinear Dynamics of Multi-Section Tunable Lasers." IEEE Journal of Quantum Electronics 46, no. 5 (May 2010): 689–99. http://dx.doi.org/10.1109/jqe.2010.2046881.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kravtsov, Nikolai V., and E. G. Lariontsev. "Nonlinear dynamics of solid-state ring lasers." Quantum Electronics 36, no. 3 (March 31, 2006): 192–221. http://dx.doi.org/10.1070/qe2006v036n03abeh013124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Boscolo, Sonia, Sergey V. Sergeyev, Chengbo Mou, Veronika Tsatourian, Sergei Turitsyn, Christophe Finot, Vitaly Mikhailov, Bryan Rabin, and Paul S. Westbrook. "Nonlinear pulse shaping and polarization dynamics in mode-locked fiber lasers." International Journal of Modern Physics B 28, no. 12 (April 7, 2014): 1442011. http://dx.doi.org/10.1142/s0217979214420119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fiber lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new types of vector solitons with processing states of polarization for multi-pulse and tightly bound-state soliton (soliton molecule) operations in a carbon nanotube (CNT) mode-locked fiber laser with anomalous dispersion cavity.
12

Porte, Xavier, Daniel Brunner, Ingo Fischer, and Miguel C. Soriano. "Nonlinear Dynamics of a Single-Mode Semiconductor Laser with Long Delayed Optical Feedback: A Modern Experimental Characterization Approach." Photonics 9, no. 1 (January 16, 2022): 47. http://dx.doi.org/10.3390/photonics9010047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Semiconductor lasers can exhibit complex dynamical behavior in the presence of external perturbations. Delayed optical feedback, re-injecting part of the emitted light back into the laser cavity, in particular, can destabilize the laser’s emission. We focus on the emission properties of a semiconductor laser subject to such optical feedback, where the delay of the light re-injection is large compared to the relaxation oscillations period. We present an overview of the main dynamical features that emerge in semiconductor lasers subject to delayed optical feedback, emphasizing how to experimentally characterize these features using intensity and high-resolution optical spectra measurements. The characterization of the system requires the experimentalist to be able to simultaneously measure multiple time scales that can be up to six orders of magnitude apart, from the picosecond to the microsecond range. We highlight some experimental observations that are particularly interesting from the fundamental point of view and, moreover, provide opportunities for future photonic applications.
13

Torre, Maria, and Cristina Masoller. "Exploiting the Nonlinear Dynamics of Optically Injected Semiconductor Lasers for Optical Sensing." Photonics 6, no. 2 (April 24, 2019): 45. http://dx.doi.org/10.3390/photonics6020045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Optically injected semiconductor lasers are known to display a rich variety of dynamic behaviours, including the emission of excitable pulses, and of rare giant pulses (often referred to as optical rogue waves). Here, we use a well-known rate equation model to explore the combined effect of excitability and extreme pulse emission, for the detection of variations in the strength of the injected field. We find parameter regions where the laser always responds to a perturbation by emitting an optical pulse whose amplitude is above a pre-defined detection threshold. We characterize the sensing capability of the laser in terms of the amplitude and the duration of the perturbation.
14

Ohtsubo, Junji. "Nonlinear Dynamics, Measurements, and Control in Semiconductor Lasers." Review of Laser Engineering 33, Supplement (2005): 157–58. http://dx.doi.org/10.2184/lsj.33.157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Yu, S. F. "Nonlinear dynamics of vertical-cavity surface-emitting lasers." IEEE Journal of Quantum Electronics 35, no. 3 (March 1999): 332–41. http://dx.doi.org/10.1109/3.748838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Lüdge, K., and E. Schöll. "Nonlinear dynamics of doped semiconductor quantum dot lasers." European Physical Journal D 58, no. 2 (March 2, 2010): 167–74. http://dx.doi.org/10.1140/epjd/e2010-00041-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Kim, Kyungduk, Stefan Bittner, Yuhao Jin, Yongquan Zeng, Stefano Guazzotti, Ortwin Hess, Qi Jie Wang, and Hui Cao. "Sensitive control of broad-area semiconductor lasers by cavity shape." APL Photonics 7, no. 5 (May 1, 2022): 056106. http://dx.doi.org/10.1063/5.0087048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The ray dynamics of optical cavities exhibits bifurcation points: special geometries at which ray trajectories switch abruptly between stable and unstable. A prominent example is the Fabry–Perot cavity with two planar mirrors, which is widely employed for broad-area semiconductor lasers. Such cavities support lasing in a relatively small number of transverse modes, and the laser is highly susceptible to filamentation and irregular pulsations. Here, we demonstrate experimentally that a slight deviation from this bifurcation point (planar cavity) dramatically changes the laser performance. In a near-planar cavity with two concave mirrors, the number of transverse lasing modes increases drastically. While the spatial coherence of the laser emission is reduced, the divergence angle of the output beam remains relatively narrow. Moreover, the spatiotemporal lasing dynamics becomes significantly more stable compared to that in a Fabry–Perot cavity. Our near-planar broad-area semiconductor laser has higher brightness, better directionality, and hence allows shorter integration times than an incandescent lamp while featuring sufficiently low speckle contrast at the same time, making it a vastly superior light source for speckle-free imaging. Furthermore, our method of controlling spatiotemporal dynamics with extreme sensitivity near a bifurcation point may be applied to other types of high-power lasers and nonlinear dynamic systems.
18

Huang, Lin, Yusheng Zhang, and Xueming Liu. "Dynamics of carbon nanotube-based mode-locking fiber lasers." Nanophotonics 9, no. 9 (June 29, 2020): 2731–61. http://dx.doi.org/10.1515/nanoph-2020-0269.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractCarbon nanotube (CNT) can work as excellent saturable absorber (SA) due to its advantages of fast recovery, low saturation intensity, polarization insensitivity, deep modulation depth, broad operation bandwidth, outstanding environmental stability, and affordable fabrication. Its successful application as SA has promoted the development of scientific research and practical application of mode-locked fiber lasers. Besides, mode-locked fiber laser constitutes an ideal platform for investigating soliton dynamics which exhibit profound nonlinear optical dynamics and excitation ubiquitous in many fields. Up to now, a variety of soliton dynamics have been observed. Among these researches, CNT-SA is a key component that suppresses the environmental perturbation and optimizes the laser system to reveal the true highly stochastic and non-repetitive unstable phenomena of the initial self-starting lasing process. This review is intended to provide an up-to-date introduction to the development of CNT-SA based ultrafast fiber lasers, with emphasis on recent progress in real-time buildup dynamics of solitons in CNT-SA mode-locked fiber lasers. It is anticipated that study of dynamics of solitons can not only further reveal the physical nature of solitons, but also optimize the performance of ultrafast fiber lasers and eventually expand their applications in different fields.
19

Chang, Da, Zhuqiang Zhong, Angel Valle, Wei Jin, Shan Jiang, Jianming Tang, and Yanhua Hong. "Microwave Photonic Signal Generation in an Optically Injected Discrete Mode Semiconductor Laser." Photonics 9, no. 3 (March 10, 2022): 171. http://dx.doi.org/10.3390/photonics9030171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, microwave photonic signal generation based on the period-one dynamic of optically injected discrete mode (DM) semiconductor lasers has been experimentally demonstrated and numerically simulated. The results show that the frequency of the generated microwave increases linearly with the frequency detuning or optical injection ratio. In addition, a single optical feedback loop is sufficient to reduce the microwave linewidth without significantly deteriorating side mode suppression. The simulation results using a model considering the nonlinear dependencies of the carrier recombination agree well with the experimental results, which indicates that the nonlinear carrier recombination effect is important in determining the nonlinear dynamics of optically injected DM lasers.
20

Song, Tingting, Yiyuan Xie, Yichen Ye, Bocheng Liu, Junxiong Chai, Xiao Jiang, and Yanli Zheng. "Numerical Analysis of Nonlinear Dynamics Based on Spin-VCSELs with Optical Feedback." Photonics 8, no. 1 (January 4, 2021): 10. http://dx.doi.org/10.3390/photonics8010010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, the nonlinear dynamics of a novel model based on optically pumped spin-polarized vertical-cavity surface-emitting lasers (spin-VCSELs) with optical feedback is investigated numerically. Due to optical feedback being the external disturbance component, the complex nonlinear dynamical behaviors can be enhanced and the regions of different nonlinear dynamics in size can be extended with appropriate parameters of spin-VCSELs. According to the equations of the modified spin-flip model (SFM), the comparison of bifurcation diagrams is first presented for the clear presentation of different routes to chaos. Meanwhile, numerous bifurcation diagrams in color are illustrated to demonstrate the rich dynamical regimes intuitively, and the crucial effects of optical feedback strength, feedback delay, linewidth enhancement factor, and spin-flip relaxation rate on the region evolvement of complex dynamics of the proposed model are revealed to investigate the dependence of dynamical behaviors on external and internal parameters when the optical feedback scheme is introduced. These parameters play a remarkable role in enhancing the mechanism of complex dynamic oscillations. Furthermore, utilizing combination with time series, power spectra, and phase portraits, the various dynamical behaviors observed in the bifurcation diagram are simulated numerically. Correspondingly, the powerful measure 0–1 test is employed to distinguish between chaos and non-chaos.
21

KO, JING-YUAN, TAKAYUKI OHTOMO, KAZUTAKA ABE, and KENJU OTSUKA. "NONLINEAR DYNAMICS AND APPLICATION OF LASER-DIODE-PUMPED MICROCHIP SOLID-STATE LASERS WITH OPTICAL FEEDBACK." International Journal of Modern Physics B 15, no. 26 (October 20, 2001): 3369–95. http://dx.doi.org/10.1142/s0217979201007282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper reviews our recent research on nonlinear dynamics of microchip solid-state lasers subjected to delayed optical feedback. Instabilities in two types of physical systems including multimode lasers with feedback and lasers with frequency-shifted feedback are discussed. Applications of microchip lasers with feedback to shot-noise-limited self-mixing optical sensing and imaging are summarized.
22

Trinschek, Sarah, Christian Vorholt, and Ulrich Wittrock. "Nonlinear dynamics in intra-cavity pumped thin-disk lasers." Optics Express 29, no. 4 (February 8, 2021): 5755. http://dx.doi.org/10.1364/oe.417154.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Grelu, Philippe, M. Grapinet, J. M. Soto-Crespo, and Nail Akhmediev. "Nonlinear Dynamics of Temporal Optical Soliton Molecules in Lasers." PIERS Online 3, no. 3 (2007): 357–59. http://dx.doi.org/10.2529/piers060828120520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Nguyen, Ba An, and Paul Mandel. "Dynamics of multimode Fabry-Perot lasers: A nonlinear analysis." Physical Review E 57, no. 2 (February 1, 1998): 1444–57. http://dx.doi.org/10.1103/physreve.57.1444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Tang, S., R. Vicente, M. C. Chiang, C. R. Mirasso, and J. M. Liu. "Nonlinear Dynamics of Semiconductor Lasers With Mutual Optoelectronic Coupling." IEEE Journal of Selected Topics in Quantum Electronics 10, no. 5 (September 2004): 936–43. http://dx.doi.org/10.1109/jstqe.2004.837013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Toomey, J. P., D. M. Kane, M. W. Lee, and K. A. Shore. "Nonlinear dynamics of semiconductor lasers with feedback and modulation." Optics Express 18, no. 16 (July 26, 2010): 16955. http://dx.doi.org/10.1364/oe.18.016955.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Spaulding, Kristin M., Darryl H. Yong, Arnold D. Kim, and J. Nathan Kutz. "Nonlinear dynamics of mode-locking optical fiber ring lasers." Journal of the Optical Society of America B 19, no. 5 (May 1, 2002): 1045. http://dx.doi.org/10.1364/josab.19.001045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kul minskii, A. M., Yu V. Loiko, and A. P. Voitovich. "Nonlinear dynamics of lasers with intracavity modulation of ellipticity." Journal of Optics B: Quantum and Semiclassical Optics 6, no. 2 (February 1, 2004): 178–83. http://dx.doi.org/10.1088/1464-4266/6/2/008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Bittner, Stefan, Stefano Guazzotti, Yongquan Zeng, Xiaonan Hu, Hasan Yılmaz, Kyungduk Kim, Sang Soon Oh, Qi Jie Wang, Ortwin Hess, and Hui Cao. "Suppressing spatiotemporal lasing instabilities with wave-chaotic microcavities." Science 361, no. 6408 (August 16, 2018): 1225–31. http://dx.doi.org/10.1126/science.aas9437.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Spatiotemporal instabilities are widespread phenomena resulting from complexity and nonlinearity. In broad-area edge-emitting semiconductor lasers, the nonlinear interactions of multiple spatial modes with the active medium can result in filamentation and spatiotemporal chaos. These instabilities degrade the laser performance and are extremely challenging to control. We demonstrate a powerful approach to suppress spatiotemporal instabilities using wave-chaotic or disordered cavities. The interference of many propagating waves with random phases in such cavities disrupts the formation of self-organized structures such as filaments, resulting in stable lasing dynamics. Our method provides a general and robust scheme to prevent the formation and growth of nonlinear instabilities for a large variety of high-power lasers.
30

Sennaroglu, Alphan. "Upconversion pumping of lasers via excited-state absorption: an analytical rate-equation formulation." Journal of the Optical Society of America B 39, no. 9 (August 15, 2022): 2400. http://dx.doi.org/10.1364/josab.464059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Coupled power-gain equations were used to model lasers where optical pumping occurs as a result of a weak ground-state absorption followed by strong pump excited-state absorption (ESA). Inspired by the gain dynamics and energy-level structure of upconversion-pumped 2.3 µm T m 3 + lasers and 3.4 µm E r 3 + lasers, the model assumes that population in the lower laser level relaxes via a fast nonradiative decay to an intermediate storage level, which typically has a considerably slower decay rate than that of the upper laser level. After obtaining a description of the rate equation model, the continuous-wave regime was investigated by deriving analytical expressions for the power-dependent absorption, threshold pump power for lasing, output laser power, and laser slope efficiency. Results indicate that a slow decay rate of the lower level is necessary, so that sufficient population buildup can lead to enhanced nonlinear absorption via ESA. Furthermore, the asymptotic slope efficiency of the ESA pumped laser is similar to that of the ideal four-level laser, where the linear absorption is replaced by the effective nonlinear absorption.
31

Liao, Bin-Kai, Chin-Hao Tseng, Yu-Chen Chu, and Sheng-Kwang Hwang. "Effects of Asymmetric Coupling Strength on Nonlinear Dynamics of Two Mutually Long-Delay-Coupled Semiconductor Lasers." Photonics 9, no. 1 (January 3, 2022): 28. http://dx.doi.org/10.3390/photonics9010028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study investigates the effects of asymmetric coupling strength on nonlinear dynamics of two mutually long-delay-coupled semiconductor lasers through both experimental and numerical efforts. Dynamical maps and spectral features of dynamical states are analyzed as a function of the coupling strength and detuning frequency for a fixed coupling delay time. Symmetry in the coupling strength of the two lasers, in general, symmetrizes their dynamical behaviors and the corresponding spectral features. Slight to moderate asymmetry in the coupling strength moderately changes their dynamical behaviors from the ones when the coupling strength is symmetric, but does not break the symmetry of their dynamical behaviors and the corresponding spectral features. High asymmetry in the coupling strength not only strongly changes their dynamical behaviors from the ones when the coupling strength is symmetric, but also breaks the symmetry of their dynamical behaviors and the corresponding spectral features. Evolution of the dynamical behaviors from symmetry to asymmetry between the two lasers is identified. Experimental observations and numerical predictions agree not only qualitatively to a high extent but also quantitatively to a moderate extent.
32

Bittner, Stefan, and Marc Sciamanna. "Complex nonlinear dynamics of polarization and transverse modes in a broad-area VCSEL." APL Photonics 7, no. 12 (December 1, 2022): 126108. http://dx.doi.org/10.1063/5.0104852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lasers can exhibit nonlinear and chaotic dynamics driven by the interaction of multiple lasing modes, and investigating the different scenarios of mode competition and bifurcations of their dynamics is of great interest on a fundamental level as well as in view of applications. We study the dynamics of a broad-area vertical-cavity surface-emitting laser (VCSEL) in solitary continuous-wave operation with a comprehensive investigation of its polarization state, lasing spectra, near-field distributions, and temporal dynamics. Fluctuations at the frequency of birefringence splitting and other frequency components develop in a series of bifurcations. The bifurcations coincide with changes of the transverse lasing modes and/or the polarization state, demonstrating the importance of both the spatial and polarization degrees of freedom for mode competition. As a consequence, the inherent nonlinear dynamics of broad-area VCSELs is significantly more complex than the dynamics of VCSELs with a single spatial mode.
33

Huang, Dongmei, Yihuan Shi, Feng Li, and P. K. A. Wai. "Fourier Domain Mode Locked Laser and Its Applications." Sensors 22, no. 9 (April 20, 2022): 3145. http://dx.doi.org/10.3390/s22093145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The sweep rate of conventional short-cavity lasers with an intracavity-swept filter is limited by the buildup time of laser signals from spontaneous emissions. The Fourier domain mode-locked (FDML) laser was proposed to overcome the limitations of buildup time by inserting a long fiber delay in the cavity to store the whole swept signal and has attracted much interest in both theoretical and experimental studies. In this review, the theoretical models to understand the dynamics of the FDML laser and the experimental techniques to realize high speed, wide sweep range, long coherence length, high output power and highly stable swept signals in FDML lasers will be discussed. We will then discuss the applications of FDML lasers in optical coherence tomography (OCT), fiber sensing, precision measurement, microwave generation and nonlinear microscopy.
34

Jiang, Zai-Fu, Zheng-Mao Wu, Elumalai Jayaprasath, Wen-Yan Yang, Chun-Xia Hu, and Guang-Qiong Xia. "Nonlinear Dynamics of Exclusive Excited-State Emission Quantum Dot Lasers Under Optical Injection." Photonics 6, no. 2 (May 27, 2019): 58. http://dx.doi.org/10.3390/photonics6020058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We numerically investigate the nonlinear dynamic properties of an exclusive excited-state (ES) emission quantum dot (QD) laser under optical injection. The results show that, under suitable injection parameters, the ES-QD laser can exhibit rich nonlinear dynamical behaviors, such as injection locking (IL), period one (P1), period two (P2), multi-period (MP), and chaotic pulsation (CP). Through mapping these dynamic states in the parameter space of the frequency detuning and the injection coefficient, it can be found that the IL occupies a wide region and the dynamic evolution routes appear in multiple forms. Via permutation entropy (PE) calculation to quantify the complexity of the CP state, the parameter range for acquiring the chaos with high complexity can be determined. Moreover, the influence of the linewidth enhancement factor (LEF) on the dynamical state of the ES-QD laser is analyzed. With the increase of the LEF value, the chaotic area shrinks (expands) in the negative (positive) frequency detuning region, and the IL region gradually shifts towards the negative frequency detuning.
35

Otsuka, Kenju, Tatsuro Narita, Yoshihiko Miyasaka, Chi-Ching Lin, Jing-Yuan Ko, and Shu-Chun Chu. "Nonlinear dynamics in thin-slice Nd:YAG ceramic lasers: Coupled local-mode laser model." Applied Physics Letters 89, no. 8 (August 21, 2006): 081117. http://dx.doi.org/10.1063/1.2337993.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Zhou, Pei, Nianqiang Li, and Shilong Pan. "Period-One Laser Dynamics for Photonic Microwave Signal Generation and Applications." Photonics 9, no. 4 (March 31, 2022): 227. http://dx.doi.org/10.3390/photonics9040227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Due to the advantages of rich dynamics, small size, and easy integration, semiconductor lasers have many applications in microwave photonics. With a proper perturbation to invoke period-one (P1) nonlinear laser dynamics, a widely tunable microwave signal can be generated. In this paper, we concentrate on the realization and application of photonic microwave signal generation based on the P1 oscillation state of semiconductor lasers. Recent developments in P1 dynamics-based tunable microwave signal generation techniques are reviewed with an emphasis on the optical injection system, which has a large frequency tuning range that is far beyond the intrinsic relaxation oscillation frequency. In order to improve the spectral purity and stability of the generated microwave signal, two typical approaches are introduced, i.e., microwave modulation stabilization, and delayed feedback stabilization. Various applications of the P1 dynamics-based microwave signal generator in diverse signal generation and photonic microwave signal processing are described. Development trends of the P1 dynamics-based photonic microwave signal generator are also discussed.
37

WEI, MING-DAR, and CHIH-CHANG HSU. "RESHAPING MODULATION PROFILE TO DECREASE AND INCREASE THE THRESHOLD FOR CHAOTIC BEHAVIOR IN A PUMP-MODULATION Nd:YVO4 LASER." International Journal of Bifurcation and Chaos 22, no. 08 (August 2012): 1250185. http://dx.doi.org/10.1142/s0218127412501854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study investigates the changes of the threshold of chaotic behavior in a pump-modulation Nd:YVO4 laser created by varying the shape of the modulation profile. The threshold for chaotic behavior can be increased and decreased when the modulation profiles are reshaped by triangular wave and Jacobi elliptic sine functions, respectively. Experimental results show that sinusoidal-wave, square-wave, and triangular-wave modulations have different chaotic thresholds, agreeing with numerical results. In addition to the dynamic parameters of modulation frequency and modulation depth, the shape of modulation is an important parameter for controlling the nonlinear dynamics in pump-modulation lasers.
38

Minggao, He, and Ou Fa. "An Improved Laser Model based on the Nonlinear Coupling of Lightfield with Boson Elementary Excitation." Journal of Nonlinear Optical Physics & Materials 07, no. 04 (December 1998): 479–86. http://dx.doi.org/10.1142/s021886359800034x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The dynamics of the laser model based on the nonlinear coupling of light-field with boson elementary excitation is improved. A rate equation of pumping system directly coupled with the boson matter is added to the original equations. The system as a whole, therefore, becomes a perfect self-organized one, but the character of mirrorless unchanges, which is a character essentially different from conventional lasers, and the laser threshold behavior of second-order-like transition also remains. There is some resemblance between the new revised laser model and Maxwell–Bloch two-level-atom laser model.
39

Simpson, T. B., J. M. Liu, K. F. Huang, and K. Tai. "Nonlinear dynamics induced by external optical injection in semiconductor lasers." Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 9, no. 5 (October 1997): 765–84. http://dx.doi.org/10.1088/1355-5111/9/5/009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Li, Xiaofeng, Wei Pan, Bin Luo, and Dong Ma. "Nonlinear dynamics of two mutually injected external-cavity semiconductor lasers." Semiconductor Science and Technology 21, no. 1 (November 22, 2005): 25–34. http://dx.doi.org/10.1088/0268-1242/21/1/005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Lin, Fan-Yi, Shiou-Yuan Tu, Chien-Chih Huang, and Shu-Ming Chang. "Nonlinear Dynamics of Semiconductor Lasers Under Repetitive Optical Pulse Injection." IEEE Journal of Selected Topics in Quantum Electronics 15, no. 3 (2009): 604–11. http://dx.doi.org/10.1109/jstqe.2008.2010558.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Liu, Sheng, Elaine Lalanne, Peter Q. Liu, Xiaojun Wang, Claire F. Gmachl, and Anthony M. Johnson. "Femtosecond Carrier Dynamics and Nonlinear Effects in Quantum Cascade Lasers." IEEE Journal of Selected Topics in Quantum Electronics 18, no. 1 (January 2012): 92–104. http://dx.doi.org/10.1109/jstqe.2011.2113172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Klaedtke, A., and O. Hess. "Ultrafast nonlinear dynamics of whispering-gallery mode micro-cavity lasers." Optics Express 14, no. 7 (2006): 2744. http://dx.doi.org/10.1364/oe.14.002744.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Shtyrina, O. V., S. A. Efremov, I. A. Yarutkina, A. S. Skidin, and M. P. Fedoruk. "Optimization of CW Fiber Lasers With Strong Nonlinear Cavity Dynamics." Journal of Physics: Conference Series 999 (April 2018): 012009. http://dx.doi.org/10.1088/1742-6596/999/1/012009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Liao, Yuan-Hwang, and Herbert G. Winful. "Dynamics of distributed-feedback fiber lasers: effect of nonlinear refraction." Optics Letters 21, no. 7 (April 1, 1996): 471. http://dx.doi.org/10.1364/ol.21.000471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Takahashi, T., and Y. Arakawa. "Nonlinear gain effects on spectral dynamics in quantum well lasers." IEEE Photonics Technology Letters 3, no. 2 (February 1991): 106–7. http://dx.doi.org/10.1109/68.76855.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Wójcik, Aleksander K., Nanfang Yu, Laurent Diehl, Federico Capasso, and Alexey Belyanin. "Nonlinear dynamics of coupled transverse modes in quantum cascade lasers." Journal of Modern Optics 57, no. 19 (November 10, 2010): 1892–99. http://dx.doi.org/10.1080/09500340.2010.506013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Ludge, Kathy, and Eckehard Scholl. "Quantum-Dot Lasers—Desynchronized Nonlinear Dynamics of Electrons and Holes." IEEE Journal of Quantum Electronics 45, no. 11 (November 2009): 1396–403. http://dx.doi.org/10.1109/jqe.2009.2028159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Valle, A., L. Pesquera, S. I. Turovets, and J. M. López. "Nonlinear dynamics of current-modulated vertical-cavity surface-emitting lasers." Optics Communications 208, no. 1-3 (July 2002): 173–82. http://dx.doi.org/10.1016/s0030-4018(02)01579-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

O’Gorman, J., P. Phelan, J. McInerney, and D. Heffernan. "Nonlinear dynamics of self-pulsing external cavity semiconductor injection lasers." Journal of the Optical Society of America B 5, no. 5 (May 1, 1988): 1105. http://dx.doi.org/10.1364/josab.5.001105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії