Добірка наукової літератури з теми "Online learning methods"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Online learning methods".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Online learning methods"
Tarasenko, M. "ONLINE LEARNING: INTERACTIVE METHODS." Pedagogy of the formation of a creative person in higher and secondary schools 2, no. 77 (2021): 49–53. http://dx.doi.org/10.32840/1992-5786.2021.77-2.9.
Повний текст джерелаTekin, Cem, and Mingyan Liu. "Online Learning Methods for Networking." Foundations and Trends® in Networking 8, no. 4 (2013): 281–409. http://dx.doi.org/10.1561/1300000050.
Повний текст джерелаSalmons, Janet. "Case methods for online learning." eLearn 2003, no. 6 (June 2003): 2. http://dx.doi.org/10.1145/863928.863932.
Повний текст джерелаPRASETYA, Prita, and Sekar Wulan PRASETYANINGTYAS. "LEARNING STATISTICAL METHODES WITH ONLINE ONLINE COURSE." ICCD 3, no. 1 (October 27, 2021): 312–15. http://dx.doi.org/10.33068/iccd.vol3.iss1.368.
Повний текст джерелаVilkhovchenko, Nadiia P. "ESP distance learning methods At technical universities." Bulletin of Alfred Nobel University Series "Pedagogy and Psychology» 1, no. 23 (June 2022): 116–23. http://dx.doi.org/10.32342/2522-4115-2022-1-23-14.
Повний текст джерелаRini, Hesty Prima, and Dewi Khrisna Sawitri. "Effectiveness of Online Learning: The Learning Methods and Media." Ilomata International Journal of Social Science 3, no. 1 (February 10, 2022): 330–39. http://dx.doi.org/10.52728/ijss.v3i1.389.
Повний текст джерелаTîrziu, Andreea-Maria, and Cătălin I. Vrabie. "NET Generation. Thinking outside the box by using online learning methods." New Trends and Issues Proceedings on Humanities and Social Sciences 2, no. 7 (January 27, 2016): 41–47. http://dx.doi.org/10.18844/gjhss.v2i7.1178.
Повний текст джерелаSampe, Maria Zefanya, and Syafrudi Syafrudi. "ONLINE MATHEMATICS LEARNING STRATEGY APPROACH: TEACHING METHODS AND LEARNING ASSESSMENT." Jurnal Pendidikan Matematika (JUPITEK) 7, no. 1 (July 7, 2024): 42–55. http://dx.doi.org/10.30598/jupitekvol7iss1pp42-55.
Повний текст джерелаLoi, Chek Kim, Jason Miin Hwa Lim, Norazah Mohd Suki, and Hock Ann Lee. "Exploring University Students’ Online Learning Readiness: A Mixed Methods Study of Forced Online Learning." Journal of Language and Education 10, no. 1 (March 30, 2024): 49–67. http://dx.doi.org/10.17323/jle.2024.16016.
Повний текст джерелаNF, Jhoanita, and Siti Khadijah. "PARENTS’ PERCEPTIONS OF ONLINE LEARNING METHODS: A QUANTITATIVE STUDY." Makna: Jurnal Kajian Komunikasi, Bahasa, dan Budaya 10, no. 1 (March 9, 2022): 21–30. http://dx.doi.org/10.33558/makna.v10i1.3242.
Повний текст джерелаДисертації з теми "Online learning methods"
Qin, Lei. "Online machine learning methods for visual tracking." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0017/document.
Повний текст джерелаWe study the challenging problem of tracking an arbitrary object in video sequences with no prior knowledge other than a template annotated in the first frame. To tackle this problem, we build a robust tracking system consisting of the following components. First, for image region representation, we propose some improvements to the region covariance descriptor. Characteristics of a specific object are taken into consideration, before constructing the covariance descriptor. Second, for building the object appearance model, we propose to combine the merits of both generative models and discriminative models by organizing them in a detection cascade. Specifically, generative models are deployed in the early layers for eliminating most easy candidates whereas discriminative models are in the later layers for distinguishing the object from a few similar "distracters". The Partial Least Squares Discriminant Analysis (PLS-DA) is employed for building the discriminative object appearance models. Third, for updating the generative models, we propose a weakly-supervised model updating method, which is based on cluster analysis using the mean-shift gradient density estimation procedure. Fourth, a novel online PLS-DA learning algorithm is developed for incrementally updating the discriminative models. The final tracking system that integrates all these building blocks exhibits good robustness for most challenges in visual tracking. Comparing results conducted in challenging video sequences showed that the proposed tracking system performs favorably with respect to a number of state-of-the-art methods
Kovanovic, Vitomir. "Assessing cognitive presence using automated learning analytics methods." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28759.
Повний текст джерелаJohnson, Alicia Leinaala. "Exploration of Factors Affecting the Self-Efficacy of Asynchronous Online Learners: a Mixed Methods Study." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77518.
Повний текст джерелаPh. D.
Conesa, Gago Agustin. "Methods to combine predictions from ensemble learning in multivariate forecasting." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-103600.
Повний текст джерелаHäglund, Emil. "Estimating Prediction Intervals with Machine Learning and Monte Carlo Methods in Online Advertising." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-282826.
Повний текст джерелаReklam på nätet är en komplex miljö. Mängden hemsidor, plattformar och format såväl som trenden med programmatiska reklamköp gör det svårt att utvärdera planerad reklam beträffande förväntad kostnad och värde. Den här rapporten använder maskininlärning för att prediktera kostnaden för tusen visningar (CPM), ett mått på annonseringseffektivitet, för ett planerat reklamköp. Random forest och neurala nätverksmodeller jämfördes med avseende på deras förmåga att producera punktskattningar och prediktionsintervall. För att skatta prediktionsintervall för neurala nätverk användes Monte Carlo dropout och skattning av datamängdens brusnivå. För random forest användes en Monte Carlo metod där ett stort antal modeller parametriseras med bootstrapping. Implementerade algoritmer jämfördes med 5x2cv test. Random forest och neural nätverksmodellerna producerade liknande precision för punktskattningar. För att erhålla giltiga prediktionsintervall avseende täckningssannolikhet för random forest krävdes det att parametrar justerades för att öka de enskilda beslutsträdens varians. Detta påverkade precisionen för punktskattningar negativt och prediktionsintervallen för random forest var mindre optimala än de som skattades av neurala nätverksalgoritmen. Denna skillnad i förmåga att skatta prediktionsintervall bekräftades statistiskt av 5x2cv testet.
Wright, Robert Demmon. "Students' Attitudes Towards Rapport-building Traits and Practices in Online Learning Environments." Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc177265/.
Повний текст джерелаLuca, Joseph. "Developing generic skills for tertiary students in an online learning environment." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2002. https://ro.ecu.edu.au/theses/713.
Повний текст джерелаCunningham, E. Ann. "Comparison of Student Success by Course Delivery Methods at an Eastern Tennessee Community College." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etd/2585.
Повний текст джерелаJoshi, Apoorva. "Trajectory-based methods to predict user churn in online health communities." Thesis, University of Iowa, 2018. https://ir.uiowa.edu/etd/6152.
Повний текст джерелаTunningley, Joan M. "Self-Regulated Learning and Reflective Journaling in an Online Interprofessional Course: A Mixed Methods Study." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1511799445626182.
Повний текст джерелаКниги з теми "Online learning methods"
plc, Epic Group, ed. Methods: A practical guide to the methods used in online learning. Brighton: Epic Group, 1999.
Знайти повний текст джерелаA, Fisher Cheryl, and Rietschel Matthew J, eds. Developing online learning environments in nursing education. 3rd ed. New York, NY: Springer, 2014.
Знайти повний текст джерела1966-, Lindberg J. Ola, and Olofsson Anders D. 1973-, eds. Online learning communities and teacher professional development: Methods for improved education delivery. Hershey, PA: Information Science Reference, 2010.
Знайти повний текст джерела1966-, Lambropoulos Niki, and Romero Margarido 1980-, eds. Educational social software for context-aware learning: Collaborative methods and human interaction. Hershey, PA: Information Science Reference, 2010.
Знайти повний текст джерела1966-, Lambropoulos Niki, and Romero Margarido 1980-, eds. Educational social software for context-aware learning: Collaborative methods and human interaction. Hershey, PA: Information Science Reference, 2010.
Знайти повний текст джерела1966-, Lambropoulos Niki, and Romero Margarido 1980-, eds. Educational social software for context-aware learning: Collaborative methods and human interaction. Hershey, PA: Information Science Reference, 2010.
Знайти повний текст джерелаLoke, Jennifer C. F. Critical discourse analysis of interprofessional online learning in health care education. Hauppauge, N.Y: Nova Science Publishers, 2011.
Знайти повний текст джерелаConceição, Simone C. O., 1963-, ed. Motivating and retaining online students: Research-based strategies that work. San Francisco, CA: Jossey-Bass, a Wiley brand, 2014.
Знайти повний текст джерелаTekin and Mingyan Liu. Online Learning Methods for Networking. Now Publishers, 2015.
Знайти повний текст джерелаLOK, Johnny Ch. Advantages Comparision Between Classroom and Online Learning Methods. Independently Published, 2020.
Знайти повний текст джерелаЧастини книг з теми "Online learning methods"
Bartz-Beielstein, Thomas. "Special Requirements for Online Machine Learning Methods." In Online Machine Learning, 63–69. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7007-0_6.
Повний текст джерелаConceição, Simone C. O., and Susan M. Yelich Biniecki. "Closed and Open Online Discussion Forums." In Methods for Facilitating Adult Learning, 316–32. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003446019-25.
Повний текст джерелаMittelman, Rachel J. "Overcoming Resistance to Teaching History Online and Methods of Engagement." In Teaching and Learning History Online, 7–14. New York: Routledge, 2023. http://dx.doi.org/10.4324/9781003258414-3.
Повний текст джерелаGunawardena, Charlotte Nirmalani, Nick V. Flor, and Damien M. Sánchez. "Social Construction of Knowledge (SCK) Platforms, Scraping, and Methods." In Knowledge Co-Construction in Online Learning, 70–77. New York: Routledge, 2025. https://doi.org/10.4324/9781003324461-7.
Повний текст джерелаRay, Asmita, Vishal Goyal, and Samir Kumar Bandyopadhyay. "Student Stress Detection in Online Learning During Outbreak." In Computational Methods in Psychiatry, 259–81. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6637-0_13.
Повний текст джерелаGunawardena, Charlotte Nirmalani, Nick V. Flor, and Damien M. Sánchez. "Social Learning Analytic Methods (SLAM) for Examining Online Social Dynamics." In Knowledge Co-Construction in Online Learning, 57–69. New York: Routledge, 2025. https://doi.org/10.4324/9781003324461-6.
Повний текст джерелаPark, Sunyoung, Boreum (Jenny) Ju, and Shinhee Jeong. "Adopting Massive Open Online Courses (MOOCs) in Adult Learning Contexts." In Methods for Facilitating Adult Learning, 333–49. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003446019-26.
Повний текст джерелаSiska, Jumiati, Meydia Afrina, Sudarwan Danim, and Agus Susanta. "The Effectiveness of Demonstrative Learning Methods in Improving Students’ Learning Outcomes." In Online Conference of Education Research International (OCERI 2023), 319–25. Paris: Atlantis Press SARL, 2023. http://dx.doi.org/10.2991/978-2-38476-108-1_31.
Повний текст джерелаKatiyar, Kalpana, Hera Fatma, and Simran Singh. "Student’s Stress Detection in Online Learning During the Outbreak." In Computational Methods in Psychiatry, 335–48. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6637-0_16.
Повний текст джерелаOiwa, Hidekazu, Shin Matsushima, and Hiroshi Nakagawa. "Frequency-Aware Truncated Methods for Sparse Online Learning." In Machine Learning and Knowledge Discovery in Databases, 533–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23783-6_34.
Повний текст джерелаТези доповідей конференцій з теми "Online learning methods"
Atia, Hend Abdelbakey, Magdy Aboul-Ela, Christina Albert Reyad, and Nancy Awadallah Awad. "Online Payments Fraud Detection Using Machine Learning Techniques." In 2024 Intelligent Methods, Systems, and Applications (IMSA), 402–9. IEEE, 2024. http://dx.doi.org/10.1109/imsa61967.2024.10652834.
Повний текст джерелаZhang, Hao, Liang Huang, Kai Zhao, and Ryan McDonald. "Online Learning for Inexact Hypergraph Search." In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 908–13. Stroudsburg, PA, USA: Association for Computational Linguistics, 2013. http://dx.doi.org/10.18653/v1/d13-1093.
Повний текст джерелаJung, Hoin, and Xiaoqian Wang. "Fairness-Aware Online Positive-Unlabeled Learning." In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, 170–85. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.emnlp-industry.14.
Повний текст джерелаShdefat, Ahmed Younes, Mennatallah Mohamed, Shahd Khaled, Farrah Hany, Hanaa Fathi, and Diaa Salama AbdElminaam. "Comparative Analysis of Machine Learning Models in Online Payment Fraud Prediction." In 2024 Intelligent Methods, Systems, and Applications (IMSA), 243–50. IEEE, 2024. http://dx.doi.org/10.1109/imsa61967.2024.10652861.
Повний текст джерелаDe Silva, D. I., and K. S. N. Athukorala. "Advancing Online Education: An Interactive Framework for Aligning Teaching Methods with Learning Styles." In 2024 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 1–7. IEEE, 2024. https://doi.org/10.1109/icses63760.2024.10910891.
Повний текст джерелаHillier, Michael, Florian Wellmann, Boyan Brodaric, Eric de Kemp, and Ernst Schetselaar. "MACHINE LEARNING METHODS FOR 3D GEOLOGICAL MODEL CONSTRUCTION." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-355922.
Повний текст джерелаSaenal, Selfiana, Syakhruni Syakhruni, and Muh Kurniawan Adi Kusuma Wiharja. "Online Learning Methods for Learning Dance at School." In 1st World Conference on Social and Humanities Research (W-SHARE 2021). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/assehr.k.220402.056.
Повний текст джерелаLu, Lyujian, Hua Wang, Hua Wang, Yaoguo Li, Yaoguo Li, Thomas Monecke, Thomas Monecke, Hoon Seo, and Hoon Seo. "PREDICTING 3D GEOSPATIAL DATA USING MACHINE LEARNING-BASED IMPUTATION METHODS." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-356905.
Повний текст джерелаLui, Timothy, Daniel Gregory, Sharon A. Cowling, and Well-Shen Lee. "APPLYING MACHINE LEARNING METHODS TO PREDICT GEOLOGY USING SOIL SAMPLE GEOCHEMISTRY." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-359454.
Повний текст джерелаLuo, Hongyin, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. "Online Learning of Interpretable Word Embeddings." In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2015. http://dx.doi.org/10.18653/v1/d15-1196.
Повний текст джерелаЗвіти організацій з теми "Online learning methods"
Stanley, April Elisha, and Arienne McCracken. Methods for increasing student learning in an online undergraduate analysis of apparel and production course. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-353.
Повний текст джерелаYatsenko, Halyna, та Andriy Yatsenko. Використання креативних методів навчання під час викладання дисциплін «Історія української журналістики» і «Креативний текст». Ivan Franko National University of Lviv, березень 2023. http://dx.doi.org/10.30970/vjo.2023.52-53.11736.
Повний текст джерелаTusiime, Hilary Mukwenda, and Nahom Eyasu Alemu. Embracing E-Learning in Public Universities in Ethiopia and Uganda. Mary Lou Fulton Teachers College, December 2023. http://dx.doi.org/10.14507/mcf-eli.j2.
Повний текст джерелаClement, Timothy, and Brett Vaughan. Evaluation of a mobile learning platform for clinical supervision. University of Melbourne, 2021. http://dx.doi.org/10.46580/124369.
Повний текст джерелаAkhmedjanova, Diana, and Komiljon Karimov. Covid-19’s Effects on Higher Education in Uzbekistan: The Case of Westminster International University in Tashkent. TOSHKENT SHAHRIDAGI XALQARO VESTMINSTER UNIVERSITETI, November 2020. https://doi.org/10.70735/azco9450.
Повний текст джерелаNahorniak, Maya. Occupation of profession: Methodology of laboratory classes from practically-oriented courses under distance learning (on an example of discipline «Radioproduction»). Ivan Franko National University of Lviv, February 2022. http://dx.doi.org/10.30970/vjo.2022.51.11412.
Повний текст джерелаSchmidt-Sane, Megan, Tabitha Hrynick, Erica Nelson, and Tom Barker. Mutual Learning for Policy Impact: Insights from CORE. Adapting research methods in the context of Covid-19. Institute of Development Studies (IDS), December 2021. http://dx.doi.org/10.19088/core.2021.008.
Повний текст джерелаFalfushynska, Halina I., Bogdan B. Buyak, Hryhorii V. Tereshchuk, Grygoriy M. Torbin, and Mykhailo M. Kasianchuk. Strengthening of e-learning at the leading Ukrainian pedagogical universities in the time of COVID-19 pandemic. [б. в.], June 2021. http://dx.doi.org/10.31812/123456789/4442.
Повний текст джерелаДирда, Ірина Анатоліївна, Марина Вікторівна Малоіван, and Анна Олександрівна Томіліна. Innovative online teaching tools for students who major in english philology: challenges and opportinutuies. Видавнича група «Наукові перспективи», 2023. http://dx.doi.org/10.31812/123456789/7078.
Повний текст джерелаDanylchuk, Hanna B., and Serhiy O. Semerikov. Advances in machine learning for the innovation economy: in the shadow of war. Криворізький державний педагогічний університет, August 2023. http://dx.doi.org/10.31812/123456789/7732.
Повний текст джерела