Дисертації з теми "Online social data"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Online social data".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Rahman, Mahmudur. "Data Verifications for Online Social Networks." FIU Digital Commons, 2015. http://digitalcommons.fiu.edu/etd/2299.
Повний текст джерелаHong, Dan. "Sharing private data in online social networks /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CSED%202009%20HONG.
Повний текст джерелаXu, Hailu. "Efficient Spam Detection across Online Social Networks." University of Toledo / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1470416658.
Повний текст джерелаLi, Jingxuan. "Mining the Online Social Network Data: Influence, Summarization, and Organization." FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1241.
Повний текст джерелаFan, Xiaoguang, and 樊晓光. "Study of social-network-based information propagation." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50899600.
Повний текст джерелаpublished_or_final_version
Electrical and Electronic Engineering
Doctoral
Doctor of Philosophy
Ahmad, Waqar, and Asim Riaz. "Predicting Friendship Levels in Online Social Networks." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3351.
Повний текст джерелаPochet, Gilberto Flores. "Analysis of online virtual environments using Data Mining and social networks." reponame:Repositório Institucional da UFABC, 2015.
Знайти повний текст джерелаBerg, Marcus. "Evaluating Quality of Online Behavior Data." Thesis, Stockholms universitet, Statistiska institutionen, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-97524.
Повний текст джерелаSang, Lin. "Social Big Data and Privacy Awareness." Thesis, Uppsala universitet, Institutionen för informatik och media, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-242444.
Повний текст джерелаManalo, Cornejo Darryl, and Ali Sabet. "Online Social Lookup: A Study of a Future Employment Tool." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186402.
Повний текст джерелаÄnda sedan den dagen telefonen skapades av Antonio Meucci och Alexander Graham Bell har människan letat efter nya sätt att kommunicera med varandra via teknologin som finns idag. Internet har introducerade nya sätt att dela olika typer av data världen över. Varje dag får fler och fler människor tillgång till internet det betyder då också att mer data skickas via nätet. Som med alla plattform där antalet individer växer skapas då nya affärsmodeller. Olika företag erbjuder olika typer av tjänster och många av dessa företag fördjupar sig inom kommunikationssektorn så att människor kan integrera med varandra. Socialmedia är bland de populäraste webbsidorna idag och här kan användarna dela data och information med varandra. Dessa data är viktiga för annonseringsföretagen då de vill rikta rätt reklam till användarna. Detta ser vi nu eftersom sociala mediernas största inkomstkälla kommer ifrån säljandet av data till annonsering bolagen. Man skulle kunna ta all data som dessa företag har sparat på sina användare för att sammanställa hur de använder tjänsten. I vår rapport ville vi se om det dann något intresse för att samla in denna typ av data för att utveckla vår affärsmodell där individens data och information säljes till en tredje part. Vi ville även undersöka hur användaren känner när det gäller datasamling på internet. För att få en uppfattning på vad för data som kan samlas in på internet har vi undersökt två företag för att se vad för data de tar. När det gäller vår affärsmodell har vi kontaktat och intervjuat rekryterare från olika företag för att se om vår affärsmodell är något som de behöver. Focused Groups och enkäter skickades ut till studenter som nästan har sin examen för att höra vad de har för åsikt är gällande datainsamling och vår affärsmodell. Vår undersökning visade att datainsamling inte var eftertraktad, men de ville däremot samla kompetens information istället. Information så som utbildning, projekt och arbetskarriär. Enkäten och Focused Groups visade även där att personlig datainsamling inte var något som de ville ha. Med de data vi fått under vår undersökning tydde det på att vår affärside inte var riktad mot rätt målgrupp, men en justering av vår affärsmodell i form av datainsamling av kompetens information var något de ville ha.
Hassanzadeh, Reza. "Anomaly detection in online social networks : using data-mining techniques and fuzzy logic." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/78679/1/Reza_Hassanzadeh_Thesis.pdf.
Повний текст джерелаAlim, Sophia. "Vulnerability in online social network profiles : a framework for measuring consequences of information disclosure in online social networks." Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5507.
Повний текст джерелаLim, Chong-U. "Modeling player self-representation in multiplayer online games using social network data." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82409.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 101-105).
Game players express values related to self-expression through various means such as avatar customization, gameplay style, and interactions with other players. Multiplayer online games are now often integrated with social networks that provide social contexts in which player-to-player interactions take place, such as conversation and trading of virtual items. Building upon a theoretical framework based in machine learning and cognitive science, I present results from a novel approach to modeling and analyzing player values in terms of both preferences in avatar customization and patterns in social network use. To facilitate this work, I developed the Steam-Player- Preference Analyzer (Steam-PPA) system, which performs advanced data collection on publicly available social networking profile information. The primary contribution of this thesis is the AIR Toolkit Status Performance Classifier (AIR-SPC), which uses machine learning techniques including k-means clustering, natural language processing (NLP), and support vector machines (SVM) to perform inference on the data. As an initial case study, I use Steam-PPA to collect gameplay and avatar customization information from players in the popular, and commercially successful, multi-player first-person-shooter game Team Fortress 2 (TF2). Next, I use AIR-SPC to analyze the information from profiles on the social network Steam. The upshot is that I use social networking information to predict the likelihood of players customizing their profile in several ways associated with the monetary values of their avatars. In this manner I have developed a computational model of aspects of players' digital social identity capable of predicting specific values in terms of preferences exhibited within a virtual game-world.
by Chong-U Lim.
S.M.
Leung, Kwan Wai. "Commentary-based social media clustering with concept and social network discovery." HKBU Institutional Repository, 2011. https://repository.hkbu.edu.hk/etd_ra/1303.
Повний текст джерелаYeratziotis, Alexandros. "A framework to evaluate usable security in online social networking." Thesis, Nelson Mandela Metropolitan University, 2011. http://hdl.handle.net/10948/d1012933.
Повний текст джерелаIp, Lai Cheng. "Mining on social network community for marketing." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3950661.
Повний текст джерелаRezayidemne, Seyedsaed. "Characterizing Online Social Media: Topic Inference and Information Propagation." Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23904.
Повний текст джерелаDeirmenci, Hazim. "Enabling Content Discovery in an IPTV System : Using Data from Online Social Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200922.
Повний текст джерелаInternet Protocol television (IPTV) är ett sätt att leverera tv via Internet, vilket möjliggör tvåvägskommunikation mellan en operatör och dess användare. Genom att använda IPTV har användare friheten att välja vilket innehåll de vill konsumera och när de vill konsumera det. Användare har t.ex. möjlighet att titta på tv program efter att de har sänts på tv, och de kan komma åt innehåll som inte är en del av någon linjär tv-sändning, t.ex. filmer som är tillgängliga att hyra. Detta betyder att användare, genom att använda IPTV, kan få tillgång till mer videoinnhåll än vad som är möjligt med traditionella tv-distributionsformat. Att ha fler valmöjligheter innebär dock även att det blir svårare att bestämma sig för vad man ska titta på, och det är viktigt att IPTV-leverantörer underlättar processen att hitta intressant innehåll så att användarna finner värde i att använda deras tjänster. I detta exjobb undersökte författaren hur en användares sociala nätverk på Internet kan användas som grund för att underlätta upptäckandet av intressanta filmer i en IPTV miljö. Undersökningen bestod av två delar, en teoretisk och en praktisk. I den teoretiska delen genomfördes en litteraturstudie för att få kunskap om olika rekommendationssystemsstrategier. Utöver litteraturstudien identifierades ett antal sociala nätverk på Internet som studerades empiriskt för att få kunskap om vilken data som är möjlig att hämta in från dem och hur datan kan inhämtas. I den praktiska delen utformades och byggdes en prototyp av ett s.k. content discovery system (“system för att upptäcka innehåll”), som använde sig av den insamlade datan. Detta gjordes för att exponera svårigheter som finns med att implementera ett sådant system. Studien visar att, även om det är möjligt att samla in data från olika sociala nätverk på Internet så erbjuder inte alla data i en form som är lätt att använda i ett content discovery system. Av de undersökta sociala nätverkstjänsterna visade det sig att Facebook erbjuder data som är lättast att samla in och använda. Det största hindret, ur ett tekniskt perspektiv, visade sig vara matchningen av filmtitlar som inhämtats från den sociala nätverkstjänsten med filmtitlarna i IPTV-leverantörens databas; en anledning till detta är att filmer kan ha titlar på olika språk.
Sheng, Jie. "Managing big data from the crowd : strategic firm engagement with online social interactions." Thesis, University of Bristol, 2018. http://hdl.handle.net/1983/0fffae64-51e3-4da2-83f6-e5fd7d4b1bcc.
Повний текст джерелаWang, Hao, and Yun Xie. "The use of Online Social Networks in Chinese Collaborative E-learning Education." Thesis, Örebro universitet, Handelshögskolan vid Örebro universitet, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-16037.
Повний текст джерелаAbdulrahman, Ruqayya. "Multi agent system for web database processing, on data extraction from online social networks." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5502.
Повний текст джерелаVan, der Westhuizen Eldridge Welner. "A framework for personal health records in online social networking." Thesis, Nelson Mandela Metropolitan University, 2012. http://hdl.handle.net/10948/d1012382.
Повний текст джерелаGrabowicz, Przemyslaw Adam. "Complex networks approach to modeling online social systems. The emergence of computational social science." Doctoral thesis, Universitat de les Illes Balears, 2014. http://hdl.handle.net/10803/131220.
Повний текст джерелаLa presente tesis está dedicada a la descripción, análisis y modelado cuantitativo de sistemas complejos sociales en forma de redes sociales en internet. Mediante el uso de métodos y conceptos provenientes de ciencia de redes, análisis de redes sociales y minería de datos se descubren diferentes patrones estadísticos de los sistemas estudiados. Uno de los objetivos a largo plazo de esta línea de investigación consiste en hacer posible la predicción del comportamiento de sistemas complejos tecnológico-sociales, de un modo similar a la predicción meteorológica, usando inferencia estadística y modelado computacional basado en avances en el conocimiento de los sistemas tecnológico-sociales. A pesar de que el objeto del presente estudio son seres humanos, en lugar de los átomos o moléculas estudiados tradicionalmente en la física estadística, la disponibilidad de grandes bases de datos sobre comportamiento humano hace posible el uso de técnicas y métodos de física estadística. En el presente trabajo se utilizan grandes bases de datos provenientes de redes sociales en internet, se miden patrones estadísticos de comportamiento social, y se desarrollan métodos cuantitativos, modelos y métricas para el estudio de sistemas complejos tecnológico-sociales.
Han, Xiao. "Mining user similarity in online social networks : analysis,modeling and applications." Thesis, Evry, Institut national des télécommunications, 2015. http://www.theses.fr/2015TELE0013/document.
Повний текст джерелаOnline Social Networks (OSNs) (e.g., Facebook, Twitter and LinkedIn) have gained overwhelming popularity and accumulated massive digital data about human society. These massive data, representing individuals' personal and social information, provide us with unprecedented opportunities to study, analyze and model the complex network structure, human connections, people similarity, etc. Meanwhile, OSNs have triggered a large number of profitable applications and services which seek to maintain vibrate connections and advance users' experience. In this context, how to devise such applications and services, especially how to extract and exploit effective social features from the massive available data to enhance the applications and services, has received much attention. This dissertation, aiming to enhance the social applications and services, investigates three critical and practical issues in OSNs: (1) How can we explore potential friends for a user to establish and enlarge her social connections? (2) How can we discover interesting content for a user to satisfy her personal tastes? (3) How can we inform a user the exposure risk of her private information to preserve her privacy? Drawing on the insights about people's similarity in social science, this dissertation studies the widespread similarity principle in OSN in terms of whether similar users would be close in their social relationships, similar in their interests, or approximate in their geo-distance, relying on 500K user profiles collected from Facebook; it further explores solutions to effectively leverage the observed similarity principle to address the aforementioned practical issues
Washha, Mahdi. "Information quality in online social media and big data collection : an example of Twitter spam detection." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30080/document.
Повний текст джерелаThe popularity of OSM is mainly conditioned by the integrity and the quality of UGC as well as the protection of users' privacy. Based on the definition of information quality as fitness for use, the high usability and accessibility of OSM have exposed many information quality (IQ) problems which consequently decrease the performance of OSM dependent applications. Such problems are caused by ill-intentioned individuals who misuse OSM services to spread different kinds of noisy information, including fake information, illegal commercial content, drug sales, mal- ware downloads, and phishing links. The propagation and spreading of noisy information cause enormous drawbacks related to resources consumptions, decreasing quality of service of OSM-based applications, and spending human efforts. The majority of popular social networks (e.g., Facebook, Twitter, etc) over the Web 2.0 is daily attacked by an enormous number of ill-intentioned users. However, those popular social networks are ineffective in handling the noisy information, requiring several weeks or months to detect them. Moreover, different challenges stand in front of building a complete OSM-based noisy information filtering methods that can overcome the shortcomings of OSM information filters. These challenges are summarized in: (i) big data; (ii) privacy and security; (iii) structure heterogeneity; (iv) UGC format diversity; (v) subjectivity and objectivity; (vi) and service limitations In this thesis, we focus on increasing the quality of social UGC that are published and publicly accessible in forms of posts and profiles over OSNs through addressing in-depth the stated serious challenges. As the social spam is the most common IQ problem appearing over the OSM, we introduce a design of two generic approaches for detecting and filtering out the spam content. The first approach is for detecting the spam posts (e.g., spam tweets) in a real-time stream, while the other approach is dedicated for handling a big data collection of social profiles (e.g., Twitter accounts)
Hillhouse, Linden, and Ginette Blackhart. "Data Quality: Does Time of Semester Matter?" Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/asrf/2019/schedule/84.
Повний текст джерелаSchlenkrich, Lara. "An investigation of social computing." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1006194.
Повний текст джерелаHughes, Jessie. "Differences in self-reported perceptions of privacy between online social and commercial networking users /." Online version of thesis, 2008. http://hdl.handle.net/1850/8221.
Повний текст джерелаRuan, Yiye. "Joint Dynamic Online Social Network Analytics Using Network, Content and User Characteristics." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1420765022.
Повний текст джерелаHaynes, J. D. "Risk and regulation of access to personal data on online social networking services in the UK." Thesis, City University London, 2015. http://openaccess.city.ac.uk/11972/.
Повний текст джерелаKempa, Ewelina. "Social media addiction : The paradox of visibility & vulnerability." Thesis, Högskolan i Borås, Akademin för bibliotek, information, pedagogik och IT, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-1030.
Повний текст джерелаBlackburn, Jeremy. "An Analysis of (Bad) Behavior in Online Video Games." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5412.
Повний текст джерелаYang, Shuang-Hong. "Predictive models for online human activities." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43689.
Повний текст джерелаJiao, Lei [Verfasser], Xiaoming [Akademischer Betreuer] Fu, Jun [Akademischer Betreuer] Li, and Dieter [Akademischer Betreuer] Hogrefe. "Online Social Network Data Placement over Clouds / Lei Jiao. Gutachter: Jun Li ; Dieter Hogrefe. Betreuer: Xiaoming Fu." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2014. http://d-nb.info/1055814485/34.
Повний текст джерелаSyed, Romilla. "DYNAMICS OF IDENTITY THREATS IN ONLINE SOCIAL NETWORKS: MODELLING INDIVIDUAL AND ORGANIZATIONAL PERSPECTIVES." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3906.
Повний текст джерелаRay, Aaron Parker. "Planning Connected: Using Online Social Networks to Improve Knowledge about Places and Communities." DigitalCommons@CalPoly, 2011. https://digitalcommons.calpoly.edu/theses/580.
Повний текст джерелаWarfel, Elizabeth A. "Perceptions of privacy on Facebook /." Online version of thesis, 2008. http://hdl.handle.net/1850/6973.
Повний текст джерелаSuntaxi, Gabriela [Verfasser], and K. [Akademischer Betreuer] Böhm. "Preserving Secrecy in Online Social Networks: Data Outsourcing, Access Control, and Secrecy Schemes / Gabriela Suntaxi ; Betreuer: K. Böhm." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1223985938/34.
Повний текст джерелаAbufouda, Mohammed [Verfasser], and Katharina [Akademischer Betreuer] Zweig. "Learning From Networked-data: Methods and Models for Understanding Online Social Networks Dynamics / Mohammed Abufouda ; Betreuer: Katharina Zweig." Kaiserslautern : Technische Universität Kaiserslautern, 2020. http://d-nb.info/1221599747/34.
Повний текст джерелаMohammadi, Samin. "Analysis of user popularity pattern and engagement prediction in online social networks." Thesis, Evry, Institut national des télécommunications, 2018. http://www.theses.fr/2018TELE0019/document.
Повний текст джерелаNowadays, social media has widely affected every aspect of human life. The most significant change in people's behavior after emerging Online Social Networks (OSNs) is their communication method and its range. Having more connections on OSNs brings more attention and visibility to people, where it is called popularity on social media. Depending on the type of social network, popularity is measured by the number of followers, friends, retweets, likes, and all those other metrics that is used to calculate engagement. Studying the popularity behavior of users and published contents on social media and predicting its future status are the important research directions which benefit different applications such as recommender systems, content delivery networks, advertising campaign, election results prediction and so on. This thesis addresses the analysis of popularity behavior of OSN users and their published posts in order to first, identify the popularity trends of users and posts and second, predict their future popularity and engagement level for published posts by users. To this end, i) the popularity evolution of ONS users is studied using a dataset of 8K Facebook professional users collected by an advanced crawler. The collected dataset includes around 38 million snapshots of users' popularity values and 64 million published posts over a period of 4 years. Clustering temporal sequences of users' popularity values led to identifying different and interesting popularity evolution patterns. The identified clusters are characterized by analyzing the users' business sector, called category, their activity level, and also the effect of external events. Then ii) the thesis focuses on the prediction of user engagement on the posts published by users on OSNs. A novel prediction model is proposed which takes advantage of Point-wise Mutual Information (PMI) and predicts users' future reaction to newly published posts. Finally, iii) the proposed model is extended to get benefits of representation learning and predict users' future engagement on each other's posts. The proposed prediction approach extracts user embedding from their reaction history instead of using conventional feature extraction methods. The performance of the proposed model proves that it outperforms conventional learning methods available in the literature. The models proposed in this thesis, not only improves the reaction prediction models to exploit representation learning features instead of hand-crafted features but also could help news agencies, advertising campaigns, content providers in CDNs, and recommender systems to take advantage of more accurate prediction results in order to improve their user services
Rörsch, Jonatan, and Mikael Johansson. "Social Networks : Creating Organizational Benefits out of an Online Conversation." Thesis, Uppsala universitet, Industriell teknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-207086.
Повний текст джерелаMORENO, Bruno Neiva. "Representação e análise de encontros espaço-temporais publicados em redes sociais online." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/18621.
Повний текст джерелаMade available in DSpace on 2017-04-24T14:37:15Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) tese_bnm_OK.pdf: 5126585 bytes, checksum: 5ccba23295950094b489a2df805e0815 (MD5) Previous issue date: 2016-09-09
O crescente uso de redes sociais online tem feito com que usuários compartilhem, também, informações detalhadas a respeito dos locais que os mesmos frequentam, criando uma ligação entre o mundo físico (o movimento destes usuários no globo) e o mundo virtual (o que eles expressam sobre esses movimentos nas redes). O “check-in” é a funcionalidade responsável pelo compartilhamento da localização. Em uma rede social com essa funcionalidade, qualquer usuário pode publicar o local em que o mesmo está em determinado instante de tempo. Esta tese apresenta novas abordagens de análise de redes sociais online considerando as dimensões social, espacial e temporal que são inerentes à publicação de check-ins de usuários. As informações sociais, espaciais e temporais são definidas sob a perspectiva de encontros de usuários, sendo este o objeto de estudo dessa tese. Encontros ocorrem quando duas pessoas (dimensão social), estão em algum local (dimensão espacial), em determinado instante de tempo (dimensão temporal) e decidem publicar esse encontro através de check-ins. Além de apresentar um algoritmo para detecção de encontros, é definido um modelo para representação desses encontros. Este modelo é chamado de SiST (do inglês, SocIal, Spatial and Temporal) e modela encontros por meio de redes complexas. Para validar o modelo proposto, foram utilizados dados reais de redes sociais online. Com esses dados, os encontros foram detectados e analisados sob diferentes perspectivas com o objetivo de investigar a existência de alguma lei que governe a publicação dos mesmos, bem como para identificar padrões relativos a sua ocorrência, como padrões temporais, por exemplo. Além disso, as redes construídas a partir do modelo SiST também foram analisadas em termos de suas propriedades estruturais e topológicas. Por meio de redes SiST também foram estudados padrões de movimentação de usuários, como situações em que usuários se movimentam em grupo no globo ou situações em que um usuário é seguido por outros.
The growing use of online social networks has caused users to share detailed information about the places they visit, resulting on a clear connection between the physical world (i.e. the movement of these users on the globe) and the virtual world (which they express about these movements in the social network). The functionality responsible for sharing location by users is named as “check in”. In a social network with this feature, any user can publish their visited places. This thesis presents new approaches for online social networks analysis considering the social, spatial and temporal dimensions that are implicit in the publication of users check-ins. Social, spatial and temporal information is defined from the perspective of “user encounters”, which is the study object of this thesis. Users encounters occur when two people (social dimension) are somewhere (spatial dimension) in a given time (temporal dimension) and decide to publish this meeting through check-ins. In addition to the algorithm presented for encounters detection, we also defined a model for representation of these encounters. This model is called as SiST (SocIal, Spatial and Temporal). The SiST model basically represent encounters by a graph structure. To validate the proposed approach, we used real data from online social networks. With these data the users encounters were detected and analyzed from different perspectives aiming at investigating the existence of any law governing the publication of encounters and also to identify patterns related to its occurrence, like temporal patterns, for example. Furthermore, the graphs built from SiST model were also analyzed in terms of its structural and topological properties. Through the SiST networks the users movements were studied as well, like in situations in which users move in group or situations where users are followed by other users.
Liu, Zhi. "Location Estimation and Geo-Correlated Information Trends." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062799/.
Повний текст джерелаRiley, Will. "We the undersigned." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28102.
Повний текст джерелаCommittee Chair: DiSalvo, Carl; Committee Member: Bogost, Ian; Committee Member: Klein, Hans; Committee Member: Murray, Janet; Committee Member: Pearce, Celia
Pscheida, Daniela, Claudia Minet, Sabrina Herbst, Steffen Albrecht, and Thomas Köhler. "Use of Social Media and Online-based Tools in Academia: Results of the Science 2.0-Survey 2014: Data Report 2014." Technische Universität Dresden, 2015. https://tud.qucosa.de/id/qucosa%3A29117.
Повний текст джерелаChiarella, Andrew Francesco 1971. "Enabling the collective to assist the individual : a self-organising systems approach to social software and the creation of collaborative text signals." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=115618.
Повний текст джерелаForty undergraduate students read two texts on topics from psychology using CoREAD. Students were asked to read each text in order to write a summary of it. After each new student read the text, the text signals were changed to reflect the current group of students. As such, each student read the text with different text signals presented.
The data were analysed for each text to determine if the text signals that emerged were stable and valid representations of the semantic content of the text. As well, the students' summaries were analysed to determine if students who read the text after the text signals had stabilised produced better summaries. Three methods demonstrated that CoREAD was capable of generating stable typographical text signals. The high importance text signals also appeared to capture the semantic content of the texts. For both texts, a summary made of the high signals performed as well as a benchmark summary. The results did not suggest that the stable text signals assisted readers to produce better summaries, however. Readers may not respond to these collaborative text signals as they would to authorial text signals, which previous research has shown to be beneficial (Lorch, 1989). The CoREAD project has demonstrated that readers can produce stable and valid text signals through an unplanned, self-organising process.
Hsieh, Jane W. "Asking questions is easy, asking great questions is hard: Constructing Effective Stack Overflow Questions." Oberlin College Honors Theses / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1589722602631253.
Повний текст джерелаSilva, Jesús, Naveda Alexa Senior, Suarez Ramiro Gamboa, Palma Hugo Hernández, and Núẽz William Niebles. "Method for Collecting Relevant Topics from Twitter supported by Big Data." Institute of Physics Publishing, 2020. http://hdl.handle.net/10757/652145.
Повний текст джерелаZhao, Tao [Verfasser], Xiaoming [Akademischer Betreuer] Fu, Xiaoming [Gutachter] Fu, and Marcus [Gutachter] Baum. "Identification of Online Users' Social Status via Mining User-Generated Data / Tao Zhao ; Gutachter: Xiaoming Fu, Marcus Baum ; Betreuer: Xiaoming Fu." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://d-nb.info/1194646069/34.
Повний текст джерелаTam, Weng Tong. "WeChat in work environment in Macao, a use and gratification study." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3952599.
Повний текст джерела