Добірка наукової літератури з теми "Origami ADN"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Origami ADN".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Origami ADN"
Gould, Paula. "Just add water for polymer origami." Materials Today 10, no. 6 (June 2007): 13. http://dx.doi.org/10.1016/s1369-7021(07)70122-0.
Повний текст джерелаYang, Haitao, Bok Seng Yeow, Zhipeng Li, Kerui Li, Ting-Hsiang Chang, Lin Jing, Yang Li, John S. Ho, Hongliang Ren, and Po-Yen Chen. "Multifunctional metallic backbones for origami robotics with strain sensing and wireless communication capabilities." Science Robotics 4, no. 33 (August 28, 2019): eaax7020. http://dx.doi.org/10.1126/scirobotics.aax7020.
Повний текст джерелаTreml, Benjamin, Andrew Gillman, Philip Buskohl, and Richard Vaia. "Origami mechanologic." Proceedings of the National Academy of Sciences 115, no. 27 (June 18, 2018): 6916–21. http://dx.doi.org/10.1073/pnas.1805122115.
Повний текст джерелаLindstrom, Naomi, and Octavio Armand. "Origami." World Literature Today 62, no. 4 (1988): 631. http://dx.doi.org/10.2307/40144551.
Повний текст джерелаChristina-marie. "Origami." Chicago Review 36, no. 3/4 (1989): 73. http://dx.doi.org/10.2307/25305460.
Повний текст джерелаClark, Arthur. "Origami." British Journal of Psychiatry 196, no. 4 (April 2010): 281. http://dx.doi.org/10.1192/bjp.196.4.281.
Повний текст джерелаLaurel Oldach. "DNA origami inspired by paper origami." C&EN Global Enterprise 101, no. 23 (July 17, 2023): 5. http://dx.doi.org/10.1021/cen-10123-scicon4.
Повний текст джерелаRuiz, David D., Karen L. Cardos, Gerardo Soto, and Enrique C. Samano. "Gold nanostructures based on DNA Origami templates with applications in nanoelectronics and plasmonics." MRS Advances 2, no. 64 (2017): 4017–23. http://dx.doi.org/10.1557/adv.2018.177.
Повний текст джерелаKriswanto, Fransiscus Ryan, Wyna Herdiana, and Brian Kurniawan Jaya. "Eksperimen Sistem Kinetic Origami Untuk Material Tas." Anggit: Jurnal Desain Produk 1, no. 1 (May 25, 2024): 45–51. http://dx.doi.org/10.59997/ajdp.v1i1.3649.
Повний текст джерелаFerreira, Arnaldo Dias, Elaine de Farias Giffoni de Carvalho, Lara Ronise de Negreiros Pinto Scipião, Francisco Régis Vieira Alves, and Maria José Costa dos Santos. "Oficina de Origami: Um recurso estratégico para o ensino de Geometria." Research, Society and Development 10, no. 8 (July 15, 2021): e42410817423. http://dx.doi.org/10.33448/rsd-v10i8.17423.
Повний текст джерелаДисертації з теми "Origami ADN"
Hazard, Octave. "Controlling DNA Origami Co-folding." Electronic Thesis or Diss., Lyon, École normale supérieure, 2025. http://www.theses.fr/2025ENSL0007.
Повний текст джерелаDNA origami is a particularly robust technique for designing DNA structures, often on the order of hundreds of nanometers. Introduced in 2006 by Paul Rothemund, this technique relies on the controlled folding of a long scaffold DNA strand (a few thousand nucleotides long), using a set of carefully chosen shorter synthetic strands acting as staples. It is particularly well-suited for designing complex structures in two or three dimensions. However, the size of these DNA origamis is limited by the length of the scaffold strand. Several studies propose assembling identical DNA origamis in multiple steps to achieve larger sizes (Rajendran et al., 2011, Tikhomirov et al., 2017, Wintersinger et al., 2023). We have sought to determine whether it is possible to design DNA origamis comprising several identical scaffold strands but each folding differently to form various components of the desired structure. This requires particular work on the design of the origami, but also an understanding of the folding process that leads to its correct assembly. This thesis therefore involves several aspects: exploring algorithmic and geometrical techniques for designing DNA origamis with multiple scaffolds, the experimental implementations associated with these techniques, and modeling the folding and assembly process. In particular, I propose and evaluate several algorithmic methods for selecting a small subset of staples, allowing the pre-formation of the origami scaffolds separately so that they differentiate properly during the final assembly. Furthermore, I explore the usage of this method for assembling frustrated shapes with DNA origami, as well as an alternative differentiation method based on an additional mold origami. My thesis concludes with an ancillary work exploring theoretical and experimental approaches for assembling quasi-crystals with DNA strands algorithmically
Tran, Phong Lan Thao. "Quadruplexes de guanines : formation, stabilité et interaction." Thesis, Bordeaux 2, 2011. http://www.theses.fr/2011BOR21888/document.
Повний текст джерелаGuanine quadruplexes (G4) are non-canonical four-stranded nucleic acid structures formed by guanine-rich DNA and RNA sequences. Theses polymorphic structures are built from the stacking of several G-quartets and could be involved in many fields, in biotechnology as well as in nanotechnology. The study of modified tetramolecular G4 presented in this manuscript participated to the understanding of tetramolecular G4 formation. Especially, we showed that the insertion of 8-methyl-2’-deoxyguanosine at the 5’-end of the sequence accelerate G4 formation and increase its stability. Besides, we demonstrate here that short guanine rich L-DNA strands (mirror image of natural DNA) form a tetramolecular G4 with the same properties than their enantiomer, but with opposite chirality. The study revealed also self-exclusion between two enantiomers (D- and L- form), showing the controlled parallel self-assembly of different G-rich strands. This work introduced also a simple and stable system to observe tetramolecular antiparallel G4 formation, called “synaptic DNA”, into a DNA origami nanostructure. In vivo, such structures appear to be implicated in genome dynamics, and especially at telomeres. During this thesis, we dedicated a study to the comparison of G4 folding and stability of known telomeric sequences from different organisms. The present study allowed enriching the dataset necessary to build and refine algorithms predicting G4 stability. Last but not least, we developed a G4 ligand screening method onto 96-well plates allowing the comparison of different biological relevant sequences. The G4 stabilisation by specific ligands in some genome regions may prevent cancer cell proliferation, making it an attractive target for anticancer therapy
Arbona, Jean-Michel. "Origami d’ADN : étude des propriétés mécaniques et du processus de formation." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14585/document.
Повний текст джерелаDNA origami are new nanostructures (2006) whose physical properties are still to be understood. In this work we were first interested in their mechanical properties. The first approach of this study was through the use of polymer physics, as it is the classical way to study DNA. We then used computer simulations to model the system in a more detailed manner and to extract general rules on the mechanical behaviour of DNA constructs. The other aspect that we studied is the process of formation of DNA origamis. We first realised an experimental study of the process of formation of the simplest origami that we could envision. This study was intended to investigate basic principles on the process of formation of DNA structures. A coarse grain model is then developed to have a first insight onto the formation process. Then an experimental study on large origamis follows with a modeling of the annealing and melting curves based on the principles determined from the study of the simplest origami. We also worked on the development of a SERS platform
Marcus, Pierre. "Toward Scalable DNA algorithms." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0024.
Повний текст джерелаThe DNA computing field consists in using DNA as dynamic building blocks. By interacting together, they can implement small algorithms and effectively compute. Many successful approaches were made. For instance, by implementing logical circuits where reconfigurations of DNA complexes progressively evaluate the network. Another approach is to attach DNA strands according to defined rules to a substrate made of large DNA objects called DNA origami. However, all the current approaches face the challenge of scalability. In most designs, the size of the input is linked to either the DNA origami or the number of strands. The number of strands, is limited not only technically but also theoretically, as there is an inherent chance of hybridization error between two strands that are not fully complementary. In this thesis, we want to solve this scalability issue on the particular problem of maze solving. This problem was already solved in both in a non-reversible and non-scalable fashion. We propose to implement a reversible random walk walker on a DNA origami. Our point is twofold. First, we can make a design with only four different strands, no matter the size of the maze. Most importantly, using reversibility is a key factor, as it can harness randomness to reverse hybridization errors. In the first part, we conducted experiments where we attached static paths made of DNA strands on a DNA origami. We will validate our ability to both conduct, observe and process these experiments. In the second part, we propose an implementation of a reversible random walk using a variation of the toehold mediated strand displacement technique. We have conducted and developed experiments on this variation using a bottom-up approach. Our experiments led to preliminary results of the technique on a DNA origami
Rossi-Gendron, Caroline. "Dynamic DNA origamis as isothermal supramolecular machines : melting dynamics, photocontrol and isothermal folding." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS522.
Повний текст джерелаDNA origamis and Single Stranded Tiles (SST) appear to be two of the most promising components of the DNA nanotechnology field in terms of possible designs and applications. In this thesis, we explored the thermodynamic and kinetic aspects underlying DNA nanostructures formation as well as new practical ways to build dynamic programmable nano-objects. Notably, the study of the formation process evidenced the unnecessary presence of magnesium ions or buffering molecules in the medium, and new formation conditions have been described. The melting process triggered by temperature elevation was characterised using a new quantified gel electrophoresis method evidencing for the first time a non-monotonous behaviour and calling for a new definition of DNA origami melting temperature. Both formation and melting process were furthermore demonstrated to be controllable by light using AzoDiGua, a photosensitive DNA intercalator previously developed by our group. This allowed us to observe for the first time a light-controlled hybridisation / dehybridisation process within individual origamis at constant temperature and thus achieve a controlled motion at the nanoscale. We also established an original method for the isothermal formation of DNA origamis and SST at constant room temperature and without the presence of any denaturating agent. This allowed us to observe for the first time and in situ the isothermal folding of individual origamis, thus evidencing that origamis can reach their final equilibrium shape following a variety of folding pathways
Sousa, Luzia Georgeth Pereira de. "Estratégias biomoleculares para identificação de diferentes espécies animais em salsichas frescas e conservadas." Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/21471.
Повний текст джерелаO tema da alimentação é cada vez mais pertinente, visto que está subjacente a todas as pessoas, independentemente do país e costumes culturais.Todo o ser humano necessita de se alimentar. Como tal, a manutenção da segurança e qualidade alimentar é de grande importância na sociedade atual. Existe uma relação íntima entre a alimentação e a saúde humana. Certos países em vias de desenvolvimento, como é o caso de Angola, passam por deficit alimentar e as doenças causadas devido a carência de determinados nutrientes é visível. Será de esperar que com os avanços tecnológicos se consiga fazer chegar comida com um determinado grau de qualidade ao número máximo de pessoas do mundo mas, para tal, é necessário garantir o controlo e minimizar a ocorrência de fraudes alimentares. Têm sido verificadas ações fraudulentas na classe dos enchidos como adição de carnes que não estão devidamente mencionadas nos rótulos ou substituição da matéria prima. Este acontecimento põe em causa a segurança alimentar. Deste modo é necessário criar medidas que possam erradicar todos os casos de fraudulência identificáveis. Utilizando uma estratégia biomolecular, é possível proceder à despistagem de carnes contaminantes em produtos cárneos processados. Em Portugal, a ASAE tem divulgado informações pertinentes ao consumidor relativas à autenticidade, rotulagem e rastreabilidade do produto e isto tem permitido um fácil acesso do cliente aos resultados laboratoriais que confirmam ou não casos fraudulentos. Subentende-se a relevância que a PCR em tempo real com recurso a primers específicos tem tido em análises deste cariz. Este trabalho tem como objetivo descrever alguns métodos de anáise molecular que são utilizados corriqueiramente em determinadas associações como a ASAE e enunciar e discutir sobre um estudo feito entre 2015 e junho de 2017 pela ControlVet, uma empresa privada que tem participado vigorosamente na identificaçao de fraudes recorrendo á PCR em tempo real. Hoje, o consumidor interessa-se pela natureza do produto que consome. A luta contra a falsificação alimentar só pode ser eficaz quando todos velarem pela qualidade do alimento que está disponível no mercado, de modo a que não haja riscos na saúde pública e de modo a que o preço do produto corresponda a essa qualidade.
The issue of food is increasingly relevant as it underlies all people regardless of country and cultural customs. Every human being needs food. As such, maintaining food safety and quality is of great importance in today's society. There is an intimate relationship between food and human health. Some developing countries, such as Angola, are suffering from food shortages and diseases caused by a lack of certain nutrients. It is expected that with the evolution of technological advance, it will be possible to get food of a certain quality to the maximum number of people in the world, but it is necessary to guarantee control and minimize the occurrence of food fraud. In the last few years, fraudulent actions have been verified in food like sausages, such as adding meats that are not properly mentioned on the labels or substitution of the raw material. These sort of events make us ask if the food control is being mantained. Therefore, it is necessary to create measures that can eradicate all identifiable fraudulent cases. By using biomolecular strategies, it is possible to identify contaminated meat in processed meat products. In Portugal, ASAE has divulged pertinent information to the consumer regarding the authenticity, labeling and traceability of the product and this has allowed an easy access of the client to lab results that confirm or not fraudulent cases. It is clear that real-time PCR using specific primers has a large relevance in all this. This paper aims to describe some methods of molecular analysis that are used routinely in certain associations such as ASAE and to state and discuss a study done between 2015 and June 2017 by ControlVet, a private company that has participated vigorously in the identification of frauds using real-time PCR as methodology. Today, consumers are interested in the nature of the product they consume. The fight against food counterfeiting can only be effective when everyone is vigilant about the quality of the food that is available on the market in order to minimize the risk to public health and to assure that the price of the product corresponds to its quality.
Книги з теми "Origami ADN"
Norvell, Elmer A. Airigami: Realistic origami aircraft. Mineola, N.Y: Dover Publications, 2009.
Знайти повний текст джерелаNorvell, Elmer A. Airigami: Realistic origami aircraft. Mineola, N.Y: Dover Publications, 2009.
Знайти повний текст джерелаKeskar, Ravindra. Square pegs in round holes: Mathematics through origami. New Delhi: Vigyan Prasar, 2000.
Знайти повний текст джерелаKeiko, Nakazawa, ed. Origami kenchiku Nara no tabi. Tōkyō: Shōkokusha, 1993.
Знайти повний текст джерелаKeiko, Nakazawa, ed. Origami kenchiku Nara no tabi. Tōkyō: Shōkokusha, 1993.
Знайти повний текст джерелаBaicker, Karen. Origami math: Grades 4-6. New York: Teaching Resources, 2004.
Знайти повний текст джерелаBaicker, Karen. Origami math: Grades 4-6. New York: Teaching Resources, 2004.
Знайти повний текст джерелаThomas, Hull. Project Origami: Activities for Exploring Mathematics. Wellesley, Massachusetts: A.K. Peters, 2006.
Знайти повний текст джерелаThomas, Hull. Project origami: Activities for exploring mathematics. Boca Raton: CRC Press, 2013.
Знайти повний текст джерелаHanson, Robert M. Molecular origami: Precision scale models from paper. Sausalito, Calif: University Science Books, 1995.
Знайти повний текст джерелаЧастини книг з теми "Origami ADN"
Hull, Thomas. "Origami." In Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, 3457–60. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-7747-7_8818.
Повний текст джерелаAlani, Mostafa, Michael C. Kleiss, and Arash Soleimani. "Responsive Origami." In Distributed, Ambient and Pervasive Interactions, 3–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50344-4_1.
Повний текст джерелаHobson, Kersty. "Business Origami!" In Teaching and Learning Sustainable Consumption, 308–11. London: Routledge, 2023. http://dx.doi.org/10.4324/9781003018537-53.
Повний текст джерелаEdwards, Angela, and Hao Yan. "DNA Origami." In Nucleic Acids and Molecular Biology, 93–133. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38815-6_5.
Повний текст джерелаIda, Tetsuo. "Origami, Paper Folding, and Computational Origami." In An Introduction to Computational Origami, 1–10. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-59189-6_1.
Повний текст джерелаIda, Tetsuo. "Abstract Origami." In An Introduction to Computational Origami, 169–201. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-59189-6_7.
Повний текст джерелаDrobnak, Igor, Ajasja Ljubetič, Helena Gradišar, Tomaž Pisanski, and Roman Jerala. "Designed Protein Origami." In Advances in Experimental Medicine and Biology, 7–27. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39196-0_2.
Повний текст джерелаLu, Heng, Daekwon Park, Chen Liu, Guohua Ji, and Ziyu Tong. "Pneumatic Origami Joints." In Communications in Computer and Information Science, 327–40. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8410-3_23.
Повний текст джерелаBeklemishev, Lev, Anna Dmitrieva, and Johann A. Makowsky. "Axiomatizing Origami Planes." In Dick de Jongh on Intuitionistic and Provability Logics, 353–77. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-47921-2_12.
Повний текст джерелаIda, Tetsuo. "Simple Origami Geometry." In An Introduction to Computational Origami, 11–42. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-59189-6_2.
Повний текст джерелаТези доповідей конференцій з теми "Origami ADN"
Xi, Zhonghua, and Jyh-Ming Lien. "Folding Rigid Origami With Closure Constraints." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-35556.
Повний текст джерелаZimmermann, Luca, Tino Stanković, and Kristina Shea. "Finding Rigid Body Modes of Rigid-Foldable Origami Through the Simulation of Vertex Motion." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67802.
Повний текст джерелаStellman, Paul, and George Barbastathis. "Actuation Control for Nanostructured Origami™." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-16319.
Повний текст джерелаXia, Yutong, Hongbin Fang, and K. W. Wang. "Exploring the Dynamic Characteristics of Degree-4 Vertex Origami Metamaterials." In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3810.
Повний текст джерелаFragale, Gavin, and Angela Uriyo. "Origami." In Making Waves Toward A Sustainable and Equitable Future. Iowa State University Digital Press, 2025. https://doi.org/10.31274/itaa.17696.
Повний текст джерелаStellman, P., W. Arora, S. Takahashi, E. D. Demaine, and G. Barbastathis. "Kinematics and Dynamics of Nanostructured Origami™." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81824.
Повний текст джерелаKaloper, Nemanja. "Origami World." In THE NEW COSMOLOGY: Conference on Strings and Cosmology; The Mitchell Symposium on Observational Cosmology. AIP, 2004. http://dx.doi.org/10.1063/1.1848337.
Повний текст джерелаXie, X., C. Kelly, T. Liu, R. J. Lang, S. Gandolfo, Y. Boukataya, and C. Livermore. "ORIGAMI-ENABLED MICROFLUIDICS." In 2018 Solid-State, Actuators, and Microsystems Workshop. San Diego: Transducer Research Foundation, 2018. http://dx.doi.org/10.31438/trf.hh2018.108.
Повний текст джерелаYang, Yang, Ichiro Hagiwara, Luis Diago, and Junichi Shinoda. "An Origami Crease Pattern Generating Methodology for “Origami 3D Printer”." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97715.
Повний текст джерелаOka, Sora, Kazuki Koyama, Tomoyuki Gondo, Yasushi Ikeda, Yoshihiro Kawahara, and Koya Narumi. "Pneumatic Laser Origami." In TEI '25: Nineteenth International Conference on Tangible, Embedded, and Embodied Interaction, 1–12. New York, NY, USA: ACM, 2025. https://doi.org/10.1145/3689050.3704956.
Повний текст джерелаЗвіти організацій з теми "Origami ADN"
Wieselquist, William A., Adam B. Thompson, Stephen M. Bowman, and Joshua L. Peterson. ORIGAMI Automator Primer. Automated ORIGEN Source Terms and Spent Fuel Storage Pool Analysis. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1247939.
Повний текст джерелаSouza, Carlota Rocha de Matos, and Cibele Isaac Saad Rodrigues. Manual ilustrado de boas práticas para acessos vasculares para hemodiálise. Pontifícia Universidade Católica de São Paulo. Faculdade de Ciências Médicas e da Saúde, December 2023. http://dx.doi.org/10.23925/ripucsp/40716.
Повний текст джерела