Добірка наукової літератури з теми "Oscillating measurements"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Oscillating measurements".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Oscillating measurements":

1

Bedding, Timothy R. "Hipparcos Luminosities and Asteroseismology." Highlights of Astronomy 12 (2002): 694–97. http://dx.doi.org/10.1017/s1539299600014696.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractAsteroseismology involves using the resonant frequencies of a star to infer details about its internal structure and evolutionary state. Large efforts have been made and continue to be made to measure oscillation frequencies with both ground- and space-based telescopes, with typical precisions of one part in 103–104. However, oscillation frequencies are most useful when accompanied by accurate measurements of the more traditional stellar parameters such as luminosity and effective temperature. The Hipparcos catalogue provides luminosities with precisions of a few percent or better for many oscillating stars. I briefly discuss the importance of Hipparcos measurements for interpreting asteroseismic data on three types of oscillating stars: δ Scuti variables, rapidly oscillating Ap stars and solar-like stars.
2

Rose, Mary Ann, and Mark A. Rose. "Oscillatory Transpiration May Complicate Stomatal Conductance and Gas-exchange Measurements." HortScience 29, no. 6 (June 1994): 693–94. http://dx.doi.org/10.21273/hortsci.29.6.693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A closed-loop photosynthesis system and a heat-balance sap-flow gauge independently confirmed oscillatory transpiration in a greenhouse-grown Rosa hybrids L. Repetitive sampling revealed 60-minute synchronized oscillations in CO2-exchange rate, stomatal conductance, and whole-plant sap-flow rate. To avoid confusing cyclical plant responses with random noise in measurement, we suggest that gas-exchange protocols begin with frequent, repetitive measurements to determine whether transpiration is stable or oscillating. Single measurements of individual plants would be justified only when transpiration is steady state.
3

Mallett, M. J. D., and J. H. Strange. "Diffusion measurements using oscillating gradients." Applied Magnetic Resonance 12, no. 2-3 (March 1997): 193–98. http://dx.doi.org/10.1007/bf03162186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wakeland, Ray Scott, and Robert M. Keolian. "Measurements of Resistance of Individual Square-Mesh Screens to Oscillating Flow at Low and Intermediate Reynolds Numbers." Journal of Fluids Engineering 125, no. 5 (September 1, 2003): 851–62. http://dx.doi.org/10.1115/1.1601254.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Measurements are reported of pressure losses across single screens subjected to low-frequency oscillating flow for 0.002≲Red≲400, where Red is Reynolds number based on wire diameter and peak approach velocity. Several correlation methods are examined. Extensive comparisons are made between present oscillating-flow results and previous reports of the resistance of screens to steady flow. Defining oscillating results in terms of peak amplitudes, the oscillating and steady-flow resistances are found to be the same, including behavior in the intermediate Reynolds number region that departs from correlations of the form ARe−1+B. The friction factor is also found to depend on Reynolds number, but not independently on oscillation amplitude, over the range of conditions measured.
5

WUNDERLICH, RAINER K., and MARKUS MOHR. "Non-linear effects in the oscillating drop method for viscosity measurements." High Temperatures-High Pressures 48, no. 3 (2020): 253–77. http://dx.doi.org/10.32908/hthp.v48.648.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The contribution of non-linear fluid flow effects to the damping of surface oscillations in the oscillation drop method was investigated in a series of experiments in an electromagnetic levitation device installed on the International Space station, ISS-EML. In order to correctly evaluate the damping time constant from measured surface oscillation decays the effect of a modulated signal response on measured surface oscillation decay curves was investigated. It could be shown that various experimentally observed signal patterns could be well represented by a modulated response. The physical origin of such modulations is seen in rotation and precession. Over a temperature range of 220 K covered by different surface oscillation excitation pulses with an initial sample shape deformation of 5 – 10% the amplitude of surface oscillations as a function of time could be very well represented by a Lamb type damping with a temperature dependent viscosity. A direct comparison of surface oscillation decay times measured in the same temperature range but for different oscillation amplitudes showed no non-linear contribution to the damping time constant with a confidence level better 10%.
6

Morris, G. J., J. T. Jurewicz, and G. M. Palmer. "Gas-Solid Flow in a Fluidically Oscillating Jet." Journal of Fluids Engineering 114, no. 3 (September 1, 1992): 362–66. http://dx.doi.org/10.1115/1.2910038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The motion of air and solid particles is examined in a fluidically oscillating slot jet using time-averaged and cycle-resolved laser Doppler anemometry measurements. These measurements reveal the time dependent relative velocity magnitudes between the phases as well as the detailed nature of the flulidcally oscillating slot jet. Temporal phase differences between the gas and solid phases ranged up to 40 degrees for jet oscillation frequencies up to 50 Hz. The results indicate that the fluidic nozzle is an effective particle spreading device and the fuel injector attributes are inherently present such as enhanced mixing and low velocity regions for flame anchoring.
7

Milic, Goran, and Nebojsa Todorovic. "Analysis of mechano-sorptive effect in oscillatory drying of beech timber." Bulletin of the Faculty of Forestry, no. 114 (2016): 119–36. http://dx.doi.org/10.2298/gsf1614119m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The paper shows results of analysis of influences of oscillating parameters of drying on measuring wood moisture content in the kiln, rate and quality of drying. For this analysis, we used a conventional drying cycle, a cycle with oscillating equilibrium moisture content (EMC), and a cycle with oscillating temperatures. A special software tool was created for managing the oscillations. It was shown that oscillations of EMC and temperatures result in cyclic changes in wood MC, but also in the additional inaccuracies of MC measurements in the kiln. The drying process of the cycle with oscillating EMC lasted somewhat shorter than the other two cycles. Drying quality was the same or better in the cycles with oscillations as compared to the conventionally dried cycle, and the smaller tensions in the wood confirmed the activation of the additional mechano-sorptive effect during cyclic changes of MC in surface layers.
8

Thurai, M., V. N. Bringi, M. Szakáll, S. K. Mitra, K. V. Beard, and S. Borrmann. "Drop Shapes and Axis Ratio Distributions: Comparison between 2D Video Disdrometer and Wind-Tunnel Measurements." Journal of Atmospheric and Oceanic Technology 26, no. 7 (July 1, 2009): 1427–32. http://dx.doi.org/10.1175/2009jtecha1244.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Comparisons of drop shapes between measurements made using 2D video disdrometer (2DVD) and wind-tunnel experiments are presented. Comparisons are made in terms of the mean drop shapes and the axis ratio distributions. Very close agreement of the mean shapes is seen between the two sets of measurements; the same applies to the mean axis ratio versus drop diameter. Also, in both sets of measurements, an increase in the oscillation amplitudes with increasing drop diameter is observed. In the case of the 2DVD, a small increase in the skewness was also detected. Given that the two sets of measurements were conducted in very different conditions, the agreement between the two sets of data implies a certain “robustness” in the mean shape of oscillating drops that may be extended to natural raindrop oscillations, at least in steady rainfall and above the surface layer.
9

Khodier, Mohanad A., and Blake P. Tullis. "PIV measurements for oscillating liquid nappe." Journal of Hydro-environment Research 19 (March 2018): 237–42. http://dx.doi.org/10.1016/j.jher.2017.11.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Scavuzzo, Rudolph J. "Oscillating Stress on Viscoelastic Behavior of Thermoplastic Polymers." Journal of Pressure Vessel Technology 122, no. 3 (April 12, 2000): 386–89. http://dx.doi.org/10.1115/1.556197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Polymers are used in many applications where they are subjected to cyclic stresses. PVC and HDPE piping are often used in systems that include rotating machinery that cause mechanical vibration. Recent testing of thermoplastics indicates that there may be a large effect on the viscoelastic strains of thermoplastics from oscillating stresses. Cyclic loading on the permanent set of cross-linked elastomers has been studied. Perhaps, as expected, the effect of the oscillating behavior is measurable. Two types of tests have been conducted. First, tensile tests on HDPE standard specimens were conducted where oscillating stresses were superimposed onto an initial static or mean stress. These measurements showed a rapid decrease in the oscillating stresses when compared to measurements when steady nonoscillating stresses are applied to the same type of specimen. In the second test series, pressurized HDPE piping was subject to oscillating bending stresses. Ratcheting of the hoop strains in the pipe occurs. Results show that these strains follow the constitutive relationships of linear viscoelasticity and experimental results imply that viscoelastic changes are accelerated by stress oscillations. These preliminary results seem to indicate that the effects of oscillating stresses on the viscoelastic behavior of thermoplastics may be significant. A systematic study is required to further understand this behavior. [S0094-9930(00)02403-3]

Дисертації з теми "Oscillating measurements":

1

Price, Jennifer Lou. "Unsteady Measurements and Computations on an Oscillating Airfoil with Gurney Flaps." NCSU, 2001. http://www.lib.ncsu.edu/theses/available/etd-20010713-170959.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

Price, Jennifer Lou. Unsteady Measurements and Computations on an Oscillating Airfoil with Gurney Flaps. (Under the direction of Dr. Ndaona Chokani)The effect of a Gurney flap on an unsteady airfoil flow is experimentally and computationally examined. In the experiment, the details of the unsteady boundary layer events on the forward portion of the airfoil are measured. In the computation, the features of the global unsteady flow are documented and correlated with the experimental observations.The experiments were conducted in the North Carolina State University subsonic wind tunnel on an oscillating airfoil at pitch rates of 65.45 degrees/sec and 130.9 degrees/sec. The airfoil has a NACA0012 cross-section and is equipped with a 1.5% or 2.5% chord Gurney flap. The airfoil is tested at Reynolds numbers of 96,000, 169,000 and 192,000 for attached and light dynamic stall conditions. An array of surface-mounted hot-film sensors on the forward 25% chord of the airfoil is used to measure the unsteady laminar boundary layer separation, transition-to-turbulence, and turbulent reattachment. In parallel with the experiments incompressible Navier-Stokes computations are conducted for the light dynamic stall conditions on the airfoil with a 2.5%c Gurney flap at a Reynolds number of 169,000.The experimental measurements show that the effect of the Gurney flap is to move the separation, transition and reattachment forward on the airfoil. This effect is more marked during the airfoil's pitch-down than during pitch-up. The computational results verify these observations, and also show that the shedding of the dynamic stall vortex is delayed. Thus the adverse effects of dynamic stall are mitigated by the Gurney flap.

2

Weick, Brian L. "Infrared measurements of surface temperatures during oscillating/fretting contact with ceramics." Thesis, This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-03122009-040542/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tziranis, Alexander Konstantinos 1968. "Temperature, heat flux, and velocity measurements in oscillating flows with pressure variations." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/12790.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1992.
Vita.
Includes bibliographical references (leaves 99-101).
by Alexander Konstantinos Tziranis.
M.S.
4

King, Cameron V. "Time-Resolved PIV And Pressure Measurements Of Oscillating And Pulsating Flow In A Diffuser." DigitalCommons@USU, 2008. https://digitalcommons.usu.edu/etd/106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Separating oscillating and pulsating flows in an internal adverse pressure gradient geometry are studied experimentally. Simultaneous velocity-pressure measurements demonstrate that the minor losses associated with oscillating flow in an adverse pressure gradient geometry can be smaller or larger than for steady flow. Separation is found to begin high in the diffuser and propagate downward. Flows are able to remain attached further into the diffuser with larger Reynolds numbers, larger stroke lengths, and smaller diffuser angles. The extent of separation grows with Lo/h. The minor losses grow with increasing displacement amplitude in the range 10 < Lo/h < 40. Losses decrease with Re in the range of 380
5

Krejčová, Marie. "Vývoj reologických vlastností plastifikované alkalicky aktivované strusky v čase." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-449702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This diploma thesis deals with the development of the rheological properties of plasticized alkali-activated slag over time and depending on the timing of plasticizer and activator addition. These properties are very essential for the use of this material in practice. The main part of this work was oscillating measurements. Two types of measurements were performed – amplitude sweep and time sweep. The aim of the amplitude sweep was to determine the limit properties of the sample related to the destructive structure when the time sweep was continuous monitoring of the evolving structure. Furthermore, calorimetric measurements and solidification measurements were performed using a Vicat apparatus. The silica modulus activator and the method of adding the lignosulfonate-based plasticizer were changed for the individual mixtures. It was found that with the silica module 0 (activation with NaOH) the plasticizer works very well, better results were obtained with the addition of the plasticizer at the beginning of mixing and the activator only later. With increasing silica modulus, the importance of the presence of a plasticizer decreased.
6

Kooverji, Bavesh. "Pneumatic power measurement of an oscillating water column converter." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (MScEng)--Stellenbosch University, 2014.
ENGLISH ABSTRACT: A measurement device was developed to accurately determine the pneumatic power performance of an Oscillating Water Column (OWC) model in a wave flume. The analysis of the pneumatic power is significant due to the wave-topneumatic energy being the primary energy conversion process and where the most energy losses can be expected. The aim of the research study is to address the accurate pneumatic power measurement of unsteady and bidirectional airflow in OWC model experiments. The two fundamental measurements required for the pneumatic power measurement are the pressure difference over an orifice on the OWC model and the volumetric flow rate of air through the outlet. The designed, constructed and assembled measurement device comprised of a venturi flow meter, containing a hot-film anemometer, which could measure the pressure drop and the volumetric flow rate in one device. The assembled pneumatic power measurement device was calibrated in a vertical wind tunnel at steady state. The results from the calibration tests showed that the volumetric flow rate measurements from the pneumatic power measurement device was accurate to within 3 % of the wind tunnel’s readings. The pneumatic power measurement device was incorporated onto a constructed Perspex physical model of a simple OWC device. This assembled system was used as the test unit in the wave flume at Stellenbosch University (SUN). The results from the experimental tests underwent comparative analysis with three analytical OWC air-flow models which were simulated as three scenarios using Matlab Simulink. These results showed that the measurement device has the ability to measure the pneumatic power but there is difficulty in modelling the complex air-flow system of the OWC device. This results in varying levels of agreement between the experimental and simulated pneumatic power results. The research study has revealed that there is difficulty in designing an accurate device for a wide range of test parameters due to the variance in output values. The unsteady and bidirectional nature of the air flow is also difficult to accurately simulate using a one-dimensional analytical model. Recommendations for further investigation are for CFD systems to be used for the analysis of the air-flow in an OWC system and to be used to validate future pneumatic power measurement devices.
AFRIKAANSE OPSOMMING: ‘n Meetinstrument was ontwikkel om die pneumatiese kraglewering van ‘n model van die Ossillerende Water Kolom (OWK) golfenergie omsetter in ‘n golf tenk akkuraat te meet. Dit is belangrik om die omskakeling van golf na pneumatiese energie te analiseer siende dat die grootste energieverlies in dié proses plaasvind. Die doel van hierdie navorsingsprojek was om die akkurate pneumatiese kragmeting van variërende en twee-rigting vloei van lug in ‘n OWK model na te vors. Die twee fundamentele metings wat benodig word vir die pneumatiese kragbepaling is die drukverskil oor die vloei vernouing en die volumetriese vloeitempo van lug deur die uitlaat van die toetstoestel. Die spesiaal ontwerpte meettoestel wat gebruik is in die eksperiment het bestaan uit ‘n venturi vloeimeter wat ‘n verhitte-film anemometer bevat het wat die drukverandering en die volumetriese vloeitempo kan meet in ‘n enkele instrument. Die pneumatiese kragmeting was gekalibreer in ‘n vertikale windtonnel waarin ‘n konstante vloei tempo geïnduseer was. Die kalibrasieproses het bevestig dat die meettoestel metings lewer met ‘n fout van minder as 3 % wanneer dit vergelyk word met die bekende konstante vloei tempo soos bepaal in die windtonnel. ‘n Fisiese model van ‘n vereenvoudigde OWK golfenergie omsetter was ontwerp en gebou uit Perspex om as toetstoestel te gebruik vir die evaluering van die ontwerpte pneumatiese kraglewering meettoestel. Die toetse was uitgevoer in ‘n golftenk by die Universiteit Stellenbosch (SUN). The toetsresultate was vergelyk met drie ander OWK lugvloei modelle wat gesimuleer was deur om die analitiese modelle op te stel en te simuleer in Matlab Simulink. Die vergelyking van modellering resultate het gewys dat die meettoestel die vermoë het om pneumatiese krag te meet. Daar was wel komplikasies met die modellering van die komplekse lugvloei in die OWK toestel, die resultate het geen definitiewe ooreenstemming gewys tussen die eksperimentele en gesimuleerde pneumatiese krag resultate nie. Die navorsingsprojek het gewys dat daar komplikasies is om ‘n enkel toestel te ontwerp wat oor ‘n wye bereik kan meet weens die variasie van die verskillende parameters. Die variërende en twee-rigting lugvloei is ook moeilik om akkuraat te simuleer met ‘n een-dimensionele analitiese simulasie model. Aanbevelings vir verdere navorsing sluit in om die lugvloei in die OWK stelsel te modelleer en te analiseer in ‘n drie-dimensionele model om die lesings van ‘n pneumatiese krag meettoestel te bevestig.
7

Hill, Robert W. "Measurements of Landau quantum oscillations in heavy fermion systems." Thesis, University of Bristol, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thamrin, Cindy. "Measurement of lung function using broadband forced oscillations /." Connect to this title, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Otani, Masashi. "Measurement of Neutrino Oscillation in the T2K Experiment." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/157756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Brigljević, Vuko. "Measurements of particle - antiparticle oscillations in the Bdo⁻B̄do system /." Zürich, 1999. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Oscillating measurements":

1

Fornel, Frédérique de. Measurements using optic and RF waves. London: ISTE, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kamas, George. Time and frequency users manual. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kamas, George. Time and frequency users manual. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

European Frequency and Time Forum. (10th 1996 Brighton, England). 10th European Frequency and Time Forum: 5-7 March 1996. Brighton, UK: IEE, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Group, Chronos. Frequency measurement and control. Dordrecht: Springer, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kanevskiĭ, Igorʹ Nikolaevich. Kolebatelʹnye sistemy s sosredotochennymi parametrami. Vladivostok: Dalʹnevostochnyĭ gosudarstvennyĭ rybokhozi︠a︡ĭstvennyĭ universitet, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Duffy, Kirsty Elizabeth. First Measurement of Neutrino and Antineutrino Oscillation at T2K. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65040-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kanevskiĭ, I. N. Kolebatelʹnye sistemy s sosredotochennymi parametrami. Vladivostok: Dalʹnauka, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kikawa, Tatsuya. Measurement of Neutrino Interactions and Three Flavor Neutrino Oscillations in the T2K Experiment. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-715-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

dui, Hebei sheng di zhi kuang chan ju wu tan da. Ci ou yuan pin lü ce shen fa. 8th ed. Beijing: Di zhi chu ban she, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Oscillating measurements":

1

Martynenko, Oleg G., and Pavel P. Khramtsov. "Stable Vortex Structures in Axisymmetric Flame Under Oscillating Combustion." In Applied Optical Measurements, 321–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58496-1_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Glauber, Roy J. "Quantum Theory of Particle Trapping by Oscillating Fields." In Quantum Measurements in Optics, 3–14. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3386-3_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stapountzis, H., G. Xenopoulos, and S. Raptopoulos. "Wake Flow Measurements in an Oscillating Delta Wing at High Incidence." In Bluff-Body Wakes, Dynamics and Instabilities, 205–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-00414-2_47.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sumner, D., H. B. Hemingson, D. M. Deutscher, and J. E. Barth. "PIV Measurements of the Flow Around Oscillating Cylinders at Low KC Numbers." In IUTAM Symposium on Unsteady Separated Flows and their Control, 3–13. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9898-7_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Romblad, Jonas, Duncan Ohno, Werner Würz, and Ewald Krämer. "Laminar to Turbulent Transition at Unsteady Inflow Conditions: Wind Tunnel Measurements at Oscillating Inflow Angle." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 254–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25253-3_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kraftmakher, Yaakov. "Measurement of Temperature Oscillations." In Modulation Calorimetry, 33–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08814-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kikawa, Tatsuya. "Measurement of Neutrino Oscillations." In Measurement of Neutrino Interactions and Three Flavor Neutrino Oscillations in the T2K Experiment, 155–91. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-715-4_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vistnes, Arnt Inge. "Measurements of Light, Dispersion, Colours." In Physics of Oscillations and Waves, 335–69. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72314-3_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Junqueira de Castro Bezerra, Thiago. "Measurement of Neutrino Oscillation Parameters." In Double Chooz and Reactor Neutrino Oscillation, 151–85. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55375-5_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Burgay, Marta, Delphine Perrodin, and Andrea Possenti. "General Relativity Measurements from Pulsars." In Timing Neutron Stars: Pulsations, Oscillations and Explosions, 53–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-62110-3_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Oscillating measurements":

1

Ahmadov, Haji. "An oscillating magnet watt balance." In 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016). IEEE, 2016. http://dx.doi.org/10.1109/cpem.2016.7540780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ruiz-Carcel, C., V. H. Jaramillo, D. Mba, J. R. Ottewill, and Y. Cao. "Improved condition monitoring using fast-oscillating measurements." In 2014 20th International Conference on Automation and Computing (ICAC). IEEE, 2014. http://dx.doi.org/10.1109/iconac.2014.6935481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kerstens, Wesley, and David Williams. "Energy Exchange Measurements with a Longitudinally Oscillating Flow and a Vertically Oscillating Wing." In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ahmedov, Haji, Beste Korutlu, Bulent Ozgur, and Orhan Yaman. "Alignment in UME Oscillating-Magnet Kibble Balance Experiment." In 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). IEEE, 2018. http://dx.doi.org/10.1109/cpem.2018.8501075.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ahmedov, H., B. Korutlu, L. Dorosinskiy, and R. Orhan. "External Magnetic Field in UME Oscillating Magnet Kibble Balance." In 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). IEEE, 2018. http://dx.doi.org/10.1109/cpem.2018.8501096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

SARIC, W. "Oscillating hot-wire measurements above an FX63-137 airfoil." In 24th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Van den Bossche, A. P., K. De Gusseme, V. C. Valchev, and S. T. Barudov. "Self-oscillating sine wave oscillator for ferrite loss measurements." In 2005 IEEE 11th European Conference on Power Electronics and Applications. IEEE, 2005. http://dx.doi.org/10.1109/epe.2005.219332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sadeghi, H., and M. Mani. "The unsteady turbulent wake measurements behind an oscillating airfoil." In Turbulence, Heat and Mass Transfer 6. Proceedings of the Sixth International Symposium On Turbulence, Heat and Mass Transfer. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.turbulheatmasstransf.2500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ozturk, T. C., H. Ahmedov, C. Birlikseven, and Gulay Gulmez. "Feasibility study of electrical measurements of oscillating-magnet watt balance." In 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016). IEEE, 2016. http://dx.doi.org/10.1109/cpem.2016.7540678.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bell, D. L., and L. He. "Three Dimensional Unsteady Pressure Measurements for an Oscillating Turbine Blade." In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A complete set of unsteady blade surface pressure measurements is presented for a single turbine blade oscillating in a three dimensional bending mode. Results are provided for five spanwise sections at 10%, 30%, 50%, 70% and 90% of span. Steady blade pressure measurements and five-hole probe traverses at the inlet and exit planes of the test section, are also included. The test facility operates at low speed and the working section consists of a single turbine blade mounted in a profiled duct. A rigid blade with constant section was used, and a three dimensional bending mode realised by hinging the blade at root and driving the tip section. The low speed and scale of the test facility allowed low oscillation frequencies (5 to 20 Hz) to be employed, in order to match realistic reduced frequencies. This enabled the unsteady blade surface pressure response to be recorded with externally mounted pressure transducers. The validity of this technique is examined. Results from the test facility demonstrate a noticeable three dimensional behaviour of the unsteady flow.

Звіти організацій з теми "Oscillating measurements":

1

Saric, William S. Separation-Bubble Velocity Measurements Using an Oscillating-Hot-Wire System. Fort Belvoir, VA: Defense Technical Information Center, June 1991. http://dx.doi.org/10.21236/ada237997.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

O'Donnell, Thomas. Precision Measurement of Neutrino Oscillation Parameters with KamLAND. Office of Scientific and Technical Information (OSTI), December 2011. http://dx.doi.org/10.2172/1082203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Moyer, R. A., J. A. Goetz, R. N. Dexter, and S. C. Prager. q Measurements during sawtooth oscillations in a low q tokamak. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6317021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xi Yang. Chromaticity measurement via the fourier spectrum of transverse oscillations. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/827924.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yang, Xi. Chromaticity measurement via the Fourier spectrum of transverse oscillations. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/15017166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Raven, Gerhard. Measurements of the B0-anti-B0 Oscillation Frequency in Hadronic B Decays. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/787194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tiwari, Vivek. Measurement of the Bs anti-Bs oscillation frequency using semileptonic decays. Office of Scientific and Technical Information (OSTI), May 2007. http://dx.doi.org/10.2172/908840.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Long, Chuck. Atmospheric Radiation Measurement Madden-Julian Oscillation Investigation Experiment Field Campaign Report. Office of Scientific and Technical Information (OSTI), July 2016. http://dx.doi.org/10.2172/1302195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Psihas, Fernanda. Measurement of Long Baseline Neutrino Oscillations and Improvements from Deep Learning. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1437288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Morlock, Jan. Flavour Tagging Calibration and Measurement of Bs Oscillations and CP Asymmetry. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/1342791.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії