Статті в журналах з теми "Oxygen isotopes, atmospheric effects"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Oxygen isotopes, atmospheric effects.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Oxygen isotopes, atmospheric effects".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Passey, Benjamin H. "Reconstructing Terrestrial Environments Using Stable Isotopes in Fossil Teeth and Paleosol Carbonates." Paleontological Society Papers 18 (November 2012): 167–94. http://dx.doi.org/10.1017/s1089332600002606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Carbon isotopes in Neogene-age fossil teeth and paleosol carbonates are commonly interpreted in the context of past distributions of C3 and C4 vegetation. These two plant types have very different distributions in relation to climate and ecology, and provide a robust basis for reconstructing terrestrial paleoclimates and paleoenvironments during the Neogene. Carbon isotopes in pre-Neogene fossil teeth are usually interpreted in the context of changes in the δ13C value of atmospheric CO2, and variable climate-dependent carbon-isotope discrimination in C3 plants. Carbon isotopes in pre-Neogene soil carbonates can be used to estimate past levels of atmospheric CO2. Oxygen isotopes in fossil teeth and paleosol carbonates primarily are influenced by the oxygen isotopic compositions of ancient rainfall and surface waters. The oxygen isotopic composition of rainfall is has a complex, but tractable, relationship with climate, and variably relates to temperature, elevation, precipitation amount, and other factors. Mammal species that rely on moisture in dietary plant tissues to satisfy their water requirements (rather than surface drinking water) may have oxygen isotopic compositions that track aridity. Thus, oxygen isotopes of fossil mammals can place broad constraints on paleoaridity. Carbonate clumped isotope thermometry allows for reconstruction of soil temperatures at the time of pedogenic carbonate mineralization. The method is unique because it is the only thermodynamically based isotopic paleothermometer that does not require assumptions about the isotopic composition of the fluid in which the archive mineral formed. Soil temperature reflects a complex interplay of air temperature, solar radiative heating, latent heat effects, soil thermal diffusivity, and seasonal variations of these parameters. Because plants and most animals live in and/or near the soil, soil temperature is an important aspect of terrestrial (paleo)climate.
2

Michalski, G., S. K. Bhattacharya, and G. Girsch. "NO<sub>x</sub> cycle and the tropospheric ozone isotope anomaly: an experimental investigation." Atmospheric Chemistry and Physics 14, no. 10 (May 21, 2014): 4935–53. http://dx.doi.org/10.5194/acp-14-4935-2014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. The oxygen isotope composition of nitrogen oxides (NOx) in the atmosphere is a useful tool for understanding the oxidation of NOx into nitric acid / nitrate in the atmosphere. A set of experiments was conducted to examine change in isotopic composition of NOx due to NOx–O2–O3 photochemical cycling. At low NOx / O2 mixing ratios, NOx became progressively and nearly equally enriched in 17O and 18O over time until it reached a steady state with Δ17O values of 39.3 ± 1.9‰ and δ18O values of 84.2 ± 4‰, relative to the isotopic composition of the initial O2 gas. As the mixing ratios were increased, the isotopic enrichments were suppressed by isotopic exchange between O atoms, O2, and NOx. A kinetic model was developed to simulate the observed data and it showed that the isotope effects occurring during O3 formation play a dominant role in controlling NOx isotopes and, in addition, secondary kinetic isotope effects or isotope exchange reactions are also important during NOx cycling. The data and model were consistent with previous studies which showed that the NO + O3 reactions occur mainly via the transfer of the terminal atoms of O3. The model predicts that under tropospheric concentrations of NOx and O3, the timescale of NOx–O3 isotopic equilibrium ranges from hours (for ppbv NOx / O2 mixing ratios) to days (for pptv mixing ratios) and yields steady state Δ17O and δ18O values of 45‰ and 117‰ respectively (relative to Vienna Standard Mean Ocean Water (VSMOW)) in both cases. Under atmospheric conditions when O3 has high concentrations, the equilibrium between NOx and O3 should occur rapidly (h) but this equilibrium cannot be reached during polar winters and/or nights if the NOx conversion to HNO3 is faster. The experimentally derived rate coefficients can be used to model the major NOx–O3 isotopologue reactions at various pressures and in isotope modeling of tropospheric nitrate.
3

Gao, Jing, You He, Valerie Masson-Delmotte, and Tandong Yao. "ENSO Effects on Annual Variations of Summer Precipitation Stable Isotopes in Lhasa, Southern Tibetan Plateau." Journal of Climate 31, no. 3 (January 19, 2018): 1173–82. http://dx.doi.org/10.1175/jcli-d-16-0868.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Although El Niño–Southern Oscillation (ENSO) influences the Indian summer monsoon, its impact on moisture transport toward the southern Tibetan Plateau (TP) remains poorly understood. Precipitation stable isotopes are useful indices for climate change in the TP. Classical interpretations of variations of precipitation stable isotopes focus on the local surface air temperature or precipitation amount. However, several of the latest studies suggested they may correlate with large-scale modes of variability, such as ENSO. This paper presents a detailed study of ENSO’s effect on annual variations of the oxygen stable isotopic composition of precipitation (δ18Op) at Lhasa in the southern TP for up to 10 years. The stable isotopic composition of water vapor from satellite data [Tropospheric Emission Spectrometer (TES)] and simulations from an isotopically enabled atmospheric general circulation model (zoomed LMDZiso) are used to explore the mechanism that leads to variations of δ18Op at Lhasa. Statistically significant correlations between δ18Op and ENSO indices [Southern Oscillation index (SOI) and Niño-3.4 sea surface temperature index (Niño-3.4)] are observed. This paper shows that ENSO’s effects on the location and intensity of convection over the Arabian Sea, the Bay of Bengal, and the tropical Indian Ocean, along moisture transport paths toward Lhasa, further impact convection from the northern Tibetan Plateau. The changing of this convection results in lower δ18Op at Lhasa in 2007, a La Niña year, and higher δ18Op in 2006, an El Niño year. The study presented here confirms that the regional upstream convection related to ENSO teleconnections plays an important role in variations of δ18Op at the interannual scale and that the more depleted oxygen stable isotopic composition of vapor (δ18Oυ) from the northwestern region of India during a La Niña year intensifies the lower δ18Op at Lhasa in a La Niña year. The study’s results have implications for the interpretation of past variations of archives with precipitation stable isotopes, such as ice cores, tree rings, lake sediments, and speleothems, in this region.
4

Nyamgerel, Yalalt, Yeongcheol Han, Minji Kim, Dongchan Koh, and Jeonghoon Lee. "Review on Applications of 17O in Hydrological Cycle." Molecules 26, no. 15 (July 24, 2021): 4468. http://dx.doi.org/10.3390/molecules26154468.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The triple oxygen isotopes (16O, 17O, and 18O) are very useful in hydrological and climatological studies because of their sensitivity to environmental conditions. This review presents an overview of the published literature on the potential applications of 17O in hydrological studies. Dual-inlet isotope ratio mass spectrometry and laser absorption spectroscopy have been used to measure 17O, which provides information on atmospheric conditions at the moisture source and isotopic fractionations during transport and deposition processes. The variations of δ17O from the developed global meteoric water line, with a slope of 0.528, indicate the importance of regional or local effects on the 17O distribution. In polar regions, factors such as the supersaturation effect, intrusion of stratospheric vapor, post-depositional processes (local moisture recycling through sublimation), regional circulation patterns, sea ice concentration and local meteorological conditions determine the distribution of 17O-excess. Numerous studies have used these isotopes to detect the changes in the moisture source, mixing of different water vapor, evaporative loss in dry regions, re-evaporation of rain drops during warm precipitation and convective storms in low and mid-latitude waters. Owing to the large variation of the spatial scale of hydrological processes with their extent (i.e., whether the processes are local or regional), more studies based on isotopic composition of surface and subsurface water, convective precipitation, and water vapor, are required. In particular, in situ measurements are important for accurate simulations of atmospheric hydrological cycles by isotope-enabled general circulation models.
5

Schumacher, M., R. A. Werner, H. A. J. Meijer, H. G. Jansen, W. A. Brand, H. Geilmann, and R. E. M. Neubert. "Oxygen isotopic signature of CO<sub>2</sub> from combustion processes." Atmospheric Chemistry and Physics 11, no. 4 (February 16, 2011): 1473–90. http://dx.doi.org/10.5194/acp-11-1473-2011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O) abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires), and human induced (fossil fuel combustion, biomass burning) in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects on the order of up to 26%permil; became obvious in the derived CO2 from combustion of different kinds of material, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature), sample geometries (e.g. texture and surface-volume ratios) and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive) transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original total 18O signature of the material appeared to have little influence, however, a contribution of specific bio-chemical compounds to individual combustion products released from the involved material became obvious.
6

Zahn, A., P. Franz, C. Bechtel, J. U. Grooß, and T. Röckmann. "Modelling the budget of middle atmospheric water vapour isotopes." Atmospheric Chemistry and Physics 6, no. 8 (June 20, 2006): 2073–90. http://dx.doi.org/10.5194/acp-6-2073-2006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. A one-dimensional chemistry model is applied to study the stable hydrogen (D) and stable oxygen isotope (17O, 18O) composition of water vapour in stratosphere and mesosphere. In the troposphere, this isotope composition is determined by "physical'' fractionation effects, that are phase changes (e.g. during cloud formation), diffusion processes (e.g. during evaporation from the ocean), and mixing of air masses. Due to these processes water vapour entering the stratosphere first shows isotope depletions in D/H relative to ocean water, which are ~5 times of those in 18O/16O, and secondly is mass-dependently fractionated (MDF), i.e. changes in the isotope ratio 17O/16O are ~0.52 times of those of 18O/16O. In contrast, in the stratosphere and mesosphere "chemical'' fractionation mechanisms, that are the production of HO due to the oxidation of methane, re-cycling of H2O via the HOx family, and isotope exchange reactions considerably enhance the isotope ratios in the water vapour imported from the troposphere. The model reasonably predicts overall enhancements of the stable isotope ratios in H2O by up to ~25% for D/H, ~8.5% for 17O/16O, and ~14% for 18O/16O in the mesosphere relative to the tropopause values. The 17O/16O and 18O/16O ratios in H2O are shown to be a measure of the relative fractions of HOx that receive the O atom either from the reservoirs O2 or O3. Throughout the middle atmosphere, MDF O2 is the major donator of oxygen atoms incorporated in OH and HO2 and thus in H2O. In the stratosphere the known mass-independent fractionation (MIF) signal in O3 is in a first step transferred to the NOx family and only in a second step to HOx and H2O. In contrast to CO2, O(1D) only plays a minor role in this MIF transfer. The major uncertainty in our calculation arises from poorly quantified isotope exchange reaction rate coefficients and kinetic isotope fractionation factors.
7

Schumacher, M., R. E. M. Neubert, H. A. J. Meijer, H. G. Jansen, W. A. Brand, H. Geilmann, and R. A. Werner. "Oxygen isotopic signature of CO<sub>2</sub> from combustion processes." Atmospheric Chemistry and Physics Discussions 8, no. 6 (November 5, 2008): 18993–9034. http://dx.doi.org/10.5194/acpd-8-18993-2008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. For a comprehensive understanding of the global carbon cycle precise knowledge of all processes is necessary. Stable isotope (13C and 18O) abundances provide information for the qualification and the quantification of the diverse source and sink processes. This study focuses on the δ18O signature of CO2 from combustion processes, which are widely present both naturally (wild fires), and human induced (fossil fuel combustion, biomass burning) in the carbon cycle. All these combustion processes use atmospheric oxygen, of which the isotopic signature is assumed to be constant with time throughout the whole atmosphere. The combustion is generally presumed to take place at high temperatures, thus minimizing isotopic fractionation. Therefore it is generally supposed that the 18O signature of the produced CO2 is equal to that of the atmospheric oxygen. This study, however, reveals that the situation is much more complicated and that important fractionation effects do occur. From laboratory studies fractionation effects in the order of about 26‰ became obvious, a clear differentiation of about 7‰ was also found in car exhausts which were sampled directly under ambient atmospheric conditions. We investigated a wide range of materials (both different raw materials and similar materials with different inherent 18O signature), sample geometries (e.g. texture and surface-volume ratios) and combustion circumstances. We found that the main factor influencing the specific isotopic signatures of the combustion-derived CO2 and of the concomitantly released oxygen-containing side products, is the case-specific rate of combustion. This points firmly into the direction of (diffusive) transport of oxygen to the reaction zone as the cause of the isotope fractionation. The original 18O signature of the material appeared to have little or no influence.
8

NOON, PHILIPPA E., M. J. LENG, C. ARROWSMITH, M. G. EDWORTHY, and R. J. STRACHAN. "Seasonal observations of stable isotope variations in a valley catchment, Signy Island, South Orkney Islands." Antarctic Science 14, no. 4 (December 2002): 333–42. http://dx.doi.org/10.1017/s0954102002000159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The oxygen and hydrogen isotope composition of waters in a small valley at Signy Island, South Orkney Islands, were monitored over three summers (1999 to 2001). These stable isotopes track water movement through the catchment, especially seasonal precipitation and snow melt. All samples fall close to the regional meteoric water line but factors other than air temperature cause year-to-year variability. Residence times are in the order of days thus the lake water provides an average of precipitation falling only a few days before, except in the winter when the lakes are effectively closed. Freezing of surface waters preserves the isotope signature of the underlying waters from the previous summer. In spring, meltwaters from winter snow are isotopically depleted having δ18O and δD as low as -13‰ and -100‰ (VSMOW). Ice- cover break-up in late December allows complete water column mixing. By February, the lakes are relatively enriched isotopically (δ18O -9‰) by summer precipitation. Precipitation isotopic composition at Halley Station, Brunt Ice Shelf, is similar, illustrating the broad-scale effects of the Weddell Sea cyclonic atmospheric circulation. These data form a useful reference data-set for the ground-based validation of atmospheric models and palaeoclimate reconstructions in this isolated sector of the South Atlantic Ocean.
9

Bauch, Henning A., Helmut Erlenkeuser, Pieter M. Grootes, and Jean Jouzel. "Implications of Stratigraphic and Paleoclimatic Records of the Last Interglaciation from the Nordic Seas." Quaternary Research 46, no. 3 (November 1996): 260–69. http://dx.doi.org/10.1006/qres.1996.0065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Climatic reconstruction of glacial to interglacial episodes from oxygen isotopes in sediment cores from the Nordic seas is complicated by strong local meltwater contributions to the oxygen isotope changes. Combination of benthic and planktic foraminiferal isotope data with foraminiferal abundances and ice-rafted debris (IRD) allows separation of local and global effects and subdivision of the marine oxygen isotope events 6.2–5.4, which include the last interglaciation, into: (1) a meltwater phase after glacial stage 6, recorded by large amounts of IRD and low foraminiferal abundance, indicating surface water warming; (2) an IRD-free period with high deposition rates of subpolar foraminifera and other CaCO3 pelagic components, recognized here as the “full” interglaciation; and (3) a phase with the recurrence of IRD and the demise of subpolar species. Comparison of ice-core records and marine data implies that the global climate during the last full interglaciation and that during the postdeglacial Holocene were similar. The records show no significantly different variations in the proxy data. In contrast, the oxygen isotopes of planktic foraminifera and ice cores indicate significant differences during each of the deglacial transitions (Terminations I and II) that preceded these two interglaciations. These suggest that during Termination II the climatic evolution in the Nordic seas was less affected by abrupt changes in ocean–atmosphere circulation than during the last glacial to interglacial transition.
10

Lin, Mang, Xiaolin Zhang, Menghan Li, Yilun Xu, Zhisheng Zhang, Jun Tao, Binbin Su, Lanzhong Liu, Yanan Shen, and Mark H. Thiemens. "Five-S-isotope evidence of two distinct mass-independent sulfur isotope effects and implications for the modern and Archean atmospheres." Proceedings of the National Academy of Sciences 115, no. 34 (August 6, 2018): 8541–46. http://dx.doi.org/10.1073/pnas.1803420115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The signature of mass-independent fractionation of quadruple sulfur stable isotopes (S-MIF) in Archean rocks, ice cores, and Martian meteorites provides a unique probe of the oxygen and sulfur cycles in the terrestrial and Martian paleoatmospheres. Its mechanistic origin, however, contains some uncertainties. Even for the modern atmosphere, the primary mechanism responsible for the S-MIF observed in nearly all tropospheric sulfates has not been identified. Here we present high-sensitivity measurements of a fifth sulfur isotope, stratospherically produced radiosulfur, along with all four stable sulfur isotopes in the same sulfate aerosols and a suite of chemical species to define sources and mechanisms on a field observational basis. The five-sulfur-isotope and multiple chemical species analysis approach provides strong evidence that S-MIF signatures in tropospheric sulfates are concomitantly affected by two distinct processes: an altitude-dependent positive 33S anomaly, likely linked to stratospheric SO2 photolysis, and a negative 36S anomaly mainly associated with combustion. Our quadruple stable sulfur isotopic measurements in varying coal samples (formed in the Carboniferous, Permian, and Triassic periods) and in SO2 emitted from combustion display normal 33S and 36S, indicating that the observed negative 36S anomalies originate from a previously unknown S-MIF mechanism during combustion (likely recombination reactions) instead of coal itself. The basic chemical physics of S-MIF in both photolytic and thermal reactions and their interplay, which were not explored together in the past, may be another ingredient for providing deeper understanding of the evolution of Earth’s atmosphere and life’s origin.
11

Savarino, J., J. Kaiser, S. Morin, D. M. Sigman, and M. H. Thiemens. "Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica." Atmospheric Chemistry and Physics 7, no. 8 (April 18, 2007): 1925–45. http://dx.doi.org/10.5194/acp-7-1925-2007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Throughout the year 2001, aerosol samples were collected continuously for 10 to 15 days at the French Antarctic Station Dumont d'Urville (DDU) (66°40' S, l40°0' E, 40 m above mean sea level). The nitrogen and oxygen isotopic ratios of particulate nitrate at DDU exhibit seasonal variations that are among the most extreme observed for nitrate on Earth. In association with concentration measurements, the isotope ratios delineate four distinct periods, broadly consistent with previous studies on Antarctic coastal areas. During austral autumn and early winter (March to mid-July), nitrate concentrations attain a minimum between 10 and 30 ng m−3 (referred to as Period 2). Two local maxima in August (55 ng m−3) and November/December (165 ng m−3) are used to assign Period 3 (mid-July to September) and Period 4 (October to December). Period 1 (January to March) is a transition period between the maximum concentration of Period 4 and the background concentration of Period 2. These seasonal changes are reflected in changes of the nitrogen and oxygen isotope ratios. During Period 2, which is characterized by background concentrations, the isotope ratios are in the range of previous measurements at mid-latitudes: δ18Ovsmow=(77.2±8.6)‰; Δ17O=(29.8±4.4)‰; δ15Nair=(−4.4±5.4)‰ (mean ± one standard deviation). Period 3 is accompanied by a significant increase of the oxygen isotope ratios and a small increase of the nitrogen isotope ratio to δ18Ovsmow=(98.8±13.9)‰; Δ17O=(38.8±4.7)‰ and δ15Nair=(4.3±8.20‰). Period 4 is characterized by a minimum 15N/14N ratio, only matched by one prior study of Antarctic aerosols, and oxygen isotope ratios similar to Period 2: δ18Ovsmow=(77.2±7.7)‰; Δ17O=(31.1±3.2)‰; δ15Nair=(−32.7±8.4)‰. Finally, during Period 1, isotope ratios reach minimum values for oxygen and intermediate values for nitrogen: δ18Ovsmow=63.2±2.5‰; Δ17O=24.0±1.1‰; δ15Nair=−17.9±4.0‰). Based on the measured isotopic composition, known atmospheric transport patterns and the current understanding of kinetics and isotope effects of relevant atmospheric chemical processes, we suggest that elevated tropospheric nitrate levels during Period 3 are most likely the result of nitrate sedimentation from polar stratospheric clouds (PSCs), whereas elevated nitrate levels during Period 4 are likely to result from snow re-emission of nitrogen oxide species. We are unable to attribute the source of the nitrate during periods 1 and 2 to local production or long-range transport, but note that the oxygen isotopic composition is in agreement with day and night time nitrate chemistry driven by the diurnal solar cycle. A precise quantification is difficult, due to our insufficient knowledge of isotope fractionation during the reactions leading to nitrate formation, among other reasons.
12

He, Yuanqing, Hongxi Pang, W. H. Theakstone, Dian Zhang, Aigang Lu, Bo Song, Lingling Yuan, and Baoying Ning. "Spatial and temporal variations of oxygen isotopes in snowpacks and glacial runoff in different types of glacial area in western China." Annals of Glaciology 43 (2006): 269–74. http://dx.doi.org/10.3189/172756406781811943.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractIn order to improve understanding of spatial and temporal variations of stable isotopes in atmospheric precipitation, snow cover and glacier meltwater in different regions of China, samples were collected for isotopic analysis in four areas: Yulong mountain, Yunnan Himalaya (temperate-glacier area); Samdain Kangsang mountain, Nyainqêntanglha Shan (subpolar-glacier area); the headwater area of the Ürümqi river, Tien Shan (subpolar-glacier area); and Muztag mountain, Pamirs (polar-glacier area). Sampling was undertaken in both summer and winter between 2000 and 2003. The δ18O values show a ‘temperature–altitude effect’ in new winter snow on Yulong mountain, reflecting the condensation and fractionation processes associated with the winter monsoon, but a different, more complex pattern in residual snow deposited during the summer monsoon; this old snow is influenced by the ‘precipitation amount effect’, solar radiation and evaporation, and the water content of the snowpack. The summer precipitation at Samdain Kangsang mountain is associated with the summer monsoon. There is a marked precipitation amount effect during the long passage of the southwest/India monsoon from the distant moisture source to Samdain Kangsang mountain, and the summer precipitation is strongly depleted of the heavy isotope. Above 6000 m, the high radiation flux causes much evaporation from the snow surface. The associated 1 8O enrichment of the snow is reflected in a ‘reverse altitude effect’. The δ18O values in the summer snowpack of the Tien Shan and Muztag mountain decrease with increasing altitude and decreasing air temperature, indicating a temperature–altitude effect. Post-depositional processes cause isotopic changes during the transformation of snow/firn/ice to meltwater; the effects are much stronger at temperate than at polar glaciers. Moreover, changes in the isotopic signal at both temperate and polar glaciers can result from evaporation, sublimation, ablation and drifting.
13

Farquhar, Graham D., Jon Lloyd, John A. Taylor, Lawrence B. Flanagan, James P. Syvertsen, Kerry T. Hubick, S. Chin Wong, and James R. Ehleringer. "Vegetation effects on the isotope composition of oxygen in atmospheric CO2." Nature 363, no. 6428 (June 1993): 439–43. http://dx.doi.org/10.1038/363439a0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Hu, Huancui, Francina Dominguez, Praveen Kumar, Jeffery McDonnell, and David Gochis. "A Numerical Water Tracer Model for Understanding Event-Scale Hydrometeorological Phenomena." Journal of Hydrometeorology 19, no. 6 (June 1, 2018): 947–67. http://dx.doi.org/10.1175/jhm-d-17-0202.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract We develop and implement a novel numerical water tracer model within the Noah LSM with multiparameterization options (WT-Noah-MP) that is specifically designed to track individual hydrometeorological events. This approach provides a more complete representation of the physical processes beyond the standard land surface model output. Unlike isotope-enabled LSMs, WT-Noah-MP does not simulate the concentration of oxygen or hydrogen isotopes, or require isotope information to drive it. WT-Noah-MP provides stores, fluxes, and transit time estimates of tagged water in the surface–subsurface system. The new tracer tool can account for the horizontal and vertical heterogeneity of tracer transport in the subsurface by allowing partial mixing in each soil layer. We compared model-estimated transit times at the H. J. Andrews Experimental Watershed in Oregon with those derived from isotope observations. Our results show that including partial mixing in the soil results in a more realistic transit time distribution than the basic well-mixed assumption. We then used WT-Noah-MP to investigate the regional response to an extreme precipitation event in the U.S. Pacific Northwest. The model differentiated the flood response due to direct precipitation from indirect thermal effects and showed that a large portion of this event water was retained in the soil after 6 months. The water tracer addition in Noah-MP can help us quantify the long-term memory in the hydrologic system that can impact seasonal hydroclimate variability through evapotranspiration and groundwater recharge.
15

Caley, T., та D. M. Roche. "δ<sup>18</sup>O water isotope in the <i>i</i>LOVECLIM model (version 1.0) – Part 3: A palaeo-perspective based on present-day data–model comparison for oxygen stable isotopes in carbonates". Geoscientific Model Development 6, № 5 (12 вересня 2013): 1505–16. http://dx.doi.org/10.5194/gmd-6-1505-2013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Oxygen stable isotopes (δ18O) are among the most useful tools in palaeoclimatology/palaeoceanography. Simulation of oxygen stable isotopes allows testing how the past variability of these isotopes in water can be interpreted. By modelling the proxy directly in the model, the results can also be directly compared with the data. Water isotopes have been implemented in the global three-dimensional model of intermediate complexity iLOVECLIM, allowing fully coupled atmosphere–ocean simulations. In this study, we present the validation of the model results for present-day climate against the global database for oxygen stable isotopes in carbonates. The limitation of the model together with the processes operating in the natural environment reveal the complexity of use the continental calcite-δ18O signal of speleothems for a global quantitative data–model comparison exercise. On the contrary, the reconstructed surface ocean calcite-δ18O signal in iLOVECLIM does show a very good agreement with the late Holocene database (foraminifers) at the global and regional scales. Our results indicate that temperature and the isotopic composition of the seawater are the main control on the fossil-δ18O signal recorded in foraminifer shells when all species are grouped together. Depth habitat, seasonality and other ecological effects play a more significant role when individual species are considered. We argue that a data–model comparison for surface ocean calcite δ18O in past climates, such as the Last Glacial Maximum (≈ 21 000 yr), could constitute an interesting tool for mapping the potential shifts of the frontal systems and circulation changes throughout time. Similarly, the potential changes in intermediate oceanic circulation systems in the past could be documented by a data (benthic foraminifers)-model comparison exercise whereas future investigations are necessary in order to quantitatively compare the results with data for the deep ocean.
16

Hermoso, M., I. Z. X. Chan, H. L. O. McClelland, A. M. C. Heureux, and R. E. M. Rickaby. "Vanishing coccolith vital effects with alleviated carbon limitation." Biogeosciences 13, no. 1 (January 15, 2016): 301–12. http://dx.doi.org/10.5194/bg-13-301-2016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. By recreating a range of geologically relevant concentrations of dissolved inorganic carbon (DIC) in the laboratory, we demonstrate that the magnitude of the vital effects in both carbon and oxygen isotopes of coccolith calcite of multiple species relates to ambient DIC concentration. Under high DIC levels, all the examined coccoliths exhibit significantly reduced isotopic offsets from inorganic calcite compared to the substantial vital effects expressed at low (preindustrial and present-day) DIC concentrations. The supply of carbon to the cell exerts a primary control on biological fractionation in coccolith calcite via the modulation of coccolithophore growth rate, cell size and carbon utilisation by photosynthesis and calcification, altogether accounting for the observed interspecific differences between coccolith species. These laboratory observations support the recent hypothesis from field observations that the appearance of interspecific vital effect in coccolithophores coincides with the long-term Neogene decline of atmospheric CO2 concentrations and bring further valuable constraints by demonstrating a convergence of all examined species towards inorganic values at high pCO2 regimes. This study provides palaeoceanographers with a biogeochemical framework that can be utilised to further develop the use of calcareous nannofossils in palaeoceanography to derive sea surface temperature and pCO2 levels, especially during periods of relatively elevated pCO2 concentrations, as they prevailed during most of the Meso-Cenozoic.
17

Schmidt, J. A., M. S. Johnson, and R. Schinke. "Isotope effects in N<sub>2</sub>O photolysis from first principles." Atmospheric Chemistry and Physics 11, no. 17 (September 2, 2011): 8965–75. http://dx.doi.org/10.5194/acp-11-8965-2011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. For the first time, accurate first principles potential energy surfaces allow N2O cross sections and isotopic fractionation spectra to be derived that are in agreement with all available experimental data, extending our knowledge to a much broader range of conditions. Absorption spectra of rare N- and O-isotopologues (15N14N16O, 14N15N16O, 15N216O, 14N217O and 14N218O) calculated using wavepacket propagation are compared to the most abundant isotopologue (14N216O). The fractionation constants as a function of wavelength and temperature are in excellent agreement with experimental data. The study shows that excitations from the 3rd excited bending state, (0,3,0), and the first combination state, (1,1,0), are important for explaining the isotope effect at wavelengths longer than 210 nm. Only a small amount of the mass independent oxygen isotope anomaly observed in atmospheric N2O samples can be explained as arising from photolysis.
18

Tsunogai, U., D. D. Komatsu, T. Ohyama, A. Suzuki, F. Nakagawa, I. Noguchi, K. Takagi, M. Nomura, K. Fukuzawa, and H. Shibata. "Quantifying the effects of clear-cutting and strip-cutting on nitrate dynamics in a forested watershed using triple oxygen isotopes as tracers." Biogeosciences 11, no. 19 (October 7, 2014): 5411–24. http://dx.doi.org/10.5194/bg-11-5411-2014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Temporal variations in the stable isotopic compositions of nitrate dissolved in stream water eluted from a cool–temperate forested watershed (8 ha) were measured to quantify the biogeochemical effects of clear-cutting of trees and subsequent strip-cutting of the understory vegetation, dwarf bamboo (Sasa senanensis), with special emphasis on changes in the fate of atmospheric nitrate that had been deposited onto the watershed based on Δ17O values of nitrate. A significant increase in stream nitrate concentration to 15 μmol L−1 in spring of 2004 was correlated with a significant increase in the Δ17O values of nitrate. Additionally, the high Δ17O values of +14.3‰ suggest that the direct drainage of atmospheric nitrate accounted for more than 50% of total nitrate exported from the forested watershed peaking in spring. Similar increases in both concentrations and Δ17O values were also found in spring of 2005. Conversely, low Δ17O values less than +1.5‰ were observed in other seasons, regardless of increases in stream nitrate concentration, indicating that the majority of nitrate exported from the forested watershed during seasons other than spring was remineralized nitrate: those retained in the forested ecosystem as either organic N or ammonium and then been converted to nitrate via microbial nitrification. When compared with the values prior to strip-cutting, the annual export of atmospheric nitrate and remineralized nitrate increased more than 16-fold and fourfold, respectively, in 2004, and more than 13-fold and fivefold, respectively, in 2005. The understory vegetation (Sasa) was particularly important to enhancing biological consumption of atmospheric nitrate.
19

Tsunogai, U., D. D. Komatsu, T. Ohyama, A. Suzuki, F. Nakagawa, I. Noguchi, K. Takagi, M. Nomura, K. Fukuzawa, and H. Shibata. "Quantifying the effects of clear-cutting and strip-cutting on nitrate dynamics in a forested watershed using triple oxygen isotopes as tracers." Biogeosciences Discussions 11, no. 5 (May 21, 2014): 7413–50. http://dx.doi.org/10.5194/bgd-11-7413-2014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Temporal variations in the stable isotopic compositions of nitrate dissolved in stream water eluted from a cool-temperate forested watershed (8 ha) were measured to quantify the biogeochemical effects of clear-cutting of trees and subsequent strip-cutting of the understory vegetation, dwarf bamboo (Sasa senanensis), with special emphasis on changes in the fate of atmospheric nitrate that had been deposited onto the watershed based on Δ17O values of nitrate. A significant increase in stream nitrate concentration to 15 μmol L−1 in spring of 2004 was correlated with a significant increase in the Δ17O values of nitrate. Additionally, the high Δ17O values of +14.3‰ suggest that the direct drainage of atmospheric nitrate accounted for more than 50% of total nitrate exported from the forested watershed. Similar increases in both concentrations and Δ17O values were also found in spring of 2005. Conversely, low Δ17O values less than +1.5‰ were observed in other seasons, regardless of increases in stream nitrate concentration, indicating that the majority of nitrate exported from the forested watershed during seasons other than spring was remineralized nitrate: those retained in the forested ecosystem as either organic-N or ammonium and then been converted to nitrate via microbial nitrification. When compared with the values prior to strip-cutting, the annual export of atmospheric nitrate and remineralized nitrate increased more than 16-fold and 4-fold, respectively, in 2004, and more than 13-fold and 5-fold, respectively, in 2005. The understory vegetation (Sasa) was particularly important to enhancing biological consumption of atmospheric nitrate.
20

Farquhar, Graham D., Jon Lloyd, John A. Taylor, Lawrence B. Flanagan, James P. Syvertsen, Kerry T. Hubick, S. Chin Wong, and James R. Ehleringer. "Erratum: Vegetation effects on the isotope composition of oxygen in atmospheric C02." Nature 365, no. 6444 (September 1993): 368. http://dx.doi.org/10.1038/365368b0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Hermoso, M., I. Z. X. Chan, H. L. O. McClelland, A. M. C. Heureux, and R. E. M. Rickaby. "Vanishing coccolith vital effects with alleviated CO<sub>2</sub> limitation." Biogeosciences Discussions 12, no. 18 (September 24, 2015): 15835–66. http://dx.doi.org/10.5194/bgd-12-15835-2015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. By recreating a range of geologically relevant concentrations of dissolved inorganic carbon (DIC) in the laboratory, we demonstrate that the magnitude of the vital effects in both carbon and oxygen isotopes of coccolith calcite of multiple species relates to ambient DIC concentration. Under high DIC levels, all the examined coccoliths lacked any offset from inorganic calcite, whereas in low (present-day) DIC concentrations, these vital effects and interspecies differences become substantial. These laboratory observations support the recent hypothesis from field observations that the appearance of interspecific vital effect in coccolithophores coincides with the long-term Neogene decline of atmospheric CO2 concentrations. The present study brings further valuable constraints on coccolith isotopic compositions by demonstrating the threshold for the absence of vital effects under high DIC regimes. From a mechanistic viewpoint, we show that the vital effect is determined by physiology; growth rate, cell size and relative rates of photosynthesis and calcification, and a modulation of these parameters with ambient carbon availability. This study provides palaeoceanographers with a biogeochemical framework that can be utilised to further develop the use of calcareous nannofossils in palaeoceanography to derive sea surface temperature and pCO2 levels.
22

Kern, Z., B. Kohán, and M. Leuenberger. "Precipitation isoscape of high reliefs: interpolation scheme designed and tested for monthly resolved precipitation oxygen isotope records of an Alpine domain." Atmospheric Chemistry and Physics 14, no. 4 (February 18, 2014): 1897–907. http://dx.doi.org/10.5194/acp-14-1897-2014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Stable oxygen isotope composition of atmospheric precipitation (δ18Op) was scrutinized from 39 stations distributed over Switzerland and its border zone. Monthly amount-weighted δ18Op values averaged over the 1995–2000 period showed the expected strong linear altitude dependence (−0.15 to −0.22‰ per 100 m) only during the summer season (May–September). Steeper gradients (~ −0.56 to −0.60‰ per 100 m) were observed for winter months over a low elevation belt, while hardly any altitudinal difference was seen for high elevation stations. This dichotomous pattern could be explained by the characteristically shallower vertical atmospheric mixing height during winter season and provides empirical evidence for recently simulated effects of stratified atmospheric flow on orographic precipitation isotopic ratios. This helps explain "anomalous" deflected altitudinal water isotope profiles reported from many other high relief regions. Grids and isotope distribution maps of the monthly δ18Op have been calculated over the study region for 1995–1996. The adopted interpolation method took into account both the variable mixing heights and the seasonal difference in the isotopic lapse rate and combined them with residual kriging. The presented data set allows a point estimation of δ18Op with monthly resolution. According to the test calculations executed on subsets, this biannual data set can be extended back to 1992 with maintained fidelity and, with a reduced station subset, even back to 1983 at the expense of faded reliability of the derived δ18Op estimates, mainly in the eastern part of Switzerland. Before 1983, reliable results can only be expected for the Swiss Plateau since important stations representing eastern and south-western Switzerland were not yet in operation.
23

Mathias, Justin M., and Richard B. Thomas. "Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types." Proceedings of the National Academy of Sciences 118, no. 7 (February 8, 2021): e2014286118. http://dx.doi.org/10.1073/pnas.2014286118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We conducted a meta-analysis of carbon and oxygen isotopes from tree ring chronologies representing 34 species across 10 biomes to better understand the environmental drivers and physiological mechanisms leading to historical changes in tree intrinsic water use efficiency (iWUE), or the ratio of net photosynthesis (Anet) to stomatal conductance (gs), over the last century. We show a ∼40% increase in tree iWUE globally since 1901, coinciding with a ∼34% increase in atmospheric CO2 (Ca), although mean iWUE, and the rates of increase, varied across biomes and leaf and wood functional types. While Ca was a dominant environmental driver of iWUE, the effects of increasing Ca were modulated either positively or negatively by climate, including vapor pressure deficit (VPD), temperature, and precipitation, and by leaf and wood functional types. A dual carbon–oxygen isotope approach revealed that increases in Anet dominated the observed increased iWUE in ∼83% of examined cases, supporting recent reports of global increases in Anet, whereas reductions in gs occurred in the remaining ∼17%. This meta-analysis provides a strong process-based framework for predicting changes in tree carbon gain and water loss across biomes and across wood and leaf functional types, and the interactions between Ca and other environmental factors have important implications for the coupled carbon–hydrologic cycles under future climate. Our results furthermore challenge the idea of widespread reductions in gs as the major driver of increasing tree iWUE and will better inform Earth system models regarding the role of trees in the global carbon and water cycles.
24

Meredith, Michael P., Hugh J. Venables, Andrew Clarke, Hugh W. Ducklow, Matthew Erickson, Melanie J. Leng, Jan T. M. Lenaerts, and Michiel R. van den Broeke. "The Freshwater System West of the Antarctic Peninsula: Spatial and Temporal Changes." Journal of Climate 26, no. 5 (February 27, 2013): 1669–84. http://dx.doi.org/10.1175/jcli-d-12-00246.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Climate change west of the Antarctic Peninsula is the most rapid of anywhere in the Southern Hemisphere, with associated changes in the rates and distributions of freshwater inputs to the ocean. Here, results from the first comprehensive survey of oxygen isotopes in seawater in this region are used to quantify spatial patterns of meteoric water (glacial discharge and precipitation) separately from sea ice melt. High levels of meteoric water are found close to the coast, due to orographic effects on precipitation and strong glacial discharge. Concentrations decrease offshore, driving significant southward geostrophic flows (up to ~30 cm s−1). These produce high meteoric water concentrations at the southern end of the sampling grid, where collapse of the Wilkins Ice Shelf may also have contributed. Sea ice melt concentrations are lower than meteoric water and patchier because of the mobile nature of the sea ice itself. Nonetheless, net sea ice production in the northern part of the sampling grid is inferred; combined with net sea ice melt in the south, this indicates an overall southward ice motion. The survey is contextualized temporally using a decade-long series of isotope data from a coastal Antarctic Peninsula site. This shows a temporal decline in meteoric water in the upper ocean, contrary to expectations based on increasing precipitation and accelerating deglaciation. This is driven by the increasing occurrence of deeper winter mixed layers and has potential implications for concentrations of trace metals supplied to the euphotic zone by glacial discharge. As the regional freshwater system evolves, the continuing isotope monitoring described here will elucidate the ongoing impacts on climate and the ecosystem.
25

Schmidt, J. A., M. S. Johnson, and R. Schinke. "Isotope effects in N<sub>2</sub>O photolysis from first principles." Atmospheric Chemistry and Physics Discussions 11, no. 5 (May 26, 2011): 16075–105. http://dx.doi.org/10.5194/acpd-11-16075-2011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. For the first time, accurate potential energy surfaces allow N2O cross sections and isotopic fractionation spectra to be derived that are in agreement with available experimental data (without ad hoc shifting), extending knowledge to a much broader range of conditions. Absorption spectra of rare N- and O-isotopologues (15N14N16O, 14N15N16O, 15N216O, 14N217O and 14N218O) calculated using wavepacket propagation are compared to the most abundant isotopologue (14N216O). The fractionation constants as a function of wavelength and temperature are in excellent agreement with experimental data. The study shows that excitations from the 3rd excited bending state, (0,3,0), and the first combination band, (1,1,0), are important for explaining the isotope effect at wavelengths longer than 210 nm. Only a small amount of the mass independent oxygen isotope anomaly observed in atmospheric N2O samples can be explained as arising from photolysis.
26

Lindroos, Alf, Lior Regev, Markku Oinonen, Åsa Ringbom, and Jan Heinemeier. "14C Dating of Fire-Damaged Mortars from Medieval Finland." Radiocarbon 54, no. 3-4 (2012): 915–31. http://dx.doi.org/10.1017/s0033822200047561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study focuses on radiocarbon dating of mortars that have withstood city fires and display visible fire damage effects. Some fire-damaged and undamaged original Medieval mortars from the same site have also been tested. The mortars were heated at different temperatures and then analyzed using the same preparation procedures as in 14C dating of mortars to see what kind of changes the heating would introduce to the mineralogy, chemistry, and the carbon and oxygen isotope ratios. We found that decarbonation during heating starts at ∼600 ° and recarbonation starts as soon as the temperature drops. Already after a few days, most of the lost CO2 has been replaced with atmospheric CO2. The renewed carbonates are readily soluble in the acid hydrolysis process and their carbon and oxygen isotopes have a light signature. Fire-damaged historical mortars display the same features. If a long time has elapsed between hardening of the original mortar and the fire, the new carbonates have 14C concentrations that point to the fire event rather than to the building event. In several cases, the fire-damaged mortars have an easily soluble carbonate fraction with a 14C age that could be related to a major fire event, but still most of the soluble carbonate yields a 14C age that seems like a reasonable age for the original construction.
27

Schlosser, Elisabeth. "Effects of seasonal variability of accumulation on yearly mean δ18O values in Antarctic snow". Journal of Glaciology 45, № 151 (1999): 463–68. http://dx.doi.org/10.3189/s0022143000001325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe annual mean oxygen-isotope content of Antarctic snow is strongly influenced by the seasonal variability of accumulation. Since the annual mean δ18O value is frequently used to derive mean annual temperatures from ice cores, changes in atmospheric circulation pattern can lead to large errors in the deduced temperature record. At the German Antarctic wintering base, Neumayer, accumulation measurements have been carried out continuously over the last 16 years. Weekly readings of accumulation stakes combined with snow pits and shallow firn cores are used to investigate the influence of the seasonal variability of accumulation on the annual mean δ18O values and to estimate the possible error in the determination of annual mean temperatures from ice cores by using the oxygen-isotope record.
28

Schlosser, Elisabeth. "Effects of seasonal variability of accumulation on yearly mean δ18O values in Antarctic snow". Journal of Glaciology 45, № 151 (1999): 463–68. http://dx.doi.org/10.1017/s0022143000001325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe annual mean oxygen-isotope content of Antarctic snow is strongly influenced by the seasonal variability of accumulation. Since the annual mean δ18O value is frequently used to derive mean annual temperatures from ice cores, changes in atmospheric circulation pattern can lead to large errors in the deduced temperature record. At the German Antarctic wintering base, Neumayer, accumulation measurements have been carried out continuously over the last 16 years. Weekly readings of accumulation stakes combined with snow pits and shallow firn cores are used to investigate the influence of the seasonal variability of accumulation on the annual mean δ18O values and to estimate the possible error in the determination of annual mean temperatures from ice cores by using the oxygen-isotope record.
29

Köhler, Inga, Raul E. Martinez, David Piatka, Achim J. Herrmann, Arianna Gallo, Michelle M. Gehringer, and Johannes A. C. Barth. "How are oxygen budgets influenced by dissolved iron and growth of oxygenic phototrophs in an iron-rich spring system? Initial results from the Espan Spring in Fürth, Germany." Biogeosciences 18, no. 15 (August 4, 2021): 4535–48. http://dx.doi.org/10.5194/bg-18-4535-2021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. At present most knowledge on the impact of iron on 18O / 16O ratios (i.e. δ18O) of dissolved oxygen (DO) under circum-neutral conditions stems from experiments carried out under controlled laboratory conditions. These showed that iron oxidation leads to an increase in δ18ODO values. Here we present the first study on effects of elevated Fe(II) concentrations on the δ18ODO in a natural, iron-rich, circum-neutral watercourse. Our results show that iron oxidation was the major factor for rising dissolved oxygen isotope compositions in the first 85 m of the system in the cold season (February) and for the first 15 m during the warm season (May). Further along the course of the stream, the δ18ODO decreased towards values known for atmospheric equilibration around +24.6 ‰ during both seasons. Possible drivers for these changes may be reduced iron oxidation, increased atmospheric exchange and DO production by oxygenic phototrophic algae mats. In the cold season, the δ18ODO values stabilized around atmospheric equilibrium, whereas in the warm season stronger influences by oxygenic photosynthesis caused values down to +21.8 ‰. In the warm season from 145 m downstream of the spring, the δ18ODO increased again until it reached atmospheric equilibrium. This trend can be explained by respiratory consumption of DO combined with a relative decrease in photosynthetic activity and increasing atmospheric influences. Our study shows that dissolved Fe(II) can exert strong effects on the δ18ODO of a natural circum-neutral spring system even under constant supply of atmospheric O2. However, in the presence of active photosynthesis, with supply of O2 to the system, direct effects of Fe oxidation on the δ18ODO value become masked. Nonetheless, critical Fe(II) concentrations may indirectly control DO budgets by enhancing photosynthesis, particularly if cyanobacteria are involved.
30

Marshall, James D. "Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation." Geological Magazine 129, no. 2 (March 1992): 143–60. http://dx.doi.org/10.1017/s0016756800008244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractStable isotopic data from marine limestones and their constituent fossils and marine cements can provide quantitative evidence for changes in global climate and ocean circulation. Oxygen isotopic data can indicate changes in temperature and ocean composition whereas stratigraphic variation in carbon isotope ratios may reflect changes in the carbon cycle that can be linked to changes in oceanic productivity and atmospheric greenhouse gases. Terrestrial carbonates–meteoric cements, calcretes and speleothems–similarly offer significant potential for understanding the evolution of terrestrial climates by providing evidence for the composition of rainwater and the nature of vegetative cover.Primary environmental isotopic signals may be obscured by the effects of post-depositional diagenetic alteration. Cementation and replacement reactions can take place in a wide range of diagenetic environments; the diagenetic history of an individual limestone is determined by a combination of its mineralogical diagenetic potential and depositional setting, together with subsequent changes in relative sea-level and burial history. Carbon isotopic values are less prone to alteration during diagenesis than oxygen values but shifts can be significant where organogenic carbon is incorporated. Linear covariation of carbon and oxygen values is not a reliable indicator of diagenetic alteration: water-rock interaction and fluid mixing may produce non-linear distributions.Attempts to determine long-term changes in climatic and oceanographie conditions through isotope stratigraphy of shallow-water limestones must include an assessment of the diagenetic history of the materials analysed. Pétrographic examination using conventional microscopy backed up, where appropriate, by cathodoluminescence and scanning electron microscopy together with elemental and strontium isotopic analysis can help to identify the effects of diagenetic alteration. Where material with a range of different degrees of alteration is preserved in the same sediment it may be possible to compare patterns of isotopic and elemental variation and to attempt to unravel the effects of diagenesis in order to determine primary, environmental, isotopic signals. Recent research has shown that these techniques can be successfully employed in both Phanerozoic and Precambrian sediments.
31

Lenton, Timothy M., Tais W. Dahl, Stuart J. Daines, Benjamin J. W. Mills, Kazumi Ozaki, Matthew R. Saltzman, and Philipp Porada. "Earliest land plants created modern levels of atmospheric oxygen." Proceedings of the National Academy of Sciences 113, no. 35 (August 15, 2016): 9704–9. http://dx.doi.org/10.1073/pnas.1604787113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The progressive oxygenation of the Earth’s atmosphere was pivotal to the evolution of life, but the puzzle of when and how atmospheric oxygen (O2) first approached modern levels (∼21%) remains unresolved. Redox proxy data indicate the deep oceans were oxygenated during 435–392 Ma, and the appearance of fossil charcoal indicates O2 >15–17% by 420–400 Ma. However, existing models have failed to predict oxygenation at this time. Here we show that the earliest plants, which colonized the land surface from ∼470 Ma onward, were responsible for this mid-Paleozoic oxygenation event, through greatly increasing global organic carbon burial—the net long-term source of O2. We use a trait-based ecophysiological model to predict that cryptogamic vegetation cover could have achieved ∼30% of today’s global terrestrial net primary productivity by ∼445 Ma. Data from modern bryophytes suggests this plentiful early plant material had a much higher molar C:P ratio (∼2,000) than marine biomass (∼100), such that a given weathering flux of phosphorus could support more organic carbon burial. Furthermore, recent experiments suggest that early plants selectively increased the flux of phosphorus (relative to alkalinity) weathered from rocks. Combining these effects in a model of long-term biogeochemical cycling, we reproduce a sustained +2‰ increase in the carbonate carbon isotope (δ13C) record by ∼445 Ma, and predict a corresponding rise in O2 to present levels by 420–400 Ma, consistent with geochemical data. This oxygen rise represents a permanent shift in regulatory regime to one where fire-mediated negative feedbacks stabilize high O2 levels.
32

Sofen, E. D., B. Alexander, and S. A. Kunasek. "The sensitivity of the oxygen isotopes of ice core sulfate to changing oxidant concentrations since the preindustrial." Atmospheric Chemistry and Physics Discussions 10, no. 8 (August 30, 2010): 20607–23. http://dx.doi.org/10.5194/acpd-10-20607-2010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Changes in tropospheric oxidant concentrations since preindustrial times have implications for the ozone radiative forcing, lifetimes of reduced trace gases, aerosol formation, and human health but are highly uncertain. Measurements of the triple oxygen isotopes of sulfate in ice cores (described by Δ17OSO4 = δ17O − 0.52 × δ18O) provide one of the few constraints on paleo-oxidants. We use the GEOS-Chem global atmospheric chemical transport model to simulate changes in oxidant concentrations and the Δ17OSO4 between 1850 and 1990 to assess the sensitivity of Δ17OSO4 measurements in Greenland and Antarctic ice cores to changing tropospheric oxidant concentrations. The model indicates a 42% increase in the concentration of global mean tropospheric O3, a 10% decrease in OH, and a 58% increase in H2O2 between the preindustrial and present. Modeled Δ17OSO4 is consistent with measurements from ice core and aerosol samples. Model results indicate that the observed decrease in the Arctic Δ17OSO4 in spite of increasing O3 is due to the combined effects of increased sulfate formation by O2 catalyzed by anthropogenic transition metals and increased cloud water acidity. In Antarctica, the Δ17OSO4 is sensitive to relative changes of oxidant concentrations, but in a nonlinear fashion. Sensitivity studies explore the uncertainties in preindustrial emissions of oxidant precursors.
33

Erbland, J., J. Savarino, S. Morin, J. L. France, M. M. Frey, and M. D. King. "Air–snow transfer of nitrate on the East Antarctic Plateau – Part 2: An isotopic model for the interpretation of deep ice-core records." Atmospheric Chemistry and Physics 15, no. 20 (October 30, 2015): 12079–113. http://dx.doi.org/10.5194/acp-15-12079-2015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Unraveling the modern budget of reactive nitrogen on the Antarctic Plateau is critical for the interpretation of ice-core records of nitrate. This requires accounting for nitrate recycling processes occurring in near-surface snow and the overlying atmospheric boundary layer. Not only concentration measurements but also isotopic ratios of nitrogen and oxygen in nitrate provide constraints on the processes at play. However, due to the large number of intertwined chemical and physical phenomena involved, numerical modeling is required to test hypotheses in a quantitative manner. Here we introduce the model TRANSITS (TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow), a novel conceptual, multi-layer and one-dimensional model representing the impact of processes operating on nitrate at the air–snow interface on the East Antarctic Plateau, in terms of concentrations (mass fraction) and nitrogen (δ15N) and oxygen isotopic composition (17O excess, Δ17O) in nitrate. At the air–snow interface at Dome C (DC; 75° 06' S, 123° 19' E), the model reproduces well the values of δ15N in atmospheric and surface snow (skin layer) nitrate as well as in the δ15N profile in DC snow, including the observed extraordinary high positive values (around +300 ‰) below 2 cm. The model also captures the observed variability in nitrate mass fraction in the snow. While oxygen data are qualitatively reproduced at the air–snow interface at DC and in East Antarctica, the simulated Δ17O values underestimate the observed Δ17O values by several per mill. This is explained by the simplifications made in the description of the atmospheric cycling and oxidation of NO2 as well as by our lack of understanding of the NOx chemistry at Dome C. The model reproduces well the sensitivity of δ15N, Δ17O and the apparent fractionation constants (15&amp;varepsilon;app, 17Eapp) to the snow accumulation rate. Building on this development, we propose a framework for the interpretation of nitrate records measured from ice cores. Measurement of nitrate mass fractions and δ15N in the nitrate archived in an ice core may be used to derive information about past variations in the total ozone column and/or the primary inputs of nitrate above Antarctica as well as in nitrate trapping efficiency (defined as the ratio between the archived nitrate flux and the primary nitrate input flux). The Δ17O of nitrate could then be corrected from the impact of cage recombination effects associated with the photolysis of nitrate in snow. Past changes in the relative contributions of the Δ17O in the primary inputs of nitrate and the Δ17O in the locally cycled NO2 and that inherited from the additional O atom in the oxidation of NO2 could then be determined. Therefore, information about the past variations in the local and long-range processes operating on reactive nitrogen species could be obtained from ice cores collected in low-accumulation regions such as the Antarctic Plateau.
34

Erbland, J., J. Savarino, S. Morin, J. L. France, M. M. Frey, and M. D. King. "Air–snow transfer of nitrate on the East Antarctic plateau – Part 2: An isotopic model for the interpretation of deep ice-core records." Atmospheric Chemistry and Physics Discussions 15, no. 5 (March 10, 2015): 6887–966. http://dx.doi.org/10.5194/acpd-15-6887-2015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Unraveling the modern budget of reactive nitrogen on the Antarctic plateau is critical for the interpretation of ice core records of nitrate. This requires accounting for nitrate recycling processes occurring in near surface snow and the overlying atmospheric boundary layer. Not only concentration measurements, but also isotopic ratios of nitrogen and oxygen in nitrate, provide constraints on the processes at play. However, due to the large number of intertwined chemical and physical phenomena involved, numerical modelling is required to test hypotheses in a~quantitative manner. Here we introduce the model "TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow" (TRANSITS), a~novel conceptual, multi-layer and one-dimensional model representing the impact of processes operating on nitrate at the air–snow interface on the East Antarctic plateau, in terms of concentrations (mass fraction) and the nitrogen (δ15N) and oxygen isotopic composition (17O}-excess, Δ17O) in nitrate. At the air–snow interface at Dome C (DC, 75°06' S, 123°19' E), the model reproduces well the values of δ15N in atmospheric and surface snow (skin layer) nitrate as well as in the δ15N profile in DC snow including the observed extraordinary high positive values (around +300 ‰) below 20 \\unit{cm}. The model also captures the observed variability in nitrate mass fraction in the snow. While oxygen data are qualitatively reproduced at the air–snow interface at DC and in East Antarctica, the simulated Δ17O values underestimate the observed Δ17O values by a~few~‰. This is explained by the simplifications made in the description of the atmospheric cycling and oxidation of NO2. The model reproduces well the sensitivity of δ15N, Δ17O and the apparent fractionation constants (15&amp;varepsilon;app, 17Eapp) to the snow accumulation rate. Building on this development, we propose a~framework for the interpretation of nitrate records measured from ice cores. Measurement of nitrate mass fractions and δ15N in the nitrate archived in an ice core, may be used to derive information about past variations in the total ozone column and/or the primary inputs of nitrate above Antarctica as well as in nitrate trapping efficiency (defined as the ratio between the archived nitrate flux and the primary nitrate input flux). The Δ17O of nitrate could then be corrected from the impact of cage recombination effects associated with the photolysis of nitrate in snow. Past changes in the relative contributions of the Δ17O in the primary inputs of nitrate and the Δ17O in the locally cycled NO2 could then be determined. Therefore, information about the past variations in the local and long range processes operating on reactive nitrogen species could be obtained from ice cores collected in low accumulation regions such as the Antarctic plateau.
35

Pujiindiyati, E. Ristin, Wandowo Wandowo, and Zainal Abidin. "INTERPRETATION OF OXYGEN –18 ISOTOPE IN SULPHATE FROM DEEP GROUNDWATER IN JAKARTA AREA." Indonesian Journal of Chemistry 7, no. 1 (June 15, 2010): 32–37. http://dx.doi.org/10.22146/ijc.21709.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
It has been done a determination of d 18O (SO42-) and d 18O (H2O) value from Jakarta deep groundwater with depth 40-140 m. The aim of this research is to know some procesess influencing the composition of oxygen isotope in groundwater sulphate. A method commonly used to determine d 18O (H2O) value is according to Epstein-Mayeda. CO2 gas resulted from equilibration process between water sample and CO2 gas standard in which oxygen isotopic reaction has occurred, is injected to mass spectrometer. For determination of d 18O (SO42-) value, Rafter method is used. CO2 gas released from reducing sulphate of water sample with graphite is injected to mass spectrometer. The results of d 18O (H2O) values obtained in this experiment have a narrow range from -5,04 0/00 to -6,65 0/00 SMOW whereas their d18O (SO42-) values have a wider range from +8,3 0/00 to +17,4 0/00 SMOW. The more constant values of d 18O (H2O) performed that evaporation effects might not occur. Based on the similarity between d18O (SO42-) values of deep groundwater and that of marine evaporite sulphate rocks, it is supposed that sulphate of Jakarta deep groundwater was derived from dissolution of this rocks. There was an indication of seawater intrusion around Pejagalan and Kamal Muara Penjaringan area based on the similarity between their d18O (SO42-) values and d18O (SO42-) of modern seawater. The contribution of oxygen from water in sulphide oxidation reaction ranged 0% to 12% suggesting that oxygen in deep groundwater sulphate was mainly derived from atmospheric molecular oxygen Keywords: oxygen isotope, sulphate, groundwater
36

Bechtel, C., and A. Zahn. "The isotope composition of water vapour: A powerful tool to study transport and chemistry of middle atmospheric water vapour." Atmospheric Chemistry and Physics Discussions 3, no. 4 (July 28, 2003): 3991–4036. http://dx.doi.org/10.5194/acpd-3-3991-2003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. A one-dimensional chemistry model is applied to study the stable hydrogen (D) and stable oxygen isotope (17O, 18O) composition of water vapour in stratosphere and mesosphere. The stable isotope ratios of tropospheric H2O are determined by "physical'' fractionation effects, i.e. phase changes, diffusion processes, and mixing of air masses. Due to these processes water vapour entering the stratosphere (i) is mass-dependently fractionated (MDF), i.e. shifts in the isotope ratio 17O/16O are ~0.52 times of those of 18O/16O and (ii) shows isotope shifts in D/H, which are ~5 times of those in 18O/16O. In stratosphere and mesosphere "chemical'' fractionation, that are the oxidation of methane, re-cycling of H2O via the HOx family, and isotope exchange reactions are shown to considerably enhance the isotope ratios in the imported tropospheric H2O. Enrichments relative to the isotope ratios at the tropopause are used to derive the partitioning of tropospheric (unmodified), re-cycled and in situ generated H2O. The model reasonably predicts overall increases of the stable isotope ratios in H2O by ~23% for D/H, ~8.5% for 17O/16O, and ~14% for 18O/16O. The17O/16O and 18O/16O ratios in H2O are shown to be a measure of the partitioning of HOx that receives its O atom either from the reservoirs O2 or O3. In the entire middle atmosphere, MDF O2 is the major donator of oxygen atoms incorporated in OH and HO2 and thus in H2O. It is demonstrated that in the stratosphere mass-independent fractionation (MIF) in O3 in a first step is transferred to the NOx family and only in a second step to HOx and H2O. In contrast to CO2, O(1D) only plays a minor role in this MIF transfer. The major uncertainty in our calculation arises from the many badly quantified isotope exchange reactions and kinetic isotope fractionation factors.
37

Sofen, E. D., B. Alexander та S. A. Kunasek. "The impact of anthropogenic emissions on atmospheric sulfate production pathways, oxidants, and ice core Δ<sup>17</sup>O(SO<sub>4</sub><sup>2–</sup>)". Atmospheric Chemistry and Physics 11, № 7 (15 квітня 2011): 3565–78. http://dx.doi.org/10.5194/acp-11-3565-2011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. We use a global three-dimensional chemical transport model to quantify the influence of anthropogenic emissions on atmospheric sulfate production mechanisms and oxidant concentrations constrained by observations of the oxygen isotopic composition (Δ17O = &amp;delta17O–0.52 × &amp;delta18O) of sulfate in Greenland and Antarctic ice cores and aerosols. The oxygen isotopic composition of non-sea salt sulfate (Δ17O(SO42–)) is a function of the relative importance of each oxidant (e.g. O3, OH, H2O2, and O2) during sulfate formation, and can be used to quantify sulfate production pathways. Due to its dependence on oxidant concentrations, Δ17O(SO42–) has been suggested as a proxy for paleo-oxidant levels. However, the oxygen isotopic composition of sulfate from both Greenland and Antarctic ice cores shows a trend opposite to that expected from the known increase in the concentration of tropospheric O3 since the preindustrial period. The model simulates a significant increase in the fraction of sulfate formed via oxidation by O2 catalyzed by transition metals in the present-day Northern Hemisphere troposphere (from 11% to 22%), offset by decreases in the fractions of sulfate formed by O3 and H2O2. There is little change, globally, in the fraction of tropospheric sulfate produced by gas-phase oxidation (from 23% to 27%). The model-calculated change in Δ17O(SO42–) since preindustrial times (1850 CE) is consistent with Arctic and Antarctic observations. The model simulates a 42% increase in the concentration of global mean tropospheric O3, a 10% decrease in OH, and a 58% increase in H2O2 between the preindustrial period and present. Model results indicate that the observed decrease in the Arctic Δ17O(SO42–) – in spite of increasing tropospheric O3 concentrations – can be explained by the combined effects of increased sulfate formation by O2 catalyzed by anthropogenic transition metals and increased cloud water acidity, rendering Δ17O(SO42–) insensitive to changing oxidant concentrations in the Arctic on this timescale. In Antarctica, the Δ17O(SO42–) is sensitive to relative changes of oxidant concentrations because cloud pH and metal emissions have not varied significantly in the Southern Hemisphere on this timescale, although the response of Δ17O(SO42–) to the modeled changes in oxidants is small. There is little net change in the Δ17O(SO42–) in Antarctica, in spite of increased O3, which can be explained by a compensatory effect from an even larger increase in H2O2. In the model, decreased oxidation by OH (due to lower OH concentrations) and O3 (due to higher H2O2 concentrations) results in little net change in Δ17O(SO42–) due to offsetting effects of Δ17O(OH) and Δ17O(O3). Additional model simulations are conducted to explore the sensitivity of the oxygen isotopic composition of sulfate to uncertainties in the preindustrial emissions of oxidant precursors.
38

Gromov, S., and C. A. M. Brenninkmeijer. "An estimation of the <sup>18</sup>O / <sup>16</sup>O ratio of UT/LMS ozone based on artefact CO in air sampled during CARIBIC flights." Atmospheric Chemistry and Physics 15, no. 4 (February 24, 2015): 1901–12. http://dx.doi.org/10.5194/acp-15-1901-2015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. An issue of O3-driven artefact production of O3 in the upper troposphere/lowermost stratosphere (UT/LMS) air analysed in the CARIBIC-1 project is being discussed. By confronting the CO mixing and isotope ratios obtained from different analytical instrumentation, we (i) reject natural/artificial sampling and mixing effects as possible culprits of the problem, (ii) ascertain the chemical nature and quantify the strength of the contamination, and (iii) demonstrate successful application of the isotope mass-balance calculations for inferring the isotope composition of the contamination source. The δ18O values of the latter indicate that the oxygen is very likely being inherited from O3. The δ13C values hint at reactions of trace amounts of organics with stratospheric O3 that could have yielded the artificial CO. While the exact contamination mechanism is not known, it is clear that the issue pertains only to the earlier (first) phase of the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) project. Finally, estimated UT/LMS ozone δ18O values are lower than those observed in the stratosphere within the same temperature range, suggesting that higher pressures (240–270 hPa) imply lower isotope fractionation controlling the local δ18O(O3) value.
39

Yu, W., L. Tian, Y. Ma, B. Xu, and D. Qu. "Simultaneous monitoring of stable oxygen isotope composition in water vapour and precipitation over the central Tibetan Plateau." Atmospheric Chemistry and Physics 15, no. 18 (September 16, 2015): 10251–62. http://dx.doi.org/10.5194/acp-15-10251-2015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. This study investigated daily δ18O variations of water vapour (δ18Ov) and precipitation (δ18Op) simultaneously at Nagqu on the central Tibetan Plateau for the first time. Data show that the δ18O tendencies of water vapour coincide strongly with those of associated precipitation. The δ18O values of precipitation affect those of water vapour not only on the same day, but also for the following several days. In comparison, the δ18O values of local water vapour may only partly contribute to those of precipitation. During the entire sampling period, the variations of δ18Ov and δ18Op at Nagqu did not appear dependent on temperature, but did seem significantly dependent on the joint contributions of relative humidity, pressure, and precipitation amount. In addition, the δ18O changes in water vapour and precipitation can be used to diagnose different moisture sources, especially the influences of the Indian monsoon and convection. Moreover, intense activities of the Indian monsoon and convection may cause the relative enrichment of δ18Op relative to δ18Ov at Nagqu (on the central Tibetan Plateau) to differ from that at other stations on the northern Tibetan Plateau. These results indicate that the effects of different moisture sources, including the Indian monsoon and convection currents, need be considered when attempting to interpret paleoclimatic records on the central Tibetan Plateau.
40

Kaye, Jack A. "Theoretical analysis of isotope effects on ozone formation in oxygen photochemistry." Journal of Geophysical Research: Atmospheres 91, no. D7 (June 20, 1986): 7865–74. http://dx.doi.org/10.1029/jd091id07p07865.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Engrand, Cécile, Kevin D. McKeegan, Laurie A. Leshin, Gregory F. Herzog, Christoph Schnabel, Laurence E. Nyquist, and Donald E. Brownlee. "Isotopic compositions of oxygen, iron, chromium, and nickel in cosmic spherules: Toward a better comprehension of atmospheric entry heating effects." Geochimica et Cosmochimica Acta 69, no. 22 (November 2005): 5365–85. http://dx.doi.org/10.1016/j.gca.2005.07.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Dietrich, S., M. Werner, T. Spangehl, and G. Lohmann. "Influence of orbital forcing and solar activity on water isotopes in precipitation during the mid- and late Holocene." Climate of the Past 9, no. 1 (January 8, 2013): 13–26. http://dx.doi.org/10.5194/cp-9-13-2013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. In this study we investigate the impact of mid- and late Holocene orbital forcing and solar activity on variations of the oxygen isotopic composition in precipitation. The investigation is motivated by a recently published speleothem δ18O record from the well-monitored Bunker Cave in Germany. The record reveals some high variability on multi-centennial to millennial scales that does not linearly correspond to orbital forcing. Our model study is based on a set of novel climate simulations performed with the atmosphere general circulation model ECHAM5-wiso enhanced by explicit water isotope diagnostics. From the performed model experiments, we derive the following major results: (1) the response of both orbital and solar forcing lead to changes in surface temperatures and δ18O in precipitation with similar magnitudes during the mid- and late Holocene. (2) Past δ18O anomalies correspond to changing temperatures in the orbital driven simulations. This does not hold true if an additional solar forcing is added. (3) Two orbital driven mid-Holocene experiments, simulating the mean climate state approximately 5000 and 6000 yr ago, yield very similar results. However, if an identical additional solar activity-induced forcing is added, the simulated changes of surface temperatures as well as δ18O between both periods differ. We conclude from our simulation results that non-linear effects and feedbacks of the orbital and solar activity forcing substantially alter the δ18O in precipitation pattern and its relation to temperature change.
43

Alexandre, Anne, Elizabeth Webb, Amaelle Landais, Clément Piel, Sébastien Devidal, Corinne Sonzogni, Martine Couapel, et al. "Effects of leaf length and development stage on the triple oxygen isotope signature of grass leaf water and phytoliths: insights for a proxy of continental atmospheric humidity." Biogeosciences 16, no. 23 (December 5, 2019): 4613–25. http://dx.doi.org/10.5194/bg-16-4613-2019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Continental relative humidity (RH) is a key climate parameter, but there is a lack of quantitative RH proxies suitable for climate model–data comparisons. Recently, a combination of climate chamber and natural transect calibrations have laid the groundwork for examining the robustness of the triple oxygen isotope composition (δ′18O and 17O-excess) of phytoliths, that can preserve in sediments, as a new proxy for past changes in RH. However, it was recommended that besides RH, additional factors that may impact δ′18O and 17O-excess of plant water and phytoliths be examined. Here, the effects of grass leaf length, leaf development stage and day–night alternations are addressed from growth chamber experiments. The triple oxygen isotope compositions of leaf water and phytoliths of the grass species F. arundinacea are analysed. Evolution of the leaf water δ′18O and 17O-excess along the leaf length can be modelled using a string-of-lakes approach to which an unevaporated–evaporated mixing equation must be added. We show that for phytoliths to record this evolution, a kinetic fractionation between leaf water and silica, increasing from the base to the apex, must be assumed. Despite the isotope heterogeneity of leaf water along the leaf length, the bulk leaf phytolith δ′18O and 17O-excess values can be estimated from the Craig and Gordon model and a mean leaf water–phytolith fractionation exponent (λPhyto-LW) of 0.521. In addition to not being leaf length dependent, δ′18O and 17O-excess of grass phytoliths are expected to be impacted only very slightly by the stem vs. leaf biomass ratio. Our experiment additionally shows that because a lot of silica polymerises in grasses when the leaf reaches senescence (58 % of leaf phytoliths in mass), RH prevailing during the start of senescence should be considered in addition to RH prevailing during leaf growth when interpreting the 17O-excess of grass bulk phytoliths. Although under the study conditions 17O-excessPhyto do not vary significantly from constant day to day–night conditions, additional monitoring at low RH conditions should be done before drawing any generalisable conclusions. Overall, this study strengthens the reliability of the 17O-excess of phytoliths to be used as a proxy of RH. If future studies show that the mean value of 0.521 used for the grass leaf water–phytolith fractionation exponent λPhyto-LW is not climate dependent, then grassland leaf water 17O-excess obtained from grassland phytolith 17O-excess would inform on isotope signals of several soil–plant-atmosphere processes.
44

Hirl, Regina T., Hans Schnyder, Ulrike Ostler, Rudi Schäufele, Inga Schleip, Sylvia H. Vetter, Karl Auerswald, et al. "The <sup>18</sup>O ecohydrology of a grassland ecosystem – predictions and observations." Hydrology and Earth System Sciences 23, no. 6 (June 14, 2019): 2581–600. http://dx.doi.org/10.5194/hess-23-2581-2019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. The oxygen isotope composition (δ18O) of leaf water (δ18Oleaf) is an important determinant of environmental and physiological information found in biological archives, but the system-scale understanding of the propagation of the δ18O of rain through soil and xylem water to δ18Oleaf has not been verified for grassland. Here we report a unique and comprehensive dataset of fortnightly δ18O observations in soil, stem and leaf waters made over seven growing seasons in a temperate, drought-prone, mixed-species grassland. Using the ecohydrology part of a physically based, 18O-enabled soil–plant–atmosphere transfer model (MuSICA), we evaluated our ability to predict the dynamics of δ18O in soil water, the depth of water uptake, and the effects of soil and atmospheric moisture on 18O enrichment of leaf water (Δ18Oleaf) in this ecosystem. The model accurately predicted the δ18O dynamics of the different ecosystem water pools, suggesting that the model generated realistic predictions of the vertical distribution of soil water and root water uptake dynamics. Observations and model predictions indicated that water uptake occurred predominantly from shallow (<20 cm) soil depths throughout dry and wet periods in all years, presumably due (at least in part) to the effects of high grazing pressure on root system turnover and placement. Δ18Oleaf responded to both soil and atmospheric moisture contents and was best described in terms of constant proportions of unenriched and evaporatively enriched water (two-pool model). The good agreement between model predictions and observations is remarkable as model parameters describing the relevant physical features or functional relationships of soil and vegetation were held constant with one single value for the entire mixed-species ecosystem.
45

Giovinetto, Mario B., and H. Jay Zwally. "Areal distribution of the oxygen-isotope ratio in Antarctica: an assessment based on multivariate models." Annals of Glaciology 25 (1997): 153–58. http://dx.doi.org/10.1017/s0260305500013951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mean oxygen-isotope ratio values relative to standard mean ocean water (δ18O, in ‰) reported for 406 sites in Antarctica are compiled together with data on mean annual surface temperature, latitude, surface elevation, and mean annual shortest distance to open ocean denoted by the 20% sea-ice concentration boundary. Stepwise regression analyses with δ18O as the dependent variable are used as a model-building procedure based on statistical, rather than physical, criteria. Multivariate models sensitive to covariation between independent variables are defined using the whole dataset (N406 whereNdenotes the number of sites), as well as sub-sets for areas of conterminous grounded ice (N206) and ice shell (N110). The models show improvement over bivariate regression models. Distance to the open ocean enters all models at the second step. Inversions of the set and sub-set models applied to a database for 1351 gridpoint locations 100 km apart (it excludes the regions of Graham Land and eastern Palmer Land) are used to produce contoured distributions of δ18O. These may be used to assess the effects of atmospheric advection, as well as derive ice-flow adjustments for δ18O series obtained from deep-core or ablation-zone samples. Suggestions are made to improve model reliability.
46

Giovinetto, Mario B., and H. Jay Zwally. "Areal distribution of the oxygen-isotope ratio in Antarctica: an assessment based on multivariate models." Annals of Glaciology 25 (1997): 153–58. http://dx.doi.org/10.3189/s0260305500013951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Mean oxygen-isotope ratio values relative to standard mean ocean water (δ18 O, in ‰) reported for 406 sites in Antarctica are compiled together with data on mean annual surface temperature, latitude, surface elevation, and mean annual shortest distance to open ocean denoted by the 20% sea-ice concentration boundary. Stepwise regression analyses with δ18O as the dependent variable are used as a model-building procedure based on statistical, rather than physical, criteria. Multivariate models sensitive to covariation between independent variables are defined using the whole dataset (N406 where N denotes the number of sites), as well as sub-sets for areas of conterminous grounded ice (N206) and ice shell (N110). The models show improvement over bivariate regression models. Distance to the open ocean enters all models at the second step. Inversions of the set and sub-set models applied to a database for 1351 gridpoint locations 100 km apart (it excludes the regions of Graham Land and eastern Palmer Land) are used to produce contoured distributions of δ18O. These may be used to assess the effects of atmospheric advection, as well as derive ice-flow adjustments for δ18O series obtained from deep-core or ablation-zone samples. Suggestions are made to improve model reliability.
47

Michalski, G., S. K. Bhattacharya, and G. Girsch. "NO<sub>x</sub> cycle and tropospheric ozone isotope anomaly: an experimental investigation." Atmospheric Chemistry and Physics Discussions 13, no. 4 (April 11, 2013): 9443–83. http://dx.doi.org/10.5194/acpd-13-9443-2013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. The oxygen isotope composition of nitrogen oxides (NOx) in the atmosphere may be a useful tool for understanding the oxidation of NOx into nitric acid/nitrate in the atmosphere. A set of experiments were conducted to examine changes in isotopic composition of NOx due to O3-NOx photochemical cycling. At low NO2/O2 mixing ratios, NO2 becomes progressively and nearly equally enriched in 17O and 18O over time until it reaches a steady state with Δ17O values of 40.6 ± 1.9‰ and δ18O values of 84.2 ± 4‰, relative to the isotopic composition of the O2 gas. As the mixing ratio increases, isotopic exchange between O atoms and O2 and NOx suppresses the isotopic enrichments. A kinetic model simulating the observed data shows that the isotope effects during ozone formation play a more dominant role compared to kinetic isotope effects during NO oxidation or exchange of NO2. The model results are consistent with the data when the NO + O3 reaction occurs mainly via the transfer of the terminal atom of O3. The model predicts that under tropospheric concentrations of the three reactants, the timescale of NOx isotopic equilibrium ranges from hours (ppbv mixing ratios) to days/weeks (pptv) and yields steady state Δ17O and δ18O values of 46‰ and 115‰ respectively with respect to Vienna Standard Mean Ocean Water. Interpretation of tropospheric nitrate isotope data can now be done with the derived rate coefficients of the major isotopologue reactions at various pressures.
48

Steinthorsdottir, M., A. S. Porter, A. Holohan, L. Kunzmann, M. Collinson, and J. C. McElwain. "Fossil plant stomata indicate decreasing atmospheric CO<sub>2</sub> prior to the Eocene–Oligocene boundary." Climate of the Past Discussions 11, no. 5 (October 26, 2015): 4985–5019. http://dx.doi.org/10.5194/cpd-11-4985-2015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. A unique stratigraphic sequence of fossil leaves of Eotrigonobalanus furcinervis (extinct trees of the beech family, Fagaceae) from central Germany has been used to derive an atmospheric pCO2 record with multiple data points spanning the late middle to late Eocene, two sampling levels which may be earliest Oligocene, and two samples from later in the Oligocene. Using the inverse relationship between the density of stomata and pCO2, we show that pCO2 decreased continuously from the late middle to late Eocene, reaching a relatively stable low value before the end of the Eocene. Based on the subsequent records, pCO2 in parts of the Oligocene was similar to latest Eocene values. These results show that a decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene–Oliogocene transition. This may be related to the "hysteresis effect" previously proposed – where a certain threshold of pCO2 change was crossed before the cumulative effects of this and other factors resulted in rapid temperature decline, ice build up on Antarctica and hence a change of climate mode.
49

Steinthorsdottir, Margret, Amanda S. Porter, Aidan Holohan, Lutz Kunzmann, Margaret Collinson, and Jennifer C. McElwain. "Fossil plant stomata indicate decreasing atmospheric CO<sub>2</sub> prior to the Eocene–Oligocene boundary." Climate of the Past 12, no. 2 (February 25, 2016): 439–54. http://dx.doi.org/10.5194/cp-12-439-2016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. A unique stratigraphic sequence of fossil leaves of Eotrigonobalanus furcinervis (extinct trees of the beech family, Fagaceae) from central Germany has been used to derive an atmospheric pCO2 record with multiple data points spanning the late middle to late Eocene, two sampling levels which may be earliest Oligocene, and two samples from later in the Oligocene. Using the inverse relationship between the density of stomata and pCO2, we show that pCO2 decreased continuously from the late middle to late Eocene, reaching a relatively stable low value before the end of the Eocene. Based on the subsequent records, pCO2 in parts of the Oligocene was similar to latest Eocene values. These results suggest that a decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene–Oligocene transition and that when a certain threshold of pCO2 change was crossed, the cumulative effects of this and other factors resulted in rapid temperature decline, ice build up on Antarctica and hence a change of climate mode.
50

Wallmann, K., B. Schneider, and M. Sarnthein. "Effects of eustatic sea-level change, ocean dynamics, and iron fertilization on atmospheric <i>p</i>CO<sub>2</sub> and seawater composition over the last 130 000 years." Climate of the Past Discussions 11, no. 3 (June 29, 2015): 2405–81. http://dx.doi.org/10.5194/cpd-11-2405-2015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. We developed and employed an earth system model to explore the forcings of atmospheric pCO2 change and the chemical and isotopic evolution of seawater over the last glacial cycle. Concentrations of dissolved phosphorus, reactive nitrogen, molecular oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), 13C-DIC and 14C-DIC were calculated for 24 ocean boxes. The bi-directional water fluxes between these model boxes were derived from a 3-D circulation field of the modern ocean (Opa 8.2, NEMO) and tuned such that tracer distributions calculated by the box model were consistent with observational data from the modern ocean. To model the last 130 kyr, we employed records of past changes in sea-level, ocean circulation, and dust deposition. According to the model, about half of the glacial pCO2 drawdown may be attributed to marine regressions. The glacial sea-level low-stands implied steepened ocean margins, a reduced burial of particulate organic carbon, phosphorus, and neritic carbonate at the margin seafloor, a decline in benthic denitrification, and enhanced weathering of emerged shelf sediments. In turn, they led to a distinct rise in the standing stocks of DIC, TA, and nutrients in the global ocean, promoted the glacial sequestration of atmospheric CO2 in the ocean, and added 13C- and 14C-depleted DIC to the ocean as recorded in benthic foraminifera signals. The other half of the glacial drop in pCO2 was linked to reduced deep ocean dynamics, a shoaling of Atlantic meridional overturning circulation, and a rise in iron fertilization. The increased transit time of deep waters in the glacial ocean led to significant 14C depletions with respect to the atmosphere. The deglacial rapid and stepwise rise in atmospheric pCO2 was induced by upwelling both in the Southern Ocean and subarctic North Pacific and promoted by a drop in dust-borne iron discharge to the Southern Ocean. The deglacial sea-level rise led to a gradual decline in nutrient, DIC, and TA stocks, a slow change due to the large size and extended residence times of dissolved chemical species in the ocean. Thus, the rapid deglacial rise in pCO2 was dominated by fast changes in ocean dynamics and reduced dust deposition whereas the gradual pCO2 rise over the Holocene may be linked to the slow drop in nutrient and TA stocks that continued to promote an ongoing CO2 transfer from the ocean into the atmosphere.

До бібліографії